Solving a quartic equation by the method of radicals

Size: px
Start display at page:

Download "Solving a quartic equation by the method of radicals"

Transcription

1 Solving a quartic equation by the method of radicals Peter Haggstrom mathsatbondibeach@gmail.com September 18, 01 1 Introduction This paper deals with the solution of quartic equations by the method of radicals and builds upon an earlier paper and video which set out the process for solving a cubic by the method of radicals: 0solving%0cubics%0but%0were%0afraid%0to%0ask.pdf Accordingly you should read the cubic paper first because to get the general solution to a quartic you will need to solve a cubic along the way. The method of solution of the quartic by radicals (as explained in the cubic paper) is an intricate process originally devised by the 1 th century Italian mathematician Ferrari. One has to have admiration for Ferrari because the method is extremely prone to computational error as you will see. While the solution by radicals is really only of historical interest to students of number theory it nevertheless contains some interesting insights into how to solve a complicated problem using known sub-cases of a simpler problem. So let s begin with the solution. The recipe.1 Normalisation a 0 x + a 1 x 3 + a x + a 3 x + a = 0 x + ax 3 + bx + cx + d = 0 a = a 1 a 0, b = a a 0, c = a 3 a 0, d = a a 0 1

2 . Linear transformation x = y + f (y + f ) + a(y + f ) 3 + b(y + f ) + c(y + f ) + d = 0 f unknown at this stage y + ( f + a)y 3 + ( f + 3a f + b)y + ( f 3 + 3a f + b f + c)y + ( f + a f 3 + b f + c f + d) = 0. Now get rid of the cubed term. Hence f + a = 0 = f = a Thus, x = y + f = x a = x a 1 a 0.3 Reduced quartic equation We now have the reduced equation: y + py + qy + r = 0 where p and q are polynomials in a,b,c: (.3.1) p = f + 3a f + b q = f 3 + 3a f + f b + c r = f + a f 3 + b f + c f + d To solve y + py + qy + r = 0 we use a form of completing the square invented by Ferrari.. Completing the square in (.3.1) Completing the square in (.3.1) we get: y + py + qy + r = (y + p ) + qy + (r p ) = 0 (..1) We now introduce an arbitrary parameter α as follows: (y + p + α) = (y + p ) + (y + p )α + α Hence, using (..1) the following is true: (y + p + α) [ α(y + p ) + α qy + p r] = 0 (..) The idea is to find α such that the following is a second order polynomial in y which in turn is a perfect square: αy qy + (αp + α + p r) (..3) The logic behind this is that if (..3) is a perfect square then (..) becomes the difference of two squares s t = (s t)(s + t) = 0 which is the product of two polynomials of the second degree in y.

3 .5 Necessary and sufficient condition for (..3) to be a perfect square We know that since (..3) is a quadratic in y a necessary and sufficient condition for it to be a perfect square is that the discriminant be zero: = q 8α(αp + α + p r) = 8α3 8pα 8( p r)α + q = 0 ie: α 3 + pα + ( p q r)α 8 = 0 (.5.1) But (.5.1) is a cubic which can be solved by the method of radicals and so one can take one such solution for α and plug it into (..) which will yield something of the form: (y + p + α) t(y) = 0 (.5.) where t(y) is a perfect square because of the choice of α. Clearly (.5.) can be solved for y. Working our way back to the original problem We now have to work our way back to the original problem systematically. This is extremely tedious because we have potentially complicated expressions for α. The best way to follow the process is via an example 3

4

5 .7 Applying the recipe to an example To see how the formula works in detail it is necessary to do an example. To this end I ll concoct an example whose analytical solution is easy if you use Mathematica or Matlab!: x x 3 + x + x 1 = 0 (.7.1) Mathematica gives the solutions as: 1 i 1 + i x 1,,3, = (.7.) As before with the cubic we make a linear transformation as follows: x = y + d where d is to be determined (.7.3) We substitute x = y + d into (.7.1) and after expanding and collecting terms we get: y + (d )y 3 + (d 18d + )y + (d 3 18d + 8d + )y + (d d 3 + d + d 1) = 0...(.7.) To get rid of the cubic term in (.7.) we need: d = 0 = d = 3 (.7.5) Equation (.7.) becomes a reduced quartic of the following form : y + py + qy + r = 0 where (on plugging in d): p = d 18d + = 19 (.7.) q = d 3 18d + 8d + = 11 (.7.7) r = d d 3 + d + d 1 = (.7.8) Hence we have: y 19 y 11y = 0 (.7.9) We need to modify (.7.9) so that it is the difference of two squares so that we can solve for y and to do this we introduce a variable α to be determined: y 19 y 11y = (y 19 Hence: ) 31 1 (y 19 + α) = (y 19 ) + α(y 19 ) + α = (y 19 ) 11y 139 } {{ } =0 from (.7.10) = α(y 19 ) + α + 11y y = (y 19 ) 11y 139 = 0 (.7.10) +α(y 19 ) + α + 11y Therefore: (y 19 + α) [ α(y 19 ) + α + 11y ] } {{ 5} we want this to be a perfect square = 0 (.7.11)

6 Then we will have something of the form: s(y) t(y) = ( s(y) t(y) ) ( s(y) + t(y) ) = 0 which we can solve. A necesary and sufficient condition for α(y 19 ) + α + 11y to be a perfect square is that the discriminant of the quadratic in y is 0. Writing the quadratic out we get: αy + 11y + (α 19α ) (.7.1) The discriminant of (.7.1) is: = 11 8α(α 19α ) (.7.13) Thus the condition = 0 becomes: α 3 19α + 139α 11 8 = 0 (.7.1) But we can solve (.7.1) because it is a cubic - just follow the approach set out in my cubics paper: Let α = β + f (.7.15) and substitute into (.7.1), expand and collect like terms: β 3 + (3 f 19 )β + (3 f 19 f )β + ( f 3 19 f f 11 8 ) = 0 (.7.1) As before we want the square term in β to go so: 3 f 19 = 0 = f = 19 (.7.17) Equation (.7.1) then becomes: β 3 + Pβ + Q = 0 (.7.18) where: P = 3 f 19 f (.17.19) Q = f 3 19 f f 11 8 (.7.0) Substituting f = 19 into (.7.19) and (.7.0) we get: P = 1 3 (.7.1) Q = 88 7 (.7.) Thus (.7.18) becomes: β β = 0 (.7.3) To solve (.7.3) we let β = µ + ν (.7.) and substitute into (.7.3), expand and collect like terms: µ 3 + ν 3 + (µ + ν)( µν) + 7 = 0 (.7.5) Now we need to make: µν = 0 = µν = 9 (.7.) Hence when we interpret µ 3 and ν 3 as roots we have the following relationships:

7 µ 3 ν 3 = ( 1 9 )3 (.7.7) µ 3 + ν 3 = 88 7 (.7.8) Using Viète s theorem for the roots µ 3 and ν 3 we have that those roots satisfy: w w ( 1 9 )3 = 0 (.7.9) Now it gets very messy from here on in so rather than obscuring what is going on with lots of square and cube roots I will resort to numerical answers via Mathematica. Using Mathematica s Solve/NSolve we get that the roots of (.7.9) are: w 1 = 7 ( = = µ 3 (.7.30) w 1 = 7 ( = = ν 3 (.7.31) To find the three roots of each of µ and ν we have to solve the following cubics: µ = 0 (.7.3) ν = 0 (.7.33) Solving (.7.3) and (.7.33) we have: µ 1 = (.7.3) µ = i (.7.35) µ 3 = i (.7.3) ν 1 = i (.7.37) ν = i (.7.38) ν 3 = (.7.39) Working back to α we need to use (.7.15),(.7.17) and (.7.) so that: α = β + f = µ + ν + 19 (.7.0) where we take into account the roots of µ and ν We find that: µ 1 + ν µ 1 + ν + 19 == i (.7.1) == i (.7.) µ 1 + ν = 1 (.7.3) µ + ν µ + ν + 19 µ + ν = i (.7.) =.5.309i (.7.5) = i (.7.) 7

8 µ 3 + ν = i (.7.7) µ 3 + ν + 19 µ 3 + ν = i (.7.8) = i (.7.9) Note that if we solve (.7.1) using Solve in Mathematica we get the three roots as: α 1 = 1 corresponds to (.7.3) α = 1 (9 i 10) corresponds to (.7.) α = 1 (9 + i 10) corresponds to (.7.8) Because we need α(y 19 ) + α + 11y to be a perfect square why not try α = 1? We get: 1 (y 19 ) y + = y + 11y + 11 = (y + 11 ) (.7.9) Thus α = 1 does indeed generate the required perfect square and that is all we need to solve (.7.11) which is done as follows: (y 19 + α) [ α(y 19 ) + α + 11y ] = 0 and on substituting α = 1 : (y 17 ) (y + 11 ) = 0 [ (y 17 ) (y + 11 )] [ (y 17 ) + (y + ] 11 = 0 Hence we have to solve the following two quadratics: y y 39 = 0 (.7.50) y + y + 5 = 0 (.7.51) The solutions to (.7.50) are: y = 1 ± 10 (.7.5) The solutions to (.7.51) are: y = 1 ± i (.7.53) Recalling from (.7.3) and (.7.5) that x = y + 3 we have that: = x 1,,3, = = i + 3 = 1 + i (.7.5) 1 i + 3 = 1 i Going back to (.7.) these roots are what Mathematica gave us - without all the tedium!! The reason I chose α = 1 to generate the perfect square is because, out of the nine possibilities in (.7.1)-(.7.9), it was the only one which gave the required perfect square. 8

9 Clearly this is a fiddly process and one has to have some admiration for Cardano and his students in working doing this stuff without computers. It also explains why in high school the solutions to cubics and quartics are not usually pursued. 9

All you wanted to know about solving cubic equations but were afraid to ask

All you wanted to know about solving cubic equations but were afraid to ask All you wanted to know about solving cubic equations but were afraid to ask Peter Haggstrom www.gotohaggstrom.com mathsatbondibeach@gmail.com August 0, 01 1 Introduction The general algebraic equation

More information

PARTIAL FRACTIONS: AN INTEGRATIONIST PERSPECTIVE

PARTIAL FRACTIONS: AN INTEGRATIONIST PERSPECTIVE PARTIAL FRACTIONS: AN INTEGRATIONIST PERSPECTIVE MATH 153, SECTION 55 (VIPUL NAIK) Corresponding material in the book: Section 8.5. What students should already know: The integrals for 1/x, 1/(x 2 + 1),

More information

CH 73 THE QUADRATIC FORMULA, PART II

CH 73 THE QUADRATIC FORMULA, PART II 1 CH THE QUADRATIC FORMULA, PART II INTRODUCTION W ay back in Chapter 55 we used the Quadratic Formula to solve quadratic equations like 6x + 1x + 0 0, whose solutions are 5 and 8. In fact, all of the

More information

Math From Scratch Lesson 37: Roots of Cubic Equations

Math From Scratch Lesson 37: Roots of Cubic Equations Math From Scratch Lesson 7: Roots of Cubic Equations W. Blaine Dowler September 1, 201 Contents 1 Defining Cubic Equations 1 2 The Roots of Cubic Equations 1 2.1 Case 1: a 2 = a 1 = 0.........................

More information

Lecture 27. Quadratic Formula

Lecture 27. Quadratic Formula Lecture 7 Quadratic Formula Goal: to solve any quadratic equation Quadratic formula 3 Plan Completing the square 5 Completing the square 6 Proving quadratic formula 7 Proving quadratic formula 8 Proving

More information

3.0 INTRODUCTION 3.1 OBJECTIVES 3.2 SOLUTION OF QUADRATIC EQUATIONS. Structure

3.0 INTRODUCTION 3.1 OBJECTIVES 3.2 SOLUTION OF QUADRATIC EQUATIONS. Structure UNIT 3 EQUATIONS Equations Structure 3.0 Introduction 3.1 Objectives 3.2 Solution of Quadratic Equations 3.3 Quadratic Formula 3.4 Cubic and Bioquadratic Equations 3.5 Answers to Check Your Progress 3.6

More information

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6

Section A.6. Solving Equations. Math Precalculus I. Solving Equations Section A.6 Section A.6 Solving Equations Math 1051 - Precalculus I A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 A.6 Solving Equations Simplify 1 2x 6 x + 2 x 2 9 Factor: 2x 6 = 2(x 3) x 2 9 = (x 3)(x + 3) LCD

More information

Section 8.3 Partial Fraction Decomposition

Section 8.3 Partial Fraction Decomposition Section 8.6 Lecture Notes Page 1 of 10 Section 8.3 Partial Fraction Decomposition Partial fraction decomposition involves decomposing a rational function, or reversing the process of combining two or more

More information

Chapter 3: Polynomial and Rational Functions

Chapter 3: Polynomial and Rational Functions Chapter 3: Polynomial and Rational Functions 3.1 Polynomial Functions A polynomial on degree n is a function of the form P(x) = a n x n + a n 1 x n 1 + + a 1 x 1 + a 0, where n is a nonnegative integer

More information

A Sampling of Symmetry and Solvability. Sarah Witherspoon Professor of Mathematics Texas A&M University

A Sampling of Symmetry and Solvability. Sarah Witherspoon Professor of Mathematics Texas A&M University A Sampling of Symmetry and Solvability Sarah Witherspoon Professor of Mathematics Texas A&M University Polynomial Equations Examples: x 9 2x 4 5 = 0, x 2 y 3 3y 2 = 0, x 2 + y 2 + z 2 = 1 Solving polynomial

More information

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers

P.6 Complex Numbers. -6, 5i, 25, -7i, 5 2 i + 2 3, i, 5-3i, i. DEFINITION Complex Number. Operations with Complex Numbers SECTION P.6 Complex Numbers 49 P.6 Complex Numbers What you ll learn about Complex Numbers Operations with Complex Numbers Complex Conjugates and Division Complex Solutions of Quadratic Equations... and

More information

Appendix 1. Cardano s Method

Appendix 1. Cardano s Method Appendix 1 Cardano s Method A1.1. Introduction This appendix gives the mathematical method to solve the roots of a polynomial of degree three, called a cubic equation. Some results in this section can

More information

Computer Science Theory of Computation (Spring 2019)

Computer Science Theory of Computation (Spring 2019) Computer Science 601.631 Theory of Computation (Spring 2019) Xin Li lixints@cs.jhu.edu Johns Hopkins University Background: computation Computation is closely related to mathematics. Mathematicians have

More information

To solve a radical equation, you must take both sides of an equation to a power.

To solve a radical equation, you must take both sides of an equation to a power. Topic 5 1 Radical Equations A radical equation is an equation with at least one radical expression. There are four types we will cover: x 35 3 4x x 1x 7 3 3 3 x 5 x 1 To solve a radical equation, you must

More information

Solving simple equations, a review/primer

Solving simple equations, a review/primer ucsc supplementary notes ams/econ 11a Solving simple equations, a review/primer c 2012 Yonatan Katznelson Differential and integral calculus do not replace algebra, they build on it When working problems

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a

Partial Fractions. (Do you see how to work it out? Substitute u = ax + b, so du = a dx.) For example, 1 dx = ln x 7 + C, x x (x 3)(x + 1) = a Partial Fractions 7-9-005 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

ax 2 + bx + c = 0 What about any cubic equation?

ax 2 + bx + c = 0 What about any cubic equation? (Trying to) solve Higher order polynomial euations. Some history: The uadratic formula (Dating back to antiuity) allows us to solve any uadratic euation. What about any cubic euation? ax 2 + bx + c = 0

More information

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7

Partial Fractions. (Do you see how to work it out? Substitute u = ax+b, so du = adx.) For example, 1 dx = ln x 7 +C, x 7 Partial Fractions -4-209 Partial fractions is the opposite of adding fractions over a common denominator. It applies to integrals of the form P(x) dx, wherep(x) and Q(x) are polynomials. Q(x) The idea

More information

Hilbert s 13th Problem Great Theorem; Shame about the Algorithm. Bill Moran

Hilbert s 13th Problem Great Theorem; Shame about the Algorithm. Bill Moran Hilbert s 13th Problem Great Theorem; Shame about the Algorithm Bill Moran Structure of Talk Solving Polynomial Equations Hilbert s 13th Problem Kolmogorov-Arnold Theorem Neural Networks Quadratic Equations

More information

Something that can have different values at different times. A variable is usually represented by a letter in algebraic expressions.

Something that can have different values at different times. A variable is usually represented by a letter in algebraic expressions. Lesson Objectives: Students will be able to define, recognize and use the following terms in the context of polynomials: o Constant o Variable o Monomial o Binomial o Trinomial o Polynomial o Numerical

More information

Non-Linear Regression

Non-Linear Regression Non-Linear Regression Recall that linear regression is a technique for finding the equation of the line of best fit (LOBF) when two variables have a linear association (i.e. changes in one variable tend

More information

Section 4.6: Solving Equations by Factoring

Section 4.6: Solving Equations by Factoring Section 4.6: Solving Equations by Factoring Objective: Solve quadratic equations by factoring and using the zero product rule. When solving linear equations such as 2x 5 = 21; we can solve for the variable

More information

Chapter 2 notes from powerpoints

Chapter 2 notes from powerpoints Chapter 2 notes from powerpoints Synthetic division and basic definitions Sections 1 and 2 Definition of a Polynomial Function: Let n be a nonnegative integer and let a n, a n-1,, a 2, a 1, a 0 be real

More information

MA 1128: Lecture 19 4/20/2018. Quadratic Formula Solving Equations with Graphs

MA 1128: Lecture 19 4/20/2018. Quadratic Formula Solving Equations with Graphs MA 1128: Lecture 19 4/20/2018 Quadratic Formula Solving Equations with Graphs 1 Completing-the-Square Formula One thing you may have noticed when you were completing the square was that you followed the

More information

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2

Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Modern Algebra Lecture Notes: Rings and fields set 6, revision 2 Kevin Broughan University of Waikato, Hamilton, New Zealand May 20, 2010 Solving quadratic equations: traditional The procedure Work in

More information

Ch. 7.6 Squares, Squaring & Parabolas

Ch. 7.6 Squares, Squaring & Parabolas Ch. 7.6 Squares, Squaring & Parabolas Learning Intentions: Learn about the squaring & square root function. Graph parabolas. Compare the squaring function with other functions. Relate the squaring function

More information

The Mathematics of Renaissance Europe

The Mathematics of Renaissance Europe The Mathematics of Renaissance Europe The 15 th and 16 th centuries in Europe are often referred to as the Renaissance. The word renaissance means rebirth and describes the renewed interest in intellectual

More information

Low-Degree Polynomial Roots

Low-Degree Polynomial Roots Low-Degree Polynomial Roots David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To view

More information

SOLVING QUADRATIC EQUATIONS USING GRAPHING TOOLS

SOLVING QUADRATIC EQUATIONS USING GRAPHING TOOLS GRADE PRE-CALCULUS UNIT A: QUADRATIC EQUATIONS (ALGEBRA) CLASS NOTES. A definition of Algebra: A branch of mathematics which describes basic arithmetic relations using variables.. Algebra is just a language.

More information

Polynomial Form. Factored Form. Perfect Squares

Polynomial Form. Factored Form. Perfect Squares We ve seen how to solve quadratic equations (ax 2 + bx + c = 0) by factoring and by extracting square roots, but what if neither of those methods are an option? What do we do with a quadratic equation

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

Lesson 21 Not So Dramatic Quadratics

Lesson 21 Not So Dramatic Quadratics STUDENT MANUAL ALGEBRA II / LESSON 21 Lesson 21 Not So Dramatic Quadratics Quadratic equations are probably one of the most popular types of equations that you ll see in algebra. A quadratic equation has

More information

Abel s Theorem Through Problems. V. B. Alekseev

Abel s Theorem Through Problems. V. B. Alekseev Abel s Theorem Through Problems V. B. Alekseev Abel s Theorem Through Problems V. B. Alekseev Translated by Yuliya Gorlina and Igor Pavlovsky Preface and Introduction translated by Leonid Grinberg Edited

More information

Linear algebra and differential equations (Math 54): Lecture 20

Linear algebra and differential equations (Math 54): Lecture 20 Linear algebra and differential equations (Math 54): Lecture 20 Vivek Shende April 7, 2016 Hello and welcome to class! Last time We started discussing differential equations. We found a complete set of

More information

Use the Rational Zero Theorem to list all the possible rational zeros of the following polynomials. (1-2) 4 3 2

Use the Rational Zero Theorem to list all the possible rational zeros of the following polynomials. (1-2) 4 3 2 Name: Math 114 Activity 1(Due by EOC Apr. 17) Dear Instructor or Tutor, These problems are designed to let my students show me what they have learned and what they are capable of doing on their own. Please

More information

Equations in Quadratic Form

Equations in Quadratic Form Equations in Quadratic Form MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: make substitutions that allow equations to be written

More information

Galois theory - Wikipedia, the free encyclopedia

Galois theory - Wikipedia, the free encyclopedia Page 1 of 8 Galois theory From Wikipedia, the free encyclopedia In mathematics, more specifically in abstract algebra, Galois theory, named after Évariste Galois, provides a connection between field theory

More information

O1 History of Mathematics Lecture IX Classical algebra: equation solving 1800BC AD1800. Monday 6th November 2017 (Week 5)

O1 History of Mathematics Lecture IX Classical algebra: equation solving 1800BC AD1800. Monday 6th November 2017 (Week 5) O1 History of Mathematics Lecture IX Classical algebra: equation solving 1800BC AD1800 Monday 6th November 2017 (Week 5) Summary Early quadratic equations Cubic and quartic equations Further 16th-century

More information

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0)

Quadratic Formula: - another method for solving quadratic equations (ax 2 + bx + c = 0) In the previous lesson we showed how to solve quadratic equations that were not factorable and were not perfect squares by making perfect square trinomials using a process called completing the square.

More information

GALOIS THEORY FOR PHYSICISTS

GALOIS THEORY FOR PHYSICISTS GALOIS THEORY FOR PHYSICISTS Spontaneous Symmetry Breaking and the Solution to the Quintic Tatsu Takeuchi @Kyoto Sangyo University, Maskawa-Juku January 12, 2012 DISCLAIMER: Start with the complex number

More information

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review

Algebra Review. Finding Zeros (Roots) of Quadratics, Cubics, and Quartics. Kasten, Algebra 2. Algebra Review Kasten, Algebra 2 Finding Zeros (Roots) of Quadratics, Cubics, and Quartics A zero of a polynomial equation is the value of the independent variable (typically x) that, when plugged-in to the equation,

More information

Chapter 9 Quadratic Functions and Equations

Chapter 9 Quadratic Functions and Equations Chapter 9 Quadratic Functions and Equations 1 9 1Quadratic Graphs and their properties U shaped graph such as the one at the right is called a parabola. A parabola can open upward or downward. A parabola

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Precalculus Workshop - Equations and Inequalities

Precalculus Workshop - Equations and Inequalities Linear Equations To solve a linear equation, we may apply the rules below. The values a, b and c are real numbers, unless otherwise stated. 1. Addition and subtraction rules: (a) If a = b, then a + c =

More information

CM2104: Computational Mathematics General Maths: 2. Algebra - Factorisation

CM2104: Computational Mathematics General Maths: 2. Algebra - Factorisation CM204: Computational Mathematics General Maths: 2. Algebra - Factorisation Prof. David Marshall School of Computer Science & Informatics Factorisation Factorisation is a way of simplifying algebraic expressions.

More information

Polynomials: Adding, Subtracting, & Multiplying (5.1 & 5.2)

Polynomials: Adding, Subtracting, & Multiplying (5.1 & 5.2) Polynomials: Adding, Subtracting, & Multiplying (5.1 & 5.) Determine if the following functions are polynomials. If so, identify the degree, leading coefficient, and type of polynomial 5 3 1. f ( x) =

More information

Is there a rigorous high school limit proof that 0 0 = 1?

Is there a rigorous high school limit proof that 0 0 = 1? Is there a rigorous high school limit proof that 0 0 =? Peter Haggstrom www.gotohaggstrom.com mathsatbondibeach@gmail.com February 20, 208 A bare hands proof Youtube contains a number of videos seemingly

More information

Algebra 1. Standard 1: Operations With Real Numbers Students simplify and compare expressions. They use rational exponents and simplify square roots.

Algebra 1. Standard 1: Operations With Real Numbers Students simplify and compare expressions. They use rational exponents and simplify square roots. Standard 1: Operations With Real Numbers Students simplify and compare expressions. They use rational exponents and simplify square roots. A1.1.1 Compare real number expressions. A1.1.2 Simplify square

More information

Tropical Polynomials

Tropical Polynomials 1 Tropical Arithmetic Tropical Polynomials Los Angeles Math Circle, May 15, 2016 Bryant Mathews, Azusa Pacific University In tropical arithmetic, we define new addition and multiplication operations on

More information

Eigenvalues by row operations

Eigenvalues by row operations Eigenvalues by row operations Barton L. Willis Department of Mathematics University of Nebraska at Kearney Kearney, Nebraska 68849 May, 5 Introduction There is a wonderful article, Down with Determinants!,

More information

CHAPTER 1. FUNCTIONS 7

CHAPTER 1. FUNCTIONS 7 CHAPTER 1. FUNCTIONS 7 1.3.2 Polynomials A polynomial is a function P with a general form P (x) a 0 + a 1 x + a 2 x 2 + + a n x n, (1.4) where the coe cients a i (i 0, 1,...,n) are numbers and n is a non-negative

More information

Roots are: Solving Quadratics. Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3. real, rational. real, rational. real, rational, equal

Roots are: Solving Quadratics. Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3. real, rational. real, rational. real, rational, equal Solving Quadratics Graph: y = 2x 2 2 y = x 2 x 12 y = x 2 + 6x + 9 y = x 2 + 6x + 3 Roots are: real, rational real, rational real, rational, equal real, irrational 1 To find the roots algebraically, make

More information

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2

MthEd/Math 300 Williams Fall 2011 Midterm Exam 2 Name: MthEd/Math 300 Williams Fall 2011 Midterm Exam 2 Closed Book / Closed Note. Answer all problems. You may use a calculator for numerical computations. Section 1: For each event listed in the first

More information

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. LEAVING CERT Honours Maths notes on Algebra. A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers. The degree is the highest power of x. 3x 2 + 2x

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

Solving Quadratic Equations Review

Solving Quadratic Equations Review Math III Unit 2: Polynomials Notes 2-1 Quadratic Equations Solving Quadratic Equations Review Name: Date: Period: Some quadratic equations can be solved by. Others can be solved just by using. ANY quadratic

More information

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions

Examples 2: Composite Functions, Piecewise Functions, Partial Fractions Examples 2: Composite Functions, Piecewise Functions, Partial Fractions September 26, 206 The following are a set of examples to designed to complement a first-year calculus course. objectives are listed

More information

Polynomial Functions

Polynomial Functions Polynomial Functions Equations and Graphs Characteristics The Factor Theorem The Remainder Theorem http://www.purplemath.com/modules/polyends5.htm 1 A cross-section of a honeycomb has a pattern with one

More information

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc.

Section September 6, If n = 3, 4, 5,..., the polynomial is called a cubic, quartic, quintic, etc. Section 2.1-2.2 September 6, 2017 1 Polynomials Definition. A polynomial is an expression of the form a n x n + a n 1 x n 1 + + a 1 x + a 0 where each a 0, a 1,, a n are real numbers, a n 0, and n is a

More information

Solve Quadratic Equations by Using the Quadratic Formula. Return to Table of Contents

Solve Quadratic Equations by Using the Quadratic Formula. Return to Table of Contents Solve Quadratic Equations by Using the Quadratic Formula Return to Table of Contents 128 Solving Quadratics At this point you have learned how to solve quadratic equations by: graphing factoring using

More information

Can there be more than one correct factorization of a polynomial? There can be depending on the sign: -2x 3 + 4x 2 6x can factor to either

Can there be more than one correct factorization of a polynomial? There can be depending on the sign: -2x 3 + 4x 2 6x can factor to either MTH95 Day 9 Sections 5.5 & 5.6 Section 5.5: Greatest Common Factor and Factoring by Grouping Review: The difference between factors and terms Identify and factor out the Greatest Common Factor (GCF) Factoring

More information

Chapter 1. Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring

Chapter 1. Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring In This Chapter Chapter 1 Making Advances in Algebra Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring Algebra is a branch of mathematics

More information

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it?

Math 1302 Notes 2. How many solutions? What type of solution in the real number system? What kind of equation is it? Math 1302 Notes 2 We know that x 2 + 4 = 0 has How many solutions? What type of solution in the real number system? What kind of equation is it? What happens if we enlarge our current system? Remember

More information

Chapter 8B - Trigonometric Functions (the first part)

Chapter 8B - Trigonometric Functions (the first part) Fry Texas A&M University! Spring 2016! Math 150 Notes! Section 8B-I! Page 79 Chapter 8B - Trigonometric Functions (the first part) Recall from geometry that if 2 corresponding triangles have 2 angles of

More information

CP Algebra 2. Unit 3B: Polynomials. Name: Period:

CP Algebra 2. Unit 3B: Polynomials. Name: Period: CP Algebra 2 Unit 3B: Polynomials Name: Period: Learning Targets 10. I can use the fundamental theorem of algebra to find the expected number of roots. Solving Polynomials 11. I can solve polynomials by

More information

Advanced Eng. Mathematics

Advanced Eng. Mathematics Koya University Faculty of Engineering Petroleum Engineering Department Advanced Eng. Mathematics Lecture 6 Prepared by: Haval Hawez E-mail: haval.hawez@koyauniversity.org 1 Second Order Linear Ordinary

More information

Symmetries and Polynomials

Symmetries and Polynomials Symmetries and Polynomials Aaron Landesman and Apurva Nakade June 30, 2018 Introduction In this class we ll learn how to solve a cubic. We ll also sketch how to solve a quartic. We ll explore the connections

More information

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes

3.3. Solving polynomial equations. Introduction. Prerequisites. Learning Outcomes Solving polynomial equations 3.3 Introduction Linear and quadratic equations, dealt within sections 1 and 2 are members of a class of equations called polynomial equations. These have the general form:

More information

Polynomial Form. Factored Form. Perfect Squares

Polynomial Form. Factored Form. Perfect Squares We ve seen how to solve quadratic equations (ax 2 + bx + c = 0) by factoring and by extracting square roots, but what if neither of those methods are an option? What do we do with a quadratic equation

More information

Solving Quadratic Equations by Formula

Solving Quadratic Equations by Formula Algebra Unit: 05 Lesson: 0 Complex Numbers All the quadratic equations solved to this point have had two real solutions or roots. In some cases, solutions involved a double root, but there were always

More information

1 Introduction. 2 Solving Linear Equations. Charlotte Teacher Institute, Modular Arithmetic

1 Introduction. 2 Solving Linear Equations. Charlotte Teacher Institute, Modular Arithmetic 1 Introduction This essay introduces some new sets of numbers. Up to now, the only sets of numbers (algebraic systems) we know is the set Z of integers with the two operations + and and the system R of

More information

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions

Unit 2-1: Factoring and Solving Quadratics. 0. I can add, subtract and multiply polynomial expressions CP Algebra Unit -1: Factoring and Solving Quadratics NOTE PACKET Name: Period Learning Targets: 0. I can add, subtract and multiply polynomial expressions 1. I can factor using GCF.. I can factor by grouping.

More information

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS)

Worksheet # 2: Higher Order Linear ODEs (SOLUTIONS) Name: November 8, 011 Worksheet # : Higher Order Linear ODEs (SOLUTIONS) 1. A set of n-functions f 1, f,..., f n are linearly independent on an interval I if the only way that c 1 f 1 (t) + c f (t) +...

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

Find two positive factors of 24 whose sum is 10. Make an organized list.

Find two positive factors of 24 whose sum is 10. Make an organized list. 9.5 Study Guide For use with pages 582 589 GOAL Factor trinomials of the form x 2 1 bx 1 c. EXAMPLE 1 Factor when b and c are positive Factor x 2 1 10x 1 24. Find two positive factors of 24 whose sum is

More information

Solving Quadratic Equations

Solving Quadratic Equations Solving Quadratic Equations MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to: solve quadratic equations by factoring, solve quadratic

More information

Trend Analysis and Completion Prediction of the Section Project

Trend Analysis and Completion Prediction of the Section Project Undergraduate Journal of Mathematical Modeling: One + Two Volume 9 2018 Fall 2018 Issue 1 Article 3 Trend Analysis and Completion Prediction of the Section Project Ronald Jones University of South Florida

More information

1 Introduction. 2 Solving Linear Equations

1 Introduction. 2 Solving Linear Equations 1 Introduction This essay introduces some new sets of numbers. Up to now, the only sets of numbers (algebraic systems) we know is the set Z of integers with the two operations + and and the system R of

More information

Algebra and Geometry in the Sixteenth and Seventeenth Centuries

Algebra and Geometry in the Sixteenth and Seventeenth Centuries Algebra and Geometry in the Sixteenth and Seventeenth Centuries Introduction After outlining the state of algebra and geometry at the beginning of the sixteenth century, we move to discuss the advances

More information

Advanced Elementary Algebra

Advanced Elementary Algebra Advanced Elementary Algebra Guershon Harel & Sara-Jane Harel 0 Advanced Elementary Algebra Guershon Harel University of California, San Diego With Sara-Jane Harel Advanced Elementary Algebra Guershon Harel

More information

1. A definition of Algebra: a branch of mathematics which describes basic arithmetic relations using variables.

1. A definition of Algebra: a branch of mathematics which describes basic arithmetic relations using variables. MA30S PRECALC UNIT C: ALGEBRA CLASS NOTES. A definition of Algebra: a branch of mathematics which describes basic arithmetic relations using variables.. It is just a language. Instead of saying Jason is

More information

QUADRATIC EQUATIONS. + 6 = 0 This is a quadratic equation written in standard form. x x = 0 (standard form with c=0). 2 = 9

QUADRATIC EQUATIONS. + 6 = 0 This is a quadratic equation written in standard form. x x = 0 (standard form with c=0). 2 = 9 QUADRATIC EQUATIONS A quadratic equation is always written in the form of: a + b + c = where a The form a + b + c = is called the standard form of a quadratic equation. Eamples: 5 + 6 = This is a quadratic

More information

In this unit we will study exponents, mathematical operations on polynomials, and factoring.

In this unit we will study exponents, mathematical operations on polynomials, and factoring. GRADE 0 MATH CLASS NOTES UNIT E ALGEBRA In this unit we will study eponents, mathematical operations on polynomials, and factoring. Much of this will be an etension of your studies from Math 0F. This unit

More information

What if the characteristic equation has complex roots?

What if the characteristic equation has complex roots? MA 360 Lecture 18 - Summary of Recurrence Relations (cont. and Binomial Stuff Thursday, November 13, 01. Objectives: Examples of Recurrence relation solutions, Pascal s triangle. A quadratic equation What

More information

Solving Quadratic Equations Using the Quadratic Formula

Solving Quadratic Equations Using the Quadratic Formula Section 9 : Solving Quadratic Equations Using the Quadratic Fmula Quadratic Equations are equations that have an x term as the highest powered term. They are also called Second Degree Equations. The Standard

More information

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II. 2 nd Nine Weeks,

STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II. 2 nd Nine Weeks, STANDARDS OF LEARNING CONTENT REVIEW NOTES ALGEBRA II 2 nd Nine Weeks, 2016-2017 1 OVERVIEW Algebra II Content Review Notes are designed by the High School Mathematics Steering Committee as a resource

More information

Sect Polynomial and Rational Inequalities

Sect Polynomial and Rational Inequalities 158 Sect 10.2 - Polynomial and Rational Inequalities Concept #1 Solving Inequalities Graphically Definition A Quadratic Inequality is an inequality that can be written in one of the following forms: ax

More information

Math Circles: Number Theory III

Math Circles: Number Theory III Math Circles: Number Theory III Centre for Education in Mathematics and Computing University of Waterloo March 9, 2011 A prime-generating polynomial The polynomial f (n) = n 2 n + 41 generates a lot of

More information

CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic

CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic CHAPTER EIGHT: SOLVING QUADRATIC EQUATIONS Review April 9 Test April 17 The most important equations at this level of mathematics are quadratic equations. They can be solved using a graph, a perfect square,

More information

DISCRIMINANT EXAM QUESTIONS

DISCRIMINANT EXAM QUESTIONS DISCRIMINANT EXAM QUESTIONS Question 1 (**) Show by using the discriminant that the graph of the curve with equation y = x 4x + 10, does not cross the x axis. proof Question (**) Show that the quadratic

More information

Math 2142 Homework 5 Part 1 Solutions

Math 2142 Homework 5 Part 1 Solutions Math 2142 Homework 5 Part 1 Solutions Problem 1. For the following homogeneous second order differential equations, give the general solution and the particular solution satisfying the given initial conditions.

More information

Instructor Notes for Chapters 3 & 4

Instructor Notes for Chapters 3 & 4 Algebra for Calculus Fall 0 Section 3. Complex Numbers Goal for students: Instructor Notes for Chapters 3 & 4 perform computations involving complex numbers You might want to review the quadratic formula

More information

2.6. Solve Factorable Polynomial Inequalities Algebraically. Solve Linear Inequalities. Solution

2.6. Solve Factorable Polynomial Inequalities Algebraically. Solve Linear Inequalities. Solution .6 Solve Factorable Polynomial Inequalities Algebraically A rectangular in-ground swimming pool is to be installed. The engineer overseeing the construction project estimates that at least 148 m of earth

More information

Topic 7: Polynomials. Introduction to Polynomials. Table of Contents. Vocab. Degree of a Polynomial. Vocab. A. 11x 7 + 3x 3

Topic 7: Polynomials. Introduction to Polynomials. Table of Contents. Vocab. Degree of a Polynomial. Vocab. A. 11x 7 + 3x 3 Topic 7: Polynomials Table of Contents 1. Introduction to Polynomials. Adding & Subtracting Polynomials 3. Multiplying Polynomials 4. Special Products of Binomials 5. Factoring Polynomials 6. Factoring

More information

B. Complex number have a Real part and an Imaginary part. 1. written as a + bi some Examples: 2+3i; 7+0i; 0+5i

B. Complex number have a Real part and an Imaginary part. 1. written as a + bi some Examples: 2+3i; 7+0i; 0+5i Section 11.8 Complex Numbers I. The Complex Number system A. The number i = -1 1. 9 and 24 B. Complex number have a Real part and an Imaginary part II. Powers of i 1. written as a + bi some Examples: 2+3i;

More information

Things You Should Know Coming Into Calc I

Things You Should Know Coming Into Calc I Things You Should Know Coming Into Calc I Algebraic Rules, Properties, Formulas, Ideas and Processes: 1) Rules and Properties of Exponents. Let x and y be positive real numbers, let a and b represent real

More information

Parabolas and lines

Parabolas and lines Parabolas and lines Study the diagram at the right. I have drawn the graph y = x. The vertical line x = 1 is drawn and a number of secants to the parabola are drawn, all centred at x=1. By this I mean

More information

Unit 5 Solving Quadratic Equations

Unit 5 Solving Quadratic Equations SM Name: Period: Unit 5 Solving Quadratic Equations 5.1 Solving Quadratic Equations by Factoring Quadratic Equation: Any equation that can be written in the form a b c + + = 0, where a 0. Zero Product

More information

5.4 - Quadratic Functions

5.4 - Quadratic Functions Fry TAMU Spring 2017 Math 150 Notes Section 5.4 Page! 92 5.4 - Quadratic Functions Definition: A function is one that can be written in the form f (x) = where a, b, and c are real numbers and a 0. (What

More information