Quantum Walk in Position Space with Single Optically Trapped Atoms Michal Karski, et al. Science 325, 174 (2009)

Size: px
Start display at page:

Download "Quantum Walk in Position Space with Single Optically Trapped Atoms Michal Karski, et al. Science 325, 174 (2009)"

Transcription

1 Quantum Walk in Position Space with Single Optically Trapped Atoms Michal Karski, et al. Science 325, 174 (2009) abstract: The quantum walk is the quantum analog of the well-known random walk, which forms the basis for models and applications in many realms of science. Its properties are markedly different from the classical counterpart and might lead to extensive applications in quantum information science. In our experiment, we implemented a quantum walk on the line with single neutral atoms by deterministically delocalizing them over the sites of a one-dimensional spin-dependent optical lattice. With the use of site-resolved fluorescence imaging, the final wave function is characterized by local quantum state tomography, and its spatial coherence is demonstrated. Our system allows the observation of the quantum-to-classical transition and paves the way for applications, such as quantum cellular automata.

2 Random Walk The random walk is a simple concept that has been used to describe many real-world systems from stock market prices to the Brownian motion of tiny particles floating on a liquid. It is usually described as a person who dictates his movements by the toss of a coin: get heads, for example, and he moves one step to the right; get tails and he takes a step to the left. After many coin tosses, the person s position is random, but is most likely to be close to the start point.

3 Feynman s Quantum Walk The quantum walk was first proposed by Nobel laureate Richard Feynman. After every toss, a quantum particle moves in both directions simultaneously, and adopts a coherent superposition of right and left. After many steps, the particle becomes blurred or delocalized over many different positions. However, the nature of this process means that, after more than one toss, the new superposition will overlap part of the old one, and will have the effect of either amplifying or removing that position. This is known as matter-wave interference, and means that the eventual position of the particle is most likely to be farthest away from the starting point.

4 Overlapping optical lattices In their experiment, the researchers trap a single, cold cesium atom in two optical lattices that initially overlap. They begin using a laser pulse to prepare the atom in a superposition of two internal states. Next, they move the lattices in opposite directions, which makes the atom simultaneously step both to the right and left. When they repeat this maneuver, the superposition stretches over another step, but the position in the middle then contains two parts of the atom that interfere with each other. After ten steps, the Bonn group used a high-resolution microscope to detect the fluorescence emitted by the atom, and thus cause it to settle in one position. The probability distribution of final positions built up from many experiments was antisymmetric about the start point, which agreed with a computer model of a quantum walk. However, if the researchers destroyed the superposition at every step, the distribution reverted to the classical case in other words, a binomial with the peak around the start point.

5 2 hyperfine states (a) The atom is trapped in a lattice made of light. It has two states, visualized as red and blue. Experimentally, the atom can be brought into a coherent superposition of the two states a sort of quantum coin is tossed. (b) The optical lattice depends on the state of the atom. This can be imagined as a red and a blue lattice, where the red state of the atom experiences only the red lattice, and the blue state of the atom experiences only the blue lattice. If these two lattices are moved in opposite directions, the red part of the atom moves to one side, the blue one to the other. (c) If both lattices overlap again, the atom is delocalized over two lattice sites, it is simultaneously to the left and to the right. The first step of the quantum walk is complete. (d) For the second step, each part of the atom is again brought into a coherent superposition of the two states. After applying the state dependent shifting, the atom is delocalized over three lattice sites. Now, two parts of the atom are located at a common position. At this site, both parts of the atom can amplify or extinguish each other, they can interfere. (Courtesy: Institute for Applied Physics, University of Bonn).

6

7 coin toss operators 0 ( 0 1)/ 2 1 ( 0 + 1)/ 2

8

Atomic clocks. Clocks

Atomic clocks. Clocks Atomic clocks Clocks 1 Ingredients for a clock 1. Need a system with periodic behavior: it cycles occur at constant frequency 2. Count the cycles to produce time interval 3. Agree on the origin of time

More information

Droplets and atoms. Benjamin Schumacher Department of Physics Kenyon College. Bright Horizons 35 (July, 2018)

Droplets and atoms. Benjamin Schumacher Department of Physics Kenyon College. Bright Horizons 35 (July, 2018) Droplets and atoms Benjamin Schumacher Department of Physics Kenyon College Bright Horizons 35 (July, 2018) Part I: Einstein's other great idea The old revolution Birth of modern physics (1900-1930) Atomic

More information

Random Walks and Quantum Walks

Random Walks and Quantum Walks Random Walks and Quantum Walks Stephen Bartlett, Department of Physics and Centre for Advanced Computing Algorithms and Cryptography, Macquarie University Random Walks and Quantum Walks Classical random

More information

Implementing the quantum random walk

Implementing the quantum random walk PHYSICAL REVIEW A, VOLUME 5, Implementing the quantum random walk B. C. Travaglione* and G. J. Milburn Centre for Quantum Computer Technology, University of Queensland, St. Lucia, Queensland, Australia

More information

REVIEW: Waves on a String

REVIEW: Waves on a String Lecture 14: Solution to the Wave Equation (Chapter 6) and Random Walks (Chapter 7) 1 Description of Wave Motion REVIEW: Waves on a String We are all familiar with the motion of a transverse wave pulse

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Part IV. Fundamentals of Laser Spectroscopy

Part IV. Fundamentals of Laser Spectroscopy IV 1 Part IV. Fundamentals of Laser Spectroscopy We have gone through the fundamentals of atomic spectroscopy and molecular spectroscopy, in which we emphasize the quantum physics and principles that govern

More information

Quantum Memory with Atomic Ensembles

Quantum Memory with Atomic Ensembles Lecture Note 5 Quantum Memory with Atomic Ensembles 04.06.2008 Difficulties in Long-distance Quantum Communication Problems leads Solutions Absorption (exponentially) Decoherence Photon loss Degrading

More information

Image courtesy of Keith Schwab http://www.lbl.gov/science-articles/archive/afrd Articles/Archive/AFRD-quantum-logic.html http://www.wmi.badw.de/sfb631/tps/dqd2.gif http://qist.lanl.gov/qcomp_map.shtml

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC)

Building Blocks for Quantum Computing Part IV. Design and Construction of the Trapped Ion Quantum Computer (TIQC) Building Blocks for Quantum Computing Part IV Design and Construction of the Trapped Ion Quantum Computer (TIQC) CSC801 Seminar on Quantum Computing Spring 2018 1 Goal Is To Understand The Principles And

More information

Quantum Computation with Neutral Atoms

Quantum Computation with Neutral Atoms Quantum Computation with Neutral Atoms Marianna Safronova Department of Physics and Astronomy Why quantum information? Information is physical! Any processing of information is always performed by physical

More information

Entanglement and Decoherence in Coined Quantum Walks

Entanglement and Decoherence in Coined Quantum Walks Entanglement and Decoherence in Coined Quantum Walks Peter Knight, Viv Kendon, Ben Tregenna, Ivens Carneiro, Mathieu Girerd, Meng Loo, Xibai Xu (IC) & Barry Sanders, Steve Bartlett (Macquarie), Eugenio

More information

Math 345 Intro to Math Biology Lecture 21: Diffusion

Math 345 Intro to Math Biology Lecture 21: Diffusion Math 345 Intro to Math Biology Lecture 21: Diffusion Junping Shi College of William and Mary November 12, 2018 Functions of several variables z = f (x, y): two variables, one function value Domain: a subset

More information

Discrete and continuous

Discrete and continuous Discrete and continuous A curve, or a function, or a range of values of a variable, is discrete if it has gaps in it - it jumps from one value to another. In practice in S2 discrete variables are variables

More information

Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws

Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws University of Massachusetts Amherst From the SelectedWorks of Egor Babaev 2008 Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws Egor Babaev, University of

More information

Quantum Information Processing

Quantum Information Processing Quantum Information Processing Jonathan Jones http://nmr.physics.ox.ac.uk/teaching The Information Age Communication Shannon Computation Turing Current approaches are essentially classical which is wrong

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 15: QUANTUM THEORY This lecture will help you understand: The Photoelectric Effect Absorption Spectra Fluorescence Incandescence Lasers Wave-Particle Duality Particles

More information

An introduction to Quantum Computing using Trapped cold Ions

An introduction to Quantum Computing using Trapped cold Ions An introduction to Quantum Computing using Trapped cold Ions March 10, 011 Contents 1 Introduction 1 Qubits 3 Operations in Quantum Computing 3.1 Quantum Operators.........................................

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co.

*WILEY- Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition *WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII 1 Introduction

More information

arxiv: v2 [quant-ph] 7 Jun 2018

arxiv: v2 [quant-ph] 7 Jun 2018 epl draft Playing a true Parrondo s game with a three state coin on a quantum walk Jishnu Rajendran and Colin Benjamin School of Physical Sciences National Institute of Science Education & Research HBNI

More information

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation

Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Laser stabilization via saturated absorption spectroscopy of iodine for applications in laser cooling and Bose-Einstein condensate creation Arron Potter Laser stabilization via saturated absorption spectroscopy

More information

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology

Towards quantum metrology with N00N states enabled by ensemble-cavity interaction. Massachusetts Institute of Technology Towards quantum metrology with N00N states enabled by ensemble-cavity interaction Hao Zhang Monika Schleier-Smith Robert McConnell Jiazhong Hu Vladan Vuletic Massachusetts Institute of Technology MIT-Harvard

More information

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles

Quantum Computation 650 Spring 2009 Lectures The World of Quantum Information. Quantum Information: fundamental principles Quantum Computation 650 Spring 2009 Lectures 1-21 The World of Quantum Information Marianna Safronova Department of Physics and Astronomy February 10, 2009 Outline Quantum Information: fundamental principles

More information

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution

Random Variable. Discrete Random Variable. Continuous Random Variable. Discrete Random Variable. Discrete Probability Distribution Random Variable Theoretical Probability Distribution Random Variable Discrete Probability Distributions A variable that assumes a numerical description for the outcome of a random eperiment (by chance).

More information

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018

CMSC 33001: Novel Computing Architectures and Technologies. Lecture 06: Trapped Ion Quantum Computing. October 8, 2018 CMSC 33001: Novel Computing Architectures and Technologies Lecturer: Kevin Gui Scribe: Kevin Gui Lecture 06: Trapped Ion Quantum Computing October 8, 2018 1 Introduction Trapped ion is one of the physical

More information

Stochastic Histories. Chapter Introduction

Stochastic Histories. Chapter Introduction Chapter 8 Stochastic Histories 8.1 Introduction Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical processes often arise in classical physics, as well as in

More information

Fractals. Mandelbrot defines a fractal set as one in which the fractal dimension is strictly greater than the topological dimension.

Fractals. Mandelbrot defines a fractal set as one in which the fractal dimension is strictly greater than the topological dimension. Fractals Fractals are unusual, imperfectly defined, mathematical objects that observe self-similarity, that the parts are somehow self-similar to the whole. This self-similarity process implies that fractals

More information

MIT Department of Nuclear Science & Engineering

MIT Department of Nuclear Science & Engineering 1 MIT Department of Nuclear Science & Engineering Thesis Prospectus for the Bachelor of Science Degree in Nuclear Science and Engineering Nicolas Lopez Development of a Nanoscale Magnetometer Through Utilization

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Petros Wallden Lecture 1: Introduction 18th September 2017 School of Informatics, University of Edinburgh Resources 1. Quantum Computation and Quantum Information by Michael

More information

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA

Quantum Computing. Joachim Stolze and Dieter Suter. A Short Course from Theory to Experiment. WILEY-VCH Verlag GmbH & Co. KGaA Joachim Stolze and Dieter Suter Quantum Computing A Short Course from Theory to Experiment Second, Updated and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Preface XIII 1 Introduction and

More information

13.3 Interference and Superposition. Interference and Superposition Constructive Interference Destructive Interference Standing Waves

13.3 Interference and Superposition. Interference and Superposition Constructive Interference Destructive Interference Standing Waves 13.3 Interference and Superposition Interference and Superposition Constructive Interference Destructive Interference Standing Waves Interference and Superposition When raindrops fall into still water,

More information

Квантовые цепи и кубиты

Квантовые цепи и кубиты Квантовые цепи и кубиты Твердотельные наноструктуры и устройства для квантовых вычислений Лекция 2 А.В. Устинов Karlsruhe Institute of Technology, Germany Russian Quantum Center, Russia Trapped ions Degree

More information

Experimental Quantum Computing: A technology overview

Experimental Quantum Computing: A technology overview Experimental Quantum Computing: A technology overview Dr. Suzanne Gildert Condensed Matter Physics Research (Quantum Devices Group) University of Birmingham, UK 15/02/10 Models of quantum computation Implementations

More information

RANDOM WALKS IN ONE DIMENSION

RANDOM WALKS IN ONE DIMENSION RANDOM WALKS IN ONE DIMENSION STEVEN P. LALLEY 1. THE GAMBLER S RUIN PROBLEM 1.1. Statement of the problem. I have A dollars; my colleague Xinyi has B dollars. A cup of coffee at the Sacred Grounds in

More information

ATOMIC AND LASER SPECTROSCOPY

ATOMIC AND LASER SPECTROSCOPY ALAN CORNEY ATOMIC AND LASER SPECTROSCOPY CLARENDON PRESS OXFORD 1977 Contents 1. INTRODUCTION 1.1. Planck's radiation law. 1 1.2. The photoelectric effect 4 1.3. Early atomic spectroscopy 5 1.4. The postulates

More information

Forum Scientiarum International Interdisciplinary Summer School 2012 Einstein s Philosophy of Science

Forum Scientiarum International Interdisciplinary Summer School 2012 Einstein s Philosophy of Science Forum Scientiarum International Interdisciplinary Summer School 2012 Einstein s Philosophy of Science Pauli, Bohm and Quantum Mechanics 1 Albert Einstein 1875-1955 relativity of space and time, general

More information

GCE AS/A level 1322/01 PHYSICS ASSESSMENT UNIT PH2: WAVES AND PARTICLES

GCE AS/A level 1322/01 PHYSICS ASSESSMENT UNIT PH2: WAVES AND PARTICLES Surname Centre Number Candidate Number Other Names 2 GCE AS/A level 1322/01 PHYSICS ASSESSMENT UNIT PH2: WAVES AND PARTICLES P.M. FRIDAY, 25 May 2012 1½ hours ADDITIONAL MATERIALS In addition to this paper,

More information

Emergence of Quantum Coherence in

Emergence of Quantum Coherence in Emergence of Quantum Coherence in Liquid Water and Aqueous Systems Emilio DelGiudice retired scientist emilio.delgiudice@mi.infn.it Seventh Annual Conference on the Physics, Chemistry and Biology of Water

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

X-Rays from Atoms. These are called K α X-rays See table 29.1 for the energy of K α X-rays produced by some elements. Section 29.3

X-Rays from Atoms. These are called K α X-rays See table 29.1 for the energy of K α X-rays produced by some elements. Section 29.3 X-Rays from Atoms The highest photon energy available in a hydrogen atom is in the ultraviolet part of the electromagnetic spectrum Other atoms can emit much more energetic photons larger Z, more electric

More information

Topic 4 &11 Review Waves & Oscillations

Topic 4 &11 Review Waves & Oscillations Name: Date: Topic 4 &11 Review Waves & Oscillations 1. A source produces water waves of frequency 10 Hz. The graph shows the variation with horizontal position of the vertical displacement of the surface

More information

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching

Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Laboratory 3: Confocal Microscopy Imaging of Single Emitter Fluorescence and Hanbury Brown, and Twiss Setup for Photon Antibunching Jonathan Papa 1, * 1 Institute of Optics University of Rochester, Rochester,

More information

The Phenomena of Quantum Mechanics

The Phenomena of Quantum Mechanics Introduction The Phenomena of Quantum Mechanics Quantum mechanics is a general theory. It is presumed to apply to everything, from subatomic particles to galaxies. But interest is naturally focussed on

More information

The Relativistic Quantum World

The Relativistic Quantum World The Relativistic Quantum World A lecture series on Relativity Theory and Quantum Mechanics Marcel Merk University of Maastricht, Sept 24 Oct 15, 2014 Relativity Quantum Mechanics The Relativistic Quantum

More information

Implementing Quantum walks

Implementing Quantum walks Implementing Quantum walks P. Xue, B. C. Sanders, A. Blais, K. Lalumière, D. Leibfried IQIS, University of Calgary University of Sherbrooke NIST, Boulder 1 Reminder: quantum walk Quantum walk (discrete)

More information

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK

PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK PROGRESS TOWARDS CONSTRUCTION OF A FERMIONIC ATOMIC CLOCK FOR NASA S DEEP SPACE NETWORK Megan K. Ivory Advisor: Dr. Seth A. Aubin College of William and Mary Atomic clocks are the most accurate time and

More information

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond

Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Hyperfine Interaction Estimation of Nitrogen Vacancy Center in Diamond Yutaka Shikano Massachusetts Institute of Technology Tokyo Institute of Technology In collaboration with Shu Tanaka (Kinki University,

More information

Measuring entanglement in synthetic quantum systems

Measuring entanglement in synthetic quantum systems Measuring entanglement in synthetic quantum systems ψ?? ψ K. Rajibul Islam Institute for Quantum Computing and Department of Physics and Astronomy University of Waterloo research.iqc.uwaterloo.ca/qiti/

More information

VISUAL PHYSICS ONLINE THERMODYNAMICS THERMAL ENERGY

VISUAL PHYSICS ONLINE THERMODYNAMICS THERMAL ENERGY VISUAL PHYSICS ONLINE THERMODYNAMICS THERMAL ENERGY INTERNAL ENERGY A thermodynamic System is composed of molecules in a solid state and/or a liquid and/or a gas state. The molecules always have some random

More information

Lecture 1: Random walk

Lecture 1: Random walk Lecture : Random walk Paul C Bressloff (Spring 209). D random walk q p r- r r+ Figure 2: A random walk on a D lattice. Consider a particle that hops at discrete times between neighboring sites on a one

More information

Lecture 9. Expectations of discrete random variables

Lecture 9. Expectations of discrete random variables 18.440: Lecture 9 Expectations of discrete random variables Scott Sheffield MIT 1 Outline Defining expectation Functions of random variables Motivation 2 Outline Defining expectation Functions of random

More information

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era Peter van der Straten Universiteit Utrecht, The Netherlands and Harold Metcalf State University of New York, Stony Brook This

More information

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics

Probability Rules. MATH 130, Elements of Statistics I. J. Robert Buchanan. Fall Department of Mathematics Probability Rules MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2018 Introduction Probability is a measure of the likelihood of the occurrence of a certain behavior

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem Patrick Breheny March 1 Patrick Breheny STA 580: Biostatistics I 1/23 Kerrich s experiment A South African mathematician named John Kerrich was visiting Copenhagen in 1940 when

More information

Quantum Computers. Todd A. Brun Communication Sciences Institute USC

Quantum Computers. Todd A. Brun Communication Sciences Institute USC Quantum Computers Todd A. Brun Communication Sciences Institute USC Quantum computers are in the news Quantum computers represent a new paradigm for computing devices: computers whose components are individual

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Lecture 11, May 11, 2017

Lecture 11, May 11, 2017 Lecture 11, May 11, 2017 This week: Atomic Ions for QIP Ion Traps Vibrational modes Preparation of initial states Read-Out Single-Ion Gates Two-Ion Gates Introductory Review Articles: D. Leibfried, R.

More information

27 Binary Arithmetic: An Application to Programming

27 Binary Arithmetic: An Application to Programming 27 Binary Arithmetic: An Application to Programming In the previous section we looked at the binomial distribution. The binomial distribution is essentially the mathematics of repeatedly flipping a coin

More information

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules

Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules OPTI 500 DEF, Spring 2012, Lecture 2 Introduction to Sources: Radiative Processes and Population Inversion in Atoms, Molecules, and Semiconductors Atoms and Molecules Energy Levels Every atom or molecule

More information

Episode 507: Electron standing waves

Episode 507: Electron standing waves Episode 507: Electron standing waves You could extend the idea of electrons-as-waves further, to the realm of the atom. Summary Demonstration: Melde s experiment. (0 minutes) Discussion: Electron waves

More information

Niels Bohr Institute Copenhagen University. Eugene Polzik

Niels Bohr Institute Copenhagen University. Eugene Polzik Niels Bohr Institute Copenhagen University Eugene Polzik Ensemble approach Cavity QED Our alternative program (997 - ): Propagating light pulses + atomic ensembles Energy levels with rf or microwave separation

More information

Math 180B Problem Set 3

Math 180B Problem Set 3 Math 180B Problem Set 3 Problem 1. (Exercise 3.1.2) Solution. By the definition of conditional probabilities we have Pr{X 2 = 1, X 3 = 1 X 1 = 0} = Pr{X 3 = 1 X 2 = 1, X 1 = 0} Pr{X 2 = 1 X 1 = 0} = P

More information

SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING

SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING SIMPLE RANDOM WALKS: IMPROBABILITY OF PROFITABLE STOPPING EMILY GENTLES Abstract. This paper introduces the basics of the simple random walk with a flair for the statistical approach. Applications in biology

More information

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this.

Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Double Slit is VERY IMPORTANT because it is evidence of waves. Only waves interfere like this. Superposition of Sinusoidal Waves Assume two waves are traveling in the same direction, with the same frequency,

More information

Quantum Optics and Quantum Information Laboratory

Quantum Optics and Quantum Information Laboratory Quantum Optics and Quantum Information Laboratory OPT 253, Fall 2011 Institute of Optics University of Rochester Instructor: Dr. Lukishova Jonathan Papa Contents Lab 1: Entanglement and Bell s Inequalities

More information

Medical Biophysics II. Final exam theoretical questions 2013.

Medical Biophysics II. Final exam theoretical questions 2013. Medical Biophysics II. Final exam theoretical questions 2013. 1. Early atomic models. Rutherford-experiment. Franck-Hertz experiment. Bohr model of atom. 2. Quantum mechanical atomic model. Quantum numbers.

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part I Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 12, 2011 Overview Outline What is quantum computing? Background Caveats Fundamental differences

More information

Ion crystallisation. computing

Ion crystallisation. computing Ion crystallisation and application to quantum computing Cooling with incrased laser power: (a) reduced Doppler width (b) Kink in the line profile (b) P=0.2 mw P=0.5 mw Excitation spectra of an ion cloud

More information

Cosmology Lecture 2 Mr. Kiledjian

Cosmology Lecture 2 Mr. Kiledjian Cosmology Lecture 2 Mr. Kiledjian Lecture 2: Quantum Mechanics & Its Different Views and Interpretations a) The story of quantum mechanics begins in the 19 th century as the physicists of that day were

More information

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers.

Unit-2 LASER. Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Unit-2 LASER Syllabus: Properties of lasers, types of lasers, derivation of Einstein A & B Coefficients, Working He-Ne and Ruby lasers. Page 1 LASER: The word LASER is acronym for light amplification by

More information

Optical Pumping of Rb 85 & Rb 87

Optical Pumping of Rb 85 & Rb 87 Optical Pumping of Rb 85 & Rb 87 Fleet Admiral Tim Welsh PhD. M.D. J.D. (Dated: February 28, 2013) In this experiment we penetrate the mystery surrounding the hyperfine structure of Rb 85 and Rb 87. We

More information

Algorithms, Logic and Complexity. Quantum computation. basic explanations! &! survey of progress

Algorithms, Logic and Complexity. Quantum computation. basic explanations! &! survey of progress Algorithms, Logic and Complexity Quantum computation basic explanations! &! survey of progress Index Why Quantum Computation?! Quantum mechanics! D-wave! Quantum programming «If you think you understand

More information

Proposed Explanations for: (i) the Wave-Particle-Duality of Light and Matter and (ii) Double-Slit-Interference of Single Photons

Proposed Explanations for: (i) the Wave-Particle-Duality of Light and Matter and (ii) Double-Slit-Interference of Single Photons Proposed Explanations for: (i) the Wave-Particle-Duality of Light and Matter and (ii) Double-Slit-Interference of Single Photons Hasmukh K. Tank Indian Space Research Organization 22/693 Krishna Dham-2,

More information

Quantum entanglement and its detection with few measurements

Quantum entanglement and its detection with few measurements Quantum entanglement and its detection with few measurements Géza Tóth ICFO, Barcelona Universidad Complutense, 21 November 2007 1 / 32 Outline 1 Introduction 2 Bipartite quantum entanglement 3 Many-body

More information

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M.

Coherent manipulation of atomic wavefunctions in an optical lattice. V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Coherent manipulation of atomic wavefunctions in an optical lattice V. V. Ivanov & A. Alberti, M. Schioppo, G. Ferrari and G. M. Tino Group Andrea Alberti Marco Schioppo Guglielmo M. Tino me Gabriele Ferarri

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University September 18, 2014 2 Chapter 5 Atoms in optical lattices Optical lattices

More information

Studying strongly correlated few-fermion systems with ultracold atoms

Studying strongly correlated few-fermion systems with ultracold atoms Studying strongly correlated few-fermion systems with ultracold atoms Andrea Bergschneider Group of Selim Jochim Physikalisches Institut Universität Heidelberg Strongly correlated systems Taken from: http://www.chemistryexplained.com

More information

Lecture PowerPoint. Chapter 28 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoint. Chapter 28 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoint Chapter 28 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the

More information

Waves Part III Electromagnetic waves

Waves Part III Electromagnetic waves Waves Part III Electromagnetic waves Electromagnetic (light) waves Transverse waves Transport energy (and momentum) Can travel through vacuum (!) and certain solids, liquids and gases Do not transport

More information

Modeling Electron Emission From Diamond-Amplified Cathodes

Modeling Electron Emission From Diamond-Amplified Cathodes Modeling Electron Emission From Diamond-Amplified Cathodes D. A. Dimitrov Tech-X Corporation, Boulder, CO I. Ben-Zvi, T. Rao, J. Smedley, E. Wang, X. Chang Brookhaven National Lab, NY This work is funded

More information

GRATINGS and SPECTRAL RESOLUTION

GRATINGS and SPECTRAL RESOLUTION Lecture Notes A La Rosa APPLIED OPTICS GRATINGS and SPECTRAL RESOLUTION 1 Calculation of the maxima of interference by the method of phasors 11 Case: Phasor addition of two waves 12 Case: Phasor addition

More information

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical

As a partial differential equation, the Helmholtz equation does not lend itself easily to analytical Aaron Rury Research Prospectus 21.6.2009 Introduction: The Helmhlotz equation, ( 2 +k 2 )u(r)=0 1, serves as the basis for much of optical physics. As a partial differential equation, the Helmholtz equation

More information

1. Transition dipole moment

1. Transition dipole moment 1. Transition dipole moment You have measured absorption spectra of aqueous (n=1.33) solutions of two different chromophores (A and B). The concentrations of the solutions were the same. The absorption

More information

Synchrotron Radiation Representation in Phase Space

Synchrotron Radiation Representation in Phase Space Cornell Laboratory for Accelerator-based ScienceS and Education () Synchrotron Radiation Representation in Phase Space Ivan Bazarov and Andrew Gasbarro phase space of coherent (left) and incoherent (right)

More information

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Quantum control of dissipative systems. 1 Density operators and mixed quantum states Quantum control of dissipative systems S. G. Schirmer and A. I. Solomon Quantum Processes Group, The Open University Milton Keynes, MK7 6AA, United Kingdom S.G.Schirmer@open.ac.uk, A.I.Solomon@open.ac.uk

More information

arxiv: v1 [quant-ph] 11 Oct 2017

arxiv: v1 [quant-ph] 11 Oct 2017 Playing a true Parrondo s game with a three state coin on a quantum walk Jishnu Rajendran and Colin Benjamin School of Physical Sciences, National Institute of Science Education & Research, HBNI, Jatni-752050,

More information

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class:

Homework Book. Wave Properties. Huijia Physics Homework Book 1 Semester 2. Name: Homeroom: Physics Class: Homework Book Wave Properties Huijia Physics Homework Book 1 Semester 2 Name: Homeroom: Physics Class: Week 1 Reflection, Refraction, wave equations 1. If the wavelength of an incident wave is 1.5cm and

More information

Many-body Quantum Mechanics: Too big to fail?

Many-body Quantum Mechanics: Too big to fail? Many-body Quantum Mechanics: Too big to fail? Special purpose quantum computers realized with current technology have the potential to revolutionize physics, chemistry, and materials science. By Michael

More information

Monolayer Semiconductors

Monolayer Semiconductors Monolayer Semiconductors Gilbert Arias California State University San Bernardino University of Washington INT REU, 2013 Advisor: Xiaodong Xu (Dated: August 24, 2013) Abstract Silicon may be unable to

More information

Random walks, Brownian motion, and percolation

Random walks, Brownian motion, and percolation Random walks, Brownian motion, and percolation Martin Barlow 1 Department of Mathematics, University of British Columbia PITP, St Johns College, January 14th, 2015 Two models in probability theory In this

More information

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work

The Photon Concept. Modern Physics [2] How are x-rays produced? Gamma rays. X-ray and gamma ray photons. X-rays & gamma rays How lasers work Modern Physics [2] X-rays & gamma rays How lasers work Medical applications of lasers Applications of high power lasers Medical imaging techniques CAT scans MRI s The Photon Concept a beam of light waves

More information

Real Randomness with Noise and Chaos

Real Randomness with Noise and Chaos Real Randomness with Noise and Chaos by Kevin Fei working with Professor Rajarshi Roy, Professor Tom Murphy, and Joe Hart Random numbers are instrumental to modern computing. They are used by scientists

More information

Chapters 31 Atomic Physics

Chapters 31 Atomic Physics Chapters 31 Atomic Physics 1 Overview of Chapter 31 Early Models of the Atom The Spectrum of Atomic Hydrogen Bohr s Model of the Hydrogen Atom de Broglie Waves and the Bohr Model The Quantum Mechanical

More information

Lecture 23. Random walks

Lecture 23. Random walks 18.175: Lecture 23 Random walks Scott Sheffield MIT 1 Outline Random walks Stopping times Arcsin law, other SRW stories 2 Outline Random walks Stopping times Arcsin law, other SRW stories 3 Exchangeable

More information

Spatial correlations in quantum walks with two particles

Spatial correlations in quantum walks with two particles Spatial correlations in quantum walks with two particles M. Štefaňák (1), S. M. Barnett 2, I. Jex (1) and T. Kiss (3) (1) Department of Physics, Faculty of Nuclear Sciences and Physical Engineering, Czech

More information

Saturation Absorption Spectroscopy of Rubidium Atom

Saturation Absorption Spectroscopy of Rubidium Atom Saturation Absorption Spectroscopy of Rubidium Atom Jayash Panigrahi August 17, 2013 Abstract Saturated absorption spectroscopy has various application in laser cooling which have many relevant uses in

More information