An arithmetic formula of Liouville

Size: px
Start display at page:

Download "An arithmetic formula of Liouville"

Transcription

1 Journal d Théori ds Nombrs d Bordaux (006), 3 39 An arithmtic formula of Liouvill par Erin McAFEE t Knnth S. WILLIAMS Résumé. Un pruv élémntair st donné d un formul arithmétiqu qui fut présnté mais non pas prouvé par Liouvill. Un application d ctt formul donn un formul pour l nombr d rprésntations d un nombr ntir positif comm étant la somm d douz nombrs triangulairs. Abstract. An lmntary proof is givn of an arithmtic formula, which was statd but not provd by Liouvill. An application of this formula yilds a formula for th numbr of rprsntations of a positiv intgr as th sum of twlv triangular numbrs. This papr is ddicatd to th mmory of Josph Liouvill (09-).. Introduction In his famous sris of ightn articls, Liouvill [3] gav without proof numrous arithmtic formula. Ths formula ar summarizd in Dickson s History of th Thory of Numbrs [, Volum, Chaptr XI], whr rfrncs to proofs ar givn. Th formula w ar intrstd in involvs a sum ovr sxtupls (a, b, c, x, y, z) of positiv odd intgrs satisfying ax + by + cz n, whr n is a fixd positiv odd intgr. It was statd without proof by Liouvill in [3, sixth articl, p. 33] and rproducd by Dickson [, Volum, formula (M), p. 33]. Lt n b a positiv odd intgr, and lt F : Z C b an odd function. Thn (F (a + b + c) + F (a b c) F (a + b c) F (a b + c)) (.) (d )F (d) 3 d n ax<n a,x odd σ(o(n ax))f (a). Manuscrit rçu l juin 004. Th scond author was supportd by a rsarch grant from th Natural Scincs and Enginring Rsarch Council of Canada.

2 4 Erin McAf, Knnth S. Williams In (.) o(n) dnots th odd part of th positiv intgr n, that is o(n) n/ s, whr s n. Non of th authors rfrrd to by Dickson giv a proof of this rsult, although Nasimoff [5] indicats how an analytic proof can b givn. Nor hav w bn abl to locat a proof in th mathmatical litratur. In this papr w giv what w bliv to b th first proof of this rsult. Our proof is ntirly lmntary using nothing mor than th rarrangmnt of trms in finit sums. Prliminary rsults ar provd in Sctions -5. Any omittd dtails can b found in [4]. Th proof of (.) is givn in Sction 6. An application of (.) to triangular numbrs is givn in Sction 7.. Th quation kx + y n and th quantitis L, L, L 3, M, M, M 3 Lt N {,, 3,...}. Lt k, n N. In this sction w ar intrstd in th numbr of solutions (x,, y) N 3 of th quation (.) kx + y n, whr k, n ar fixd positiv intgrs and th unknowns x,, y ar rquird to satisfy crtain inqualitits and crtain congruncs modulo. Throughout this papr all congruncs ar takn modulo. Thus, for xampl, th sum <k counts th numbr of tripls (x,, y) N 3 satisfying th quation kx+y n with < k and x a (mod ), b (mod ), y c (mod ), whr a, b, c ar fixd intgrs and k, n ar fixd positiv intgrs. Dfinition.. L (a, b, c) L 3 (a, b, c) M (a, b, c) <k k x>y, L (a, b, c), M (a, b, c), M 3 (a, b, c) >k xy Th following rsult follows immdiatly from Dfinition..,,.

3 Lmma.. An arithmtic formula of Liouvill 5 L (a, b, c) + L (a, b, c) + L 3 (a, b, c) M (a, b, c) + M (a, b, c) + M 3 (a, b, c). Nxt w valuat L 3 (a, b, c). modulo.) Lmma.. L 3 (a, b, c) Proof. From (Rcall that all congruncs ar takn 0, if k n or k n, k b or k n, k b, n k a + c, ( n ) k 4 ( )a ( + ( ) n/k ), othrwis. L 3 (a, b, c) k x+yn/k x a,k b,y c w asily obtain th assrtd valuation of L 3 (a, b, c). M 3 (a, b, c) can b calculatd similarly. Lmma.3. 0, if a c or a c and n a(k + b),, othrwis. M 3 (a, b, c) d n,d>k d k+b n/d a Our nxt lmma givs a usful rlationship btwn L (a, b, c) and M (a, b, c). Lmma.4. Proof. W hav M (a, b, c) M (a, b, c) L (a + c, k + b, c). x>y >k x a+c, k+b, y c k(x+y)+yn x a+c, b, y c, L (a + c, k + b, c), as assrtd. For positiv intgrs n and k w st {, if k n, δ(n, k) 0, if k n. kx+(k+)yn x a+c, b, y c Th nxt rsult is a simpl consqunc of Lmmas.,. and.3.

4 6 Erin McAf, Knnth S. Williams Lmma.5. If k and n ar positiv odd intgrs thn ( ) (n/k) L (,, 0) M (,, 0) L (, 0, 0) L (,, 0) δ(n, k). 3. Th quation kx + y n and th quantitis R, R, R 3, S, S, S 3 In this sction w introduc th quantitis R, R, R 3, S, S, S 3 formd from L, L, L 3, M, M, M 3 rspctivly by taking th sums ovr rathr than. Dfinition 3.. R (a, b, c) R 3 (a, b, c) S (a, b, c) <k k x>y, R (a, b, c), S (a, b, c), S 3 (a, b, c) >k xy W now giv rlationships btwn R, R, R 3, S, S, S 3. Ths rlationships ar vry similar to thos w saw in Sction for L, L, L 3, M, M, M 3. Th following rsult follows immdiatly from Dfinition 3.. Lmma 3.. R (a, b, c) + R (a, b, c) + R 3 (a, b, c) S (a, b, c) + S (a, b, c) + S 3 (a, b, c). Th sums R 3 (a, b, c) and S 3 (a, b, c) ar asily valuatd. Lmma 3.. R 3 (a, b, c) 0, if k n or k n, k b or k n, k b, n k a + c, (n k) k 4 ( )a ( + ( ) n/k ), othrwis. Lmma , if a c or a c and n a(k + b), (d k), if a c and n a(k + b). S 3 (a, b, c) d n,d>k d k+b n/d a Th following lmma givs a rlationship btwn R (a, b, c) and S (a, b, c). Th proof is similar to that of Lmma.4.,,.

5 Lmma 3.4. An arithmtic formula of Liouvill 7 S (a, b, c) R (a + c, k + b, c) kl (a +, k + b, c). Th valus of R 3 (,, 0) and S 3 (,, 0) whn k and n ar both odd follow asily from Lmmas 3. and 3.3. Lmma 3.5. If k and n ar positiv odd intgrs thn ( ) n k R 3 (,, 0) δ(n, k), S 3 (,, 0) Solutions of kx + by + cz n (k, n fixd odd intgrs) Throughout this sction k and n ar rstrictd to b positiv odd intgrs. W ar concrnd with solutions (x, b, y, c, z) N 5 of kx + by + cz n with b, c, x odd and y, z vn. For such solutions w hav b+c k, b c k and x z, so that + and + b c<k, x<z b c<k, x>z + + b+c>k b c>k, x<z b c>k, x>z With this in mind, w find it usful to dfin th following sums. Dfinition 4.. A B B 3 b c<k, x<z b c<k, x>z, A, B, B 4 b+c>k b c>k, x<z b c>k, x>z.,..

6 Erin McAf, Knnth S. Williams Immdiatly from Dfinition 4. w obtain Lmma 4.. A + A B + B + B 3 + B 4. It is also convnint to dfin anothr sum. Dfinition 4.. C <z. W now giv various rlations btwn A, A, B, B, B 3, B 4 and C with th ultimat goal of dtrmining th quantity A B + C, s Lmma 4.7. Lmma 4.. B y<x<z. Using Lmma 4. w obtain Lmma 4.3. C B S (, 0, 0). Lmma 4.4. B 4 y<z<x. Appaling to Lmmas 4. and 4.4 w obtain Lmma 4.5. B + B 4 B 3 S (, 0, 0). Lmma 4.6. A B 3 + R (, 0, 0).

7 Proof. From Dfinition 4. w obtain A b+c>k b+c>k, y>z b+c>k, y>z An arithmtic formula of Liouvill b+c>k, y<z b+c>k, yz +, b+c>k, yz whr w usd th transformation (b, y, c, z) (c, z, b, y) in th last stp. W now xamin th abov two sums. Firstly, w hav b+c>k, yz by Dfinition 3., and scondly, b+c>k, y>z kx+(b+c)yn b+c>k b,c,x odd, y vn vn >k x odd, y vn >k x, 0,y 0 R (, 0, 0), kx+b(z+y )+czn b+c>k b,c,x odd, y,z vn kx+by+(b+c)zn b+c>k kx+by+zn b+c,>k b,c,x odd,,y,z vn (y z + y ) (y y )

8 30 Erin McAf, Knnth S. Williams kx+by+zn >b,>k b,x odd,,y,z vn kx+by+(k+c )zn k+c >b b,c,x odd, y,z vn k(x+z)+by+czn b c<k kx +by+czn b c<k,x >z b,c,x odd, y,z vn B 3, ( k + c ) (c c ) (x x + z) by Dfinition 4.. This complts th proof of th lmma. Appaling to Lmmas 4.3, 4., 4.5 and 4.6, w obtain Lmma 4.7. A B + C R (, 0, 0) S (, 0, 0) S (, 0, 0). 5. Solutions of ax + by + cz n (n fixd odd intgr) Throughout this sction k and n ar positiv odd intgrs. W ar intrstd in th solutions (a, x, b, y, c, z) N 6 of th quation ax + by + cz n with a, b, c, x, y, z odd and a + b + c k or a + b c k or a b c k. W dnot th numbr of such solutions by U, V and W rspctivly. Dfinition 5.. U a+b+ck, V a+b ck, W a b ck In th nxt thr lmmas w rlat U, V, W to quantitis of th prvious thr sctions. Lmma 5.. U (k ) δ(n, k) + 3 (kl (,, 0) R (,, 0)) + 3A..

9 Proof. W hav U a+b+ck An arithmtic formula of Liouvill 3 a+b+ck x y,y z,z x + a+b+ck xactly of x,y,z qual + a+b+ck xyz W bgin by considring th first sum on th right hand sid of th abov xprssion. Th condition x y, y z, z x, compriss six possibilitis, namly, x < y < z, x < z < y, y < x < z, y < z < x, z < x < y and z < y < x. Simpl transformations of th summation variabls show that ths six cass yild th sam contribution to th sum. Thus a+b+ck x y,y z,z x a+b+ck <z (k b c)x+by+czn <z b,c,x,y,z odd kx+b(y x)+c(z x)n <z b,c,x,y,z odd kx+by +cz n y <z b,c,x odd, y,z vn y z 3A 3 (y y x, z z x) 3 kx+(b+c)yn b,c,x odd, y vn yz (by Dfinition 4.).

10 3 Erin McAf, Knnth S. Williams 3A 3 <k x odd, y, vn 3A 3 R (, 0, 0), by Dfinition 3.. Nxt w considr th scond sum on th right hand sid of th xprssion for U. Thr ar six diffrnt cass in which xactly two of x, y, and z ar qual. Simpl transformations of th summation variabls show that th cass x y < z, x z < y, and y z < x, lad to th sam sum, and similarly for th cass x < y z, y < x z, and z < y x. As abov w obtain a+b+ck xactly of x,y,z qual 3 (kl (,, 0) R (,, 0) + R (, 0, 0)). Finally, w considr th third sum on th right hand sid of th xprssion for U. W hav a+b+ck xyz (a+b+c)xn a+b+ck a,b,c,x odd δ(n, k) a+b+ck a,b,c odd Putting ths thr sums togthr, w obtain ( k δ(n, k) ). U 3A 3 R (, 0, 0) + 3 (kl (,, 0) R (,, 0) + R (, 0, 0)) ( k ) + δ(n, k) as assrtd. (k ) δ(n, k) + 3 (kl (,, 0) R (,, 0)) + 3A, Lmma 5.. V (km (,, 0) + S (,, 0)) + B.

11 Proof. W hav V a+b ck An arithmtic formula of Liouvill 33 a+b ck x>y a+b ck + + (k b+c)x+by+czn b c<k b,c,x,y,z odd a+b ck a+b ck xy + kx+b(y x)+c(z+x)n b c<k b,c,x,y,z odd kx+by +c(z+x)n b c<k b,c,x,z odd, y vn kx+by+cz n b c<k, z >x b,c,x odd, y,z vn b c<k, z>x B + k + + +,x odd, y vn + + (a+b)x+czn a+b ck a,b,c,x,z odd a+b ck xy x+czn ck a+b a,b,c,x,z odd, vn x+czn c+k c,x,z odd, vn (c+k)x+czn c,x,z odd kx+cyn y>x c,x odd, y vn + c + k k + c,x odd, y vn B + (km (,, 0) + S (,, 0)), as rquird. Lmma 5.3. W S (, 0, 0) + C.

12 34 Erin McAf, Knnth S. Williams Proof. W hav W a b ck (k+b+c)x+by+czn b,c,x,y,z odd kx+b(x+y)+c(x+z)n b,c,x,y,z odd kx+by +cz n y >x, z >x b,c,x odd, y,z vn y>x, z>x, y<z <z C + C y>x b+c b,c,x odd,,y vn x odd,,y vn C + S (, 0, 0), y>x, z>x, y>z kx+(b+c)yn y>x b,c,x odd, y vn + (by Dfinition 4.) y>x, z>x,yz as claimd. Lmma 5.4. U 3V + 3W (k ) δ(n, k) 3 σ(o(n kx)). kx<n x odd

13 An arithmtic formula of Liouvill 35 Proof. Applying Lmmas 5., 5. and 5.3 w find U 3V + 3W (k ) δ(n, k) + 3 (kl (,, 0) R (,, 0)) + 3A ( ) ( ) 3 (km (,, 0) + S (,, 0)) + B + 3 S (, 0, 0) + C (k ) δ(n, k) + 3 ( k(l (,, 0) M (,, 0)) R (,, 0) ) S (,, 0) + S (, 0, 0) + 3(A B + C). Appaling to Lmmas.5 and 4.7, w obtain U 3V + 3W (k ) δ(n, k) + 3 ( ( ) (n/k) k(l (, 0, 0) L (,, 0) δ(n, k)) ) R (,, 0) S (,, 0) + S (, 0, 0) 3 ( ) R (, 0, 0) + S (, 0, 0) + S (, 0, 0) (k ) δ(n, k) + 3 ( (S (, 0, 0) + kl (,, 0)) (R (, 0, 0) ( ) n k ) kl (, 0, 0)) δ(n, k) R (,, 0) S (,, 0). Appaling to Lmmas 3.4 and 3.5 w obtain U 3V + 3W (k ) δ(n, k) + 3 ( R (,, 0) S (,, 0) R 3 (,, 0) ) R (,, 0) S (,, 0) (k ) δ(n, k) 3 ( R (,, 0) + R (,, 0) + R 3 (,, 0) ) + S (,, 0) + S (,, 0) + S 3 (,, 0) (k ) δ(n, k) 3 x,,y 0

14 36 Erin McAf, Knnth S. Williams as assrtd. (k ) δ(n, k) 3 (k ) δ(n, k) 3 kx<n yn kx x odd odd, y vn kx<n x odd n kx odd 6. Proof of Liouvill s formula W now us th rsults of Sctions -5 to prov Liouvill s formula. Thorm 6..Lt n b a positiv odd intgr, and lt F : Z C b an odd function. Thn (F (a + b + c) + F (a b c) F (a + b c) F (a b + c)) (d )F (d) 3 d n ax<n a,x odd σ(o(n ax))f (a). Proof. First w hav (F (a + b + c) + F (a b c) F (a + b c) F (a b + c)) F (a + b + c) + F (a + b c) a+b+ck F (a b c) Nxt w look at ach of ths sums individually. W hav F (a + b + c) F (k) k N k N k odd k odd and, as F is odd, F (a b c) k N k odd F (a + b c) k N k odd F (k) (W V ), F (k) (V W ), F (a b + c). F (k)u,

15 An arithmtic formula of Liouvill 37 F (a b + c) k N k odd F (k) (V W ). Thrfor by Lmma 5.4 (F (a + b + c) + F (a b c) F (a + b c) F (a b + c)) k N k odd F (k)(u 3V + 3W ) F (k) (k ) δ(n, k) 3 σ(o(n kx)) k N kx<n k odd x odd (d ) F (d) 3 σ(o(n ax))f (a), d n ax<n x,a odd as rquird. In th nxt sction w giv an application of Thorm Sums of twlv triangular numbrs Thr ar many applications of Thorm 6.. W just giv on application to triangular numbrs. Th triangular numbrs ar th nonngativ intgrs Lt T k k(k + ), k N {0}. {T k k 0,,, 3,...} {0,, 3, 6, 0, 5,...}, and for m N and n N {0}, lt δ m (n) card{(t,..., t m ) m n t + + t m }. Thn δ m (n) counts th numbr of rprsntations of n as th sum of m triangular numbrs. Th valuation of δ 4 (n) was known to Lgndr, namly (7.) δ 4 (n) σ(n + ), n N {0}. Ono, Robins and Wahl [6, p. 0] hav provd this rsult using modular forms. An lmntary proof has bn givn by Huard, Ou, Sparman and Williams [, p. 59]. Using Thorm 6. and th abov formula for δ 4 (n), w obtain a nw valuation of δ (n).

16 3 Erin McAf, Knnth S. Williams Thorm 7.. Lt n b a positiv intgr. Thn δ (n) 9 σ 5(n + 3) 9 σ 3(n + 3) Proof. By (7.) w hav δ (n) m +m +m 3 n m,m,m 3 0 m +m +m 3 n m,m,m 3 0 n +n +n 3 n+3 n,n,n 3 odd δ 4 (m )δ 4 (m )δ 4 (m 3 ) n + s n n+3 s, n,n odd σ(m + )σ(m + )σ(m 3 + ) σ(n )σ(n )σ(n 3 ). σ 3 (n )σ(n ). W apply Thorm 6. with F (x) x 3, so that F (a + b + c) + F (a b c) F (a + b c) F (a b + c) 4abc, and n rplacd by n + 3. Th lft-hand sid of Thorm 6. givs (F (a + b + c) + F (a b c) F (a + b c) F (a b + c)) ax+by+czn+3 ax+by+czn+3 4 4abc n +n +n 3 n+3 n,n,n 3 odd 4δ (n). Th right hand sid givs (d )d 3 3 d n+3 ax<n+3 a,x odd σ(n )σ(n )σ(n 3 ) σ(o(n + 3 ax))a 3 σ 5(n + 3) σ 3(n + 3) 3 n + s n n+3 s, n,n odd σ(n )σ 3 (n ). Equating th lft-hand sid and th right-hand sid, w obtain th rquird assrtion.

17 An arithmtic formula of Liouvill 39 Rfrncs [] L. E. Dickson, History of th Thory of Numbrs. Vol. (99), Vol. (90), Vol. 3 (93), Carngi Institut of Washington, rprintd Chlsa, NY, 95. [] J. G. Huard, Z. M. Ou, B. K. Sparman, K. S. Williams, Elmntary valuation of crtain convolution sums involving divisor functions. Numbr Thory for th Millnium II, M. A. Bnntt t al., ditors, A. K. Ptrs Ltd, Natick, Massachustts, 00. [3] J. Liouvill, Sur qulqus formul générals qui puvnt êtr utils dans la théori ds nombrs. (prmir articl) 3 (5), 43 5; (duxièm articl) 3 (5), 93 00; (troisièm articl) 3 (5), 0-0; (quatrièm articl) 3 (5), 4 50; (cinquièm articl) 3 (5), 73 ; (sixièm articl) 3 (5), ; (sptièm articl) 4 (59), ; (huitièm articl) 4 (59), 73 0; (nuvièm articl) 4 (59), 0; (dixièm articl) 4 (59), (onzièm articl) 4 (59), 304; (douzièm articl) 5 (60), ; (trizièm articl) 9 (64), 49 56; (quatorzièm articl) 9 (64), ; (quinzièm articl) 9 (64), 3 336; (sizièm articl) 9 (64), ; (dix-sptièm articl) 0 (65), 35 44; (dix-huitièm articl) 0 (65), [4] E. McAf, A thr trm arithmtic formula of Liouvill typ with application to sums of six squars. M. Sc. thsis, Carlton Univrsity, Ottawa, Canada, 004. [5] P. S. Nasimoff, Applications to th Thory of Elliptic Functions to th Thory of Numbrs. Moscow, 4. [6] K. Ono, S. Robins, P. T. Wahl, On th rprsntation of intgrs as sums of triangular numbrs. Aquations Math. 50 (995), Erin McAf and Knnth S. Williams School of Mathmatics and Statistics Carlton Univrsity Ottawa, Ontario, Canada KS 5B6 rinmcaf@rogrs.com, williams@math.carlton.ca

An arithmetic formula of Liouville

An arithmetic formula of Liouville Journal de The'orie des Nombres de Bordeaux 18 (2006), 223-239 An arithmetic formula of Liouville par ERIN hlcafee et KENNETH S. WILLIAMS RE SUM^. Urie preuve klkmentaire est donnite d'une formule arithmittique

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

Chapter 10. The singular integral Introducing S(n) and J(n)

Chapter 10. The singular integral Introducing S(n) and J(n) Chaptr Th singular intgral Our aim in this chaptr is to rplac th functions S (n) and J (n) by mor convnint xprssions; ths will b calld th singular sris S(n) and th singular intgral J(n). This will b don

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim (implicit in notation and n a positiv intgr, lt ν(n dnot th xponnt of p in n, and U(n n/p ν(n, th unit

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM

COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM COUNTING TAMELY RAMIFIED EXTENSIONS OF LOCAL FIELDS UP TO ISOMORPHISM Jim Brown Dpartmnt of Mathmatical Scincs, Clmson Univrsity, Clmson, SC 9634, USA jimlb@g.clmson.du Robrt Cass Dpartmnt of Mathmatics,

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

SCHUR S THEOREM REU SUMMER 2005

SCHUR S THEOREM REU SUMMER 2005 SCHUR S THEOREM REU SUMMER 2005 1. Combinatorial aroach Prhas th first rsult in th subjct blongs to I. Schur and dats back to 1916. On of his motivation was to study th local vrsion of th famous quation

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

(Upside-Down o Direct Rotation) β - Numbers

(Upside-Down o Direct Rotation) β - Numbers Amrican Journal of Mathmatics and Statistics 014, 4(): 58-64 DOI: 10593/jajms0140400 (Upsid-Down o Dirct Rotation) β - Numbrs Ammar Sddiq Mahmood 1, Shukriyah Sabir Ali,* 1 Dpartmnt of Mathmatics, Collg

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j)

INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS. xy 1 (mod p), (x, y) I (j) INCOMPLETE KLOOSTERMAN SUMS AND MULTIPLICATIVE INVERSES IN SHORT INTERVALS T D BROWNING AND A HAYNES Abstract W invstigat th solubility of th congrunc xy (mod ), whr is a rim and x, y ar rstrictd to li

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Some remarks on Kurepa s left factorial

Some remarks on Kurepa s left factorial Som rmarks on Kurpa s lft factorial arxiv:math/0410477v1 [math.nt] 21 Oct 2004 Brnd C. Kllnr Abstract W stablish a connction btwn th subfactorial function S(n) and th lft factorial function of Kurpa K(n).

More information

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P

DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P DISTRIBUTION OF DIFFERENCE BETWEEN INVERSES OF CONSECUTIVE INTEGERS MODULO P Tsz Ho Chan Dartmnt of Mathmatics, Cas Wstrn Rsrv Univrsity, Clvland, OH 4406, USA txc50@cwru.du Rcivd: /9/03, Rvisd: /9/04,

More information

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS

PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS Intrnational Journal Of Advanc Rsarch In Scinc And Enginring http://www.ijars.com IJARSE, Vol. No., Issu No., Fbruary, 013 ISSN-319-8354(E) PROOF OF FIRST STANDARD FORM OF NONELEMENTARY FUNCTIONS 1 Dharmndra

More information

EEO 401 Digital Signal Processing Prof. Mark Fowler

EEO 401 Digital Signal Processing Prof. Mark Fowler EEO 401 Digital Signal Procssing Prof. Mark Fowlr Dtails of th ot St #19 Rading Assignmnt: Sct. 7.1.2, 7.1.3, & 7.2 of Proakis & Manolakis Dfinition of th So Givn signal data points x[n] for n = 0,, -1

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Limiting value of higher Mahler measure

Limiting value of higher Mahler measure Limiting valu of highr Mahlr masur Arunabha Biswas a, Chris Monico a, a Dpartmnt of Mathmatics & Statistics, Txas Tch Univrsity, Lubbock, TX 7949, USA Abstract W considr th k-highr Mahlr masur m k P )

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

ON A CONJECTURE OF RYSElt AND MINC

ON A CONJECTURE OF RYSElt AND MINC MA THEMATICS ON A CONJECTURE OF RYSElt AND MINC BY ALBERT NIJE~HUIS*) AND HERBERT S. WILF *) (Communicatd at th mting of January 31, 1970) 1. Introduction Lt A b an n x n matrix of zros and ons, and suppos

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

On spanning trees and cycles of multicolored point sets with few intersections

On spanning trees and cycles of multicolored point sets with few intersections On spanning trs and cycls of multicolord point sts with fw intrsctions M. Kano, C. Mrino, and J. Urrutia April, 00 Abstract Lt P 1,..., P k b a collction of disjoint point sts in R in gnral position. W

More information

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero.

SECTION where P (cos θ, sin θ) and Q(cos θ, sin θ) are polynomials in cos θ and sin θ, provided Q is never equal to zero. SETION 6. 57 6. Evaluation of Dfinit Intgrals Exampl 6.6 W hav usd dfinit intgrals to valuat contour intgrals. It may com as a surpris to larn that contour intgrals and rsidus can b usd to valuat crtain

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

Problem Set 6 Solutions

Problem Set 6 Solutions 6.04/18.06J Mathmatics for Computr Scinc March 15, 005 Srini Dvadas and Eric Lhman Problm St 6 Solutions Du: Monday, March 8 at 9 PM in Room 3-044 Problm 1. Sammy th Shark is a financial srvic providr

More information

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH.

COMPUTER GENERATED HOLOGRAMS Optical Sciences 627 W.J. Dallas (Monday, April 04, 2005, 8:35 AM) PART I: CHAPTER TWO COMB MATH. C:\Dallas\0_Courss\03A_OpSci_67\0 Cgh_Book\0_athmaticalPrliminaris\0_0 Combath.doc of 8 COPUTER GENERATED HOLOGRAS Optical Scincs 67 W.J. Dallas (onday, April 04, 005, 8:35 A) PART I: CHAPTER TWO COB ATH

More information

On the number of pairs of positive integers x,y H such that x 2 +y 2 +1, x 2 +y 2 +2 are square-free

On the number of pairs of positive integers x,y H such that x 2 +y 2 +1, x 2 +y 2 +2 are square-free arxiv:90.04838v [math.nt] 5 Jan 09 On th numbr of pairs of positiv intgrs x,y H such that x +y +, x +y + ar squar-fr S. I. Dimitrov Abstract In th prsnt papr w show that thr xist infinitly many conscutiv

More information

Objective Mathematics

Objective Mathematics x. Lt 'P' b a point on th curv y and tangnt x drawn at P to th curv has gratst slop in magnitud, thn point 'P' is,, (0, 0),. Th quation of common tangnt to th curvs y = 6 x x and xy = x + is : x y = 8

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China

An Application of Hardy-Littlewood Conjecture. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.China An Application of Hardy-Littlwood Conjctur JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that wakr Hardy-Littlwood

More information

Quasi-Classical States of the Simple Harmonic Oscillator

Quasi-Classical States of the Simple Harmonic Oscillator Quasi-Classical Stats of th Simpl Harmonic Oscillator (Draft Vrsion) Introduction: Why Look for Eignstats of th Annihilation Oprator? Excpt for th ground stat, th corrspondnc btwn th quantum nrgy ignstats

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probability and Stochastic Procsss: A Frindly Introduction for Elctrical and Computr Enginrs Roy D. Yats and David J. Goodman Problm Solutions : Yats and Goodman,4.3. 4.3.4 4.3. 4.4. 4.4.4 4.4.6 4.. 4..7

More information

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16.

4. (5a + b) 7 & x 1 = (3x 1)log 10 4 = log (M1) [4] d = 3 [4] T 2 = 5 + = 16 or or 16. . 7 7 7... 7 7 (n )0 7 (M) 0(n ) 00 n (A) S ((7) 0(0)) (M) (7 00) 8897 (A). (5a b) 7 7... (5a)... (M) 7 5 5 (a b ) 5 5 a b (M)(A) So th cofficint is 75 (A) (C) [] S (7 7) (M) () 8897 (A) (C) [] 5. x.55

More information

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION

ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Hacttp Journal of Mathmatics and Statistics Volum 41(6) (2012), 867 874 ON A SECOND ORDER RATIONAL DIFFERENCE EQUATION Nourssadat Touafk Rcivd 06:07:2011 : Accptd 26:12:2011 Abstract In this papr, w invstigat

More information

1 N N(θ;d 1...d l ;N) 1 q l = o(1)

1 N N(θ;d 1...d l ;N) 1 q l = o(1) NORMALITY OF NUMBERS GENERATED BY THE VALUES OF ENTIRE FUNCTIONS MANFRED G. MADRITSCH, JÖRG M. THUSWALDNER, AND ROBERT F. TICHY Abstract. W show that th numbr gnratd by th q-ary intgr part of an ntir function

More information

Elements of Statistical Thermodynamics

Elements of Statistical Thermodynamics 24 Elmnts of Statistical Thrmodynamics Statistical thrmodynamics is a branch of knowldg that has its own postulats and tchniqus. W do not attmpt to giv hr vn an introduction to th fild. In this chaptr,

More information

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS

ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Novi Sad J. Math. Vol. 45, No. 1, 2015, 201-206 ABEL TYPE THEOREMS FOR THE WAVELET TRANSFORM THROUGH THE QUASIASYMPTOTIC BOUNDEDNESS Mirjana Vuković 1 and Ivana Zubac 2 Ddicatd to Acadmician Bogoljub Stanković

More information

Equidistribution and Weyl s criterion

Equidistribution and Weyl s criterion Euidistribution and Wyl s critrion by Brad Hannigan-Daly W introduc th ida of a sunc of numbrs bing uidistributd (mod ), and w stat and prov a thorm of Hrmann Wyl which charactrizs such suncs. W also discuss

More information

5.80 Small-Molecule Spectroscopy and Dynamics

5.80 Small-Molecule Spectroscopy and Dynamics MIT OpnCoursWar http://ocw.mit.du 5.80 Small-Molcul Spctroscopy and Dynamics Fall 008 For information about citing ths matrials or our Trms of Us, visit: http://ocw.mit.du/trms. Lctur # 3 Supplmnt Contnts

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Addition of angular momentum

Addition of angular momentum Addition of angular momntum April, 07 Oftn w nd to combin diffrnt sourcs of angular momntum to charactriz th total angular momntum of a systm, or to divid th total angular momntum into parts to valuat

More information

Lie Groups HW7. Wang Shuai. November 2015

Lie Groups HW7. Wang Shuai. November 2015 Li roups HW7 Wang Shuai Novmbr 015 1 Lt (π, V b a complx rprsntation of a compact group, show that V has an invariant non-dgnratd Hrmitian form. For any givn Hrmitian form on V, (for xampl (u, v = i u

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

CS 361 Meeting 12 10/3/18

CS 361 Meeting 12 10/3/18 CS 36 Mting 2 /3/8 Announcmnts. Homwork 4 is du Friday. If Friday is Mountain Day, homwork should b turnd in at my offic or th dpartmnt offic bfor 4. 2. Homwork 5 will b availabl ovr th wknd. 3. Our midtrm

More information

Human vision is determined based on information theory:

Human vision is determined based on information theory: Human vision is dtrmind basd on information thory: Supplmntary Information Alfonso Dlgado-Bonal,2 and F. Javir Martn Torrs,3 [] Instituto Andaluz d Cincias d la Tirra CSIC-UGR, Avda. d Las Palmras n 4,

More information

SOME ELEMENTARY PROPERTIES OF THE DISTRIBUTION OF THE NUMBERS OF POINTS ON ELLIPTIC CURVES OVER A FINITE PRIME FIELD

SOME ELEMENTARY PROPERTIES OF THE DISTRIBUTION OF THE NUMBERS OF POINTS ON ELLIPTIC CURVES OVER A FINITE PRIME FIELD SOME ELEMENTARY PROPERTIES OF THE DISTRIBUTION OF THE NUMBERS OF POINTS ON ELLIPTIC CURVES OVER A FINITE PRIME FIELD SAIYING HE AND J MC LAUGHLIN Abstract Lt 5 b a rim and for a, b F, lt E a,b dnot th

More information

arxiv: v1 [math.nt] 13 Sep 2016

arxiv: v1 [math.nt] 13 Sep 2016 EXPLICIT EVALUATION OF DOUBLE GAUSS SUMS ŞABAN ALACA AND GREG DOYLE arxiv:6090399v [mathnt] 3 S 06 Abstract W rsnt an xlicit valuation of th doubl Gauss sum G(a,b,c;S; n := n x, πis(ax +bxy+cy / n, whr

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

u 3 = u 3 (x 1, x 2, x 3 )

u 3 = u 3 (x 1, x 2, x 3 ) Lctur 23: Curvilinar Coordinats (RHB 8.0 It is oftn convnint to work with variabls othr than th Cartsian coordinats x i ( = x, y, z. For xampl in Lctur 5 w mt sphrical polar and cylindrical polar coordinats.

More information

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices

Finding low cost TSP and 2-matching solutions using certain half integer subtour vertices Finding low cost TSP and 2-matching solutions using crtain half intgr subtour vrtics Sylvia Boyd and Robrt Carr Novmbr 996 Introduction Givn th complt graph K n = (V, E) on n nods with dg costs c R E,

More information

Text: WMM, Chapter 5. Sections , ,

Text: WMM, Chapter 5. Sections , , Lcturs 6 - Continuous Probabilit Distributions Tt: WMM, Chaptr 5. Sctions 6.-6.4, 6.6-6.8, 7.-7. In th prvious sction, w introduc som of th common probabilit distribution functions (PDFs) for discrt sampl

More information

That is, we start with a general matrix: And end with a simpler matrix:

That is, we start with a general matrix: And end with a simpler matrix: DIAGON ALIZATION OF THE STR ESS TEN SOR INTRO DUCTIO N By th us of Cauchy s thorm w ar abl to rduc th numbr of strss componnts in th strss tnsor to only nin valus. An additional simplification of th strss

More information

INTEGRATION BY PARTS

INTEGRATION BY PARTS Mathmatics Rvision Guids Intgration by Parts Pag of 7 MK HOME TUITION Mathmatics Rvision Guids Lvl: AS / A Lvl AQA : C Edcl: C OCR: C OCR MEI: C INTEGRATION BY PARTS Vrsion : Dat: --5 Eampls - 6 ar copyrightd

More information

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 6, Issue 7, July ISSN Intrnational Journal of Scintific & Enginring Rsarch, Volum 6, Issu 7, July-25 64 ISSN 2229-558 HARATERISTIS OF EDGE UTSET MATRIX OF PETERSON GRAPH WITH ALGEBRAI GRAPH THEORY Dr. G. Nirmala M. Murugan

More information

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations

MATH 319, WEEK 15: The Fundamental Matrix, Non-Homogeneous Systems of Differential Equations MATH 39, WEEK 5: Th Fundamntal Matrix, Non-Homognous Systms of Diffrntial Equations Fundamntal Matrics Considr th problm of dtrmining th particular solution for an nsmbl of initial conditions For instanc,

More information

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals.

Background: We have discussed the PIB, HO, and the energy of the RR model. In this chapter, the H-atom, and atomic orbitals. Chaptr 7 Th Hydrogn Atom Background: W hav discussd th PIB HO and th nrgy of th RR modl. In this chaptr th H-atom and atomic orbitals. * A singl particl moving undr a cntral forc adoptd from Scott Kirby

More information

Mutually Independent Hamiltonian Cycles of Pancake Networks

Mutually Independent Hamiltonian Cycles of Pancake Networks Mutually Indpndnt Hamiltonian Cycls of Pancak Ntworks Chng-Kuan Lin Dpartmnt of Mathmatics National Cntral Univrsity, Chung-Li, Taiwan 00, R O C discipl@ms0urlcomtw Hua-Min Huang Dpartmnt of Mathmatics

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Differentiation of Exponential Functions

Differentiation of Exponential Functions Calculus Modul C Diffrntiation of Eponntial Functions Copyright This publication Th Northrn Albrta Institut of Tchnology 007. All Rights Rsrvd. LAST REVISED March, 009 Introduction to Diffrntiation of

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

Week 3: Connected Subgraphs

Week 3: Connected Subgraphs Wk 3: Connctd Subgraphs Sptmbr 19, 2016 1 Connctd Graphs Path, Distanc: A path from a vrtx x to a vrtx y in a graph G is rfrrd to an xy-path. Lt X, Y V (G). An (X, Y )-path is an xy-path with x X and y

More information

Another view for a posteriori error estimates for variational inequalities of the second kind

Another view for a posteriori error estimates for variational inequalities of the second kind Accptd by Applid Numrical Mathmatics in July 2013 Anothr viw for a postriori rror stimats for variational inqualitis of th scond kind Fi Wang 1 and Wimin Han 2 Abstract. In this papr, w giv anothr viw

More information

10. Limits involving infinity

10. Limits involving infinity . Limits involving infinity It is known from th it ruls for fundamntal arithmtic oprations (+,-,, ) that if two functions hav finit its at a (finit or infinit) point, that is, thy ar convrgnt, th it of

More information

Calculus concepts derivatives

Calculus concepts derivatives All rasonabl fforts hav bn mad to mak sur th nots ar accurat. Th author cannot b hld rsponsibl for any damags arising from th us of ths nots in any fashion. Calculus concpts drivativs Concpts involving

More information

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim.

COHORT MBA. Exponential function. MATH review (part2) by Lucian Mitroiu. The LOG and EXP functions. Properties: e e. lim. MTH rviw part b Lucian Mitroiu Th LOG and EXP functions Th ponntial function p : R, dfind as Proprtis: lim > lim p Eponntial function Y 8 6 - -8-6 - - X Th natural logarithm function ln in US- log: function

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

arxiv: v1 [math.nt] 9 Jan 2014

arxiv: v1 [math.nt] 9 Jan 2014 ON A FORM OF DEGREE d IN 2d+ VARIABLES (d 4 MANOJ VERMA arxiv:4.2366v [math.nt] 9 Jan 24 Abstract. For k 2, w driv an asymptotic formula for th numbr of zros of th forms k (x2 2i +x2 2i + k (x2 2k+2i +x2

More information

The second condition says that a node α of the tree has exactly n children if the arity of its label is n.

The second condition says that a node α of the tree has exactly n children if the arity of its label is n. CS 6110 S14 Hanout 2 Proof of Conflunc 27 January 2014 In this supplmntary lctur w prov that th λ-calculus is conflunt. This is rsult is u to lonzo Church (1903 1995) an J. arkly Rossr (1907 1989) an is

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 3.4 Forc Analysis of Linkas An undrstandin of forc analysis of linkas is rquird to: Dtrmin th raction forcs on pins, tc. as a consqunc of a spcifid motion (don t undrstimat th sinificanc of dynamic or

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values

Bifurcation Theory. , a stationary point, depends on the value of α. At certain values Dnamic Macroconomic Thor Prof. Thomas Lux Bifurcation Thor Bifurcation: qualitativ chang in th natur of th solution occurs if a paramtr passs through a critical point bifurcation or branch valu. Local

More information

3 Finite Element Parametric Geometry

3 Finite Element Parametric Geometry 3 Finit Elmnt Paramtric Gomtry 3. Introduction Th intgral of a matrix is th matrix containing th intgral of ach and vry on of its original componnts. Practical finit lmnt analysis rquirs intgrating matrics,

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b)

y = 2xe x + x 2 e x at (0, 3). solution: Since y is implicitly related to x we have to use implicit differentiation: 3 6y = 0 y = 1 2 x ln(b) ln(b) 4. y = y = + 5. Find th quation of th tangnt lin for th function y = ( + ) 3 whn = 0. solution: First not that whn = 0, y = (1 + 1) 3 = 8, so th lin gos through (0, 8) and thrfor its y-intrcpt is 8. y

More information

REPRESENTATIONS OF LIE GROUPS AND LIE ALGEBRAS

REPRESENTATIONS OF LIE GROUPS AND LIE ALGEBRAS REPRESENTATIONS OF LIE GROUPS AND LIE ALGEBRAS JIAQI JIANG Abstract. This papr studis th rlationship btwn rprsntations of a Li group and rprsntations of its Li algbra. W will mak th corrspondnc in two

More information

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields

Lecture 37 (Schrödinger Equation) Physics Spring 2018 Douglas Fields Lctur 37 (Schrödingr Equation) Physics 6-01 Spring 018 Douglas Filds Rducd Mass OK, so th Bohr modl of th atom givs nrgy lvls: E n 1 k m n 4 But, this has on problm it was dvlopd assuming th acclration

More information

Estimation of apparent fraction defective: A mathematical approach

Estimation of apparent fraction defective: A mathematical approach Availabl onlin at www.plagiarsarchlibrary.com Plagia Rsarch Library Advancs in Applid Scinc Rsarch, 011, (): 84-89 ISSN: 0976-8610 CODEN (USA): AASRFC Estimation of apparnt fraction dfctiv: A mathmatical

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let

Linear-Phase FIR Transfer Functions. Functions. Functions. Functions. Functions. Functions. Let It is impossibl to dsign an IIR transfr function with an xact linar-phas It is always possibl to dsign an FIR transfr function with an xact linar-phas rspons W now dvlop th forms of th linarphas FIR transfr

More information

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the

The graph of y = x (or y = ) consists of two branches, As x 0, y + ; as x 0, y +. x = 0 is the Copyright itutcom 005 Fr download & print from wwwitutcom Do not rproduc by othr mans Functions and graphs Powr functions Th graph of n y, for n Q (st of rational numbrs) y is a straight lin through th

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

CLASSIFYING EXTENSIONS OF THE FIELD OF FORMAL LAURENT SERIES OVER F p

CLASSIFYING EXTENSIONS OF THE FIELD OF FORMAL LAURENT SERIES OVER F p CLASSIFYING EXTENSIONS OF THE FIELD OF FORMAL LAURENT SERIES OVER F p JIM BROWN, ALFEEN HASMANI, LINDSEY HILTNER, ANGELA RAFT, DANIEL SCOFIELD, AND IRSTI WASH Abstract. In prvious works, Jons-Robrts and

More information

ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS

ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A3 ON THE DISTRIBUTION OF THE ELLIPTIC SUBSET SUM GENERATOR OF PSEUDORANDOM NUMBERS Edwin D. El-Mahassni Dpartmnt of Computing, Macquari

More information

2.3 Matrix Formulation

2.3 Matrix Formulation 23 Matrix Formulation 43 A mor complicatd xampl ariss for a nonlinar systm of diffrntial quations Considr th following xampl Exampl 23 x y + x( x 2 y 2 y x + y( x 2 y 2 (233 Transforming to polar coordinats,

More information

Coupled Pendulums. Two normal modes.

Coupled Pendulums. Two normal modes. Tim Dpndnt Two Stat Problm Coupld Pndulums Wak spring Two normal mods. No friction. No air rsistanc. Prfct Spring Start Swinging Som tim latr - swings with full amplitud. stationary M +n L M +m Elctron

More information

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C

u r du = ur+1 r + 1 du = ln u + C u sin u du = cos u + C cos u du = sin u + C sec u tan u du = sec u + C e u du = e u + C Tchniqus of Intgration c Donald Kridr and Dwight Lahr In this sction w ar going to introduc th first approachs to valuating an indfinit intgral whos intgrand dos not hav an immdiat antidrivativ. W bgin

More information

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark

Answer Homework 5 PHA5127 Fall 1999 Jeff Stark Answr omwork 5 PA527 Fall 999 Jff Stark A patint is bing tratd with Drug X in a clinical stting. Upon admiion, an IV bolus dos of 000mg was givn which yildd an initial concntration of 5.56 µg/ml. A fw

More information