Future Colliders. Albert De Roeck CERN and University of Antwerp and the IPPP Durham and UC-Davis, California

Size: px
Start display at page:

Download "Future Colliders. Albert De Roeck CERN and University of Antwerp and the IPPP Durham and UC-Davis, California"

Transcription

1 Future Colliders Albert De Roeck CERN and University of Antwerp and the IPPP Durham and UC-Davis, California 1

2 The LHC: a proton proton collider 7 TeV + 7 TeV Primary physics targets Origin of mass Nature of Dark Matter Understanding space time Matter versus antimatter Primordial plasma The LHC will determine the Future course of High Energy Physics The LHC started operation end of

3 Physics case for new High Energy Machines Understand the mechanism Electroweak Symmetry Breaking Discover physics beyond the Standard Model Reminder: The Standard Model - tells us how but not why (contains 19 parameters!) 3 flavour families? Mass spectra? Hierarchy? - needs fine tuning of parameters to level of 10-30! - has no connection with gravity - no unification of the forces at high energy Most popular extensions these days If a Higgs field exists: - Supersymmetry - Extra space dimensions If there is no Higgs below ~ 700 GeV - Strong electroweak symmetry breaking around 1 TeV Other ideas: more gauge bosons/quark & lepton substructure, Little Higgs models 3 S S

4 What are the next possible machines after the LHC? 4

5 January 06 The Orsay Symposium : HEP in Europe About 400 participants 47 documents submitted the European Strategy Document Consequences for CERN New workshop in early

6 What machines are being discussed? LHC upgrade Higher energy hadron colliders High energy electron colliders High energy muon colliders Heavy flavor factories Will discuss only the first three 6

7 The LHC Upgrade Making the most of the LHC 7

8 LHC is 100m underground LHC is 27 km long Magnet Temperature is 1.9 Kelvin = -271 Celsius LHC has ~ 9000 magnets LHC: 40 million proton-proton collisions per second LHC: Luminosity fb -1 /year (after start-up phase) moedal (LHCf) totem High Energy factor 7 increase w.r.t. present accelerators High Luminosity (# events/cross section/time) 8 factor 100 increase

9 LHC: Expected Luminosity in the next years O(10 fb -1 ) in

10 What can we expect with 10 fb -1? 10

11 LHC Luminosity/Sensitivity with time 11

12 The European Strategy for Particle Physics One possible way : LHC luminosity upgrade slhc 10 times more luminosity.ie. L~10 35 cm -2 s -1

13 Upgrade Plan Higher Luminosity for the LHC Outcome of Chamonix February 2010: 7 TeV and L >10 32 in with the goal to collect 1fb -1 A first long shutdown to raise the energy in /14TeV and L >10 33 for (2015?) A second long shutdown to raise the luminosity in 2015 (2016?). 13/14 TeV and L >10 34 for A longer term program to reach S-LHC like integrated luminosities with luminosity leveling at L ~4-5x10 34 LHC has definitely adopted a different operation mode: 2/3 years of running interleaved by major shutdowns periods A change in our strategy for the upgrades is needed. What upgrades can we plan to do in each of these shutdowns to maintain/increase the physics potential of the experiment?

14 Detector Upgrade Opportunities Discussion in CMS System Phase Phase 2 Beyond Pixel New Pixel Detector (1 or 2 iterations?) Tracker FEDs? New Tracking System (incl Pixel) HCAL Electronics + PD replacement HF/HE? ECAL TP (Off Detector Electronics)? EE? 2012 Muons ME4/2, ME1/1,RPC endcap, Minicrate spares, some CSC Electronics Electronics replacement 2015 Trigger HCAL/RCT/GCT to TCA Complete replacement

15 The CERN Accelerator Complex 15

16 Present Accelerators Future Accelerators Proton flux / Beam power Output energy 50 MeV 160 MeV 1.4 GeV 4 GeV 26 GeV 50 GeV 450 GeV 1 TeV 7 TeV ~ 14 TeV Linac2 PSB PS SPS LHC / SLHC Linac4 LPSPL PS2 SPS+ DLHC LPSPL: Low Power Superconducting Proton Linac (4 GeV) PS2: High Energy PS (~ 5 to 50 GeV 0.3 Hz) SPS+: Superconducting SPS (50 to1000 GeV) SLHC: Superluminosity LHC (up to cm -2 s -1 ) DLHC: Double energy LHC (1 to ~14 TeV) Intermediate step in reaching cm -2 s -1

17 SPS PS2 ISOLDE PS SPL Linac4

18 SLHC Machine Parameters W. Scandale HCP07 18

19 Extending the Physics Potential of LHC Electroweak Physics Production of multiple gauge bosons (n V 3) Examples studied triple and quartic gauge boson couplings in some detail Top quarks/rare decays Higgs physics Rare decay modes Higgs couplings to fermions and bosons Higgs self-couplings Heavy Higgs bosons of the MSSMM Supersymmetry (up to masses of 3 TeV) Extra Dimensions Include pile up, detector Direct graviton production in ADD models Resonance production in Randall-Sundrum models TeV -1 scale models Black Hole production Quark substructure Strongly-coupled vector boson system hep-ph/ W L Z L g W L Z L, Z L Z L scalar resonance, W + LW + L New Gauge Bosons Extend discovery range by ~ 25% in mass 19

20 First step Example: The Higgs at the LHC Discover a new Higgs-like particle at the LHC, or exclude its existence Second step SLHC added value Measure properties of the new particle to prove it is the Higgs Measure the Higgs mass Measure the Higgs width Measure cross sections x branching ratios Ratios of couplings to particles (~m particle ) Measure decays with low Branching ratios (e.g H ) Measure CP and spin quantum numbers (scalar particle?) Measure the Higgs self-coupling (H HH), in order to reconstruct the Higgs potential LHC~1 good year of data Only then we can be sure it is the Higgs particle we were looking for 20

21 W. Scandale HCP07 21

22 The SSC in the LHC tunnel? W. Scandale HCP07 22

23 W. Scandale HCP07 ADD two years To the timeline!! Note: this is just a possible scenario 23

24 VLHC: Very Large Hadron Collider Tunnel of 233 km (E.G could be somewhere near FNAL) Stage 1: 40 TeV collider with cheap 2T field magnets L=10 34 cm -2 s -1 Stage 2: 200 TeV collider with superconducting magnets. L= cm -2 s -1 Magnet & Vacuum R&D required (and ongoing) Detectors with good tracking up to 10 TeV (increase B,L), calorimeter coverage up to 6-7, good linearity up to 10 TeV, harsh forward radiation 24

25 Linear e+e- Colliders: The ILC Use electrons instead of protons for beams 25

26 Linear e+e- Colliders Since end of 2001 there seems to be a worldwide consensus in high energy physics (ECFA/HEPAP/Snowmass 2001 ) The machine which will complement and extend the LHC best, and is closest to be realized is a Linear e+e- Collider with a collision energy of at least 500 GeV PROJECTS: TeV Colliders (cms energy up to 1 TeV) Technology ~ready August 04 ITRP: NLC/GLC/TESLA ILC superconducting cavities Multi-TeV Collider (cms energies in multi-tev range) R&D CLIC (CERN + collaborators) Two Beam Acceleration 26

27 pp and e+e- colliders Different characteristics of the two machines Different virtues LHC pp collisions s = at 14 TeV Strong point: larger mass reach for direct discoveries Kinematics: can use conservation of p T Composite nature of colliding protons underlying remant event s of the hard interaction not fixed Strongly interacting particles huge QCD cross sec. (background) ILC: e+e- collisions s = TeV Strong point: high precision physics Kinematics: mom. conservation used to analyze the decays, Well defined initial state, beam polarization, s, Backgrounds smaller than LHC Options:, e, e-e- colliders. 27

28 A Generic Linear Collider km

29 Linear Collider Baseline LEP: 209 GeV next Electron-Positron Collider Centre-of-mass-energy: TeV Luminosity: >2*10 34 Physics motivation: "Physics at the CLIC Multi-TeV Linear Collider: Report of the CLIC Physics Working Group, CERN Report Storage Ring not possible, energy loss E ~ E 4 two linacs, experiment at centre total energy gain in one pass: highh acceleration gradient beam can only be used once: smalll beam dimensions at crossing point Boundary conditions: site length Power consumption 29

30 Higgs studies at a e+e- linear Collider Can detect the Higgs via the recoil to the Z Fully simulated+reconstructed HZ event Very clean compared to events at LHC Precision measurements! Observation of the Higgs independent of decay modes Precise determination of couplings 30

31 A LC is a Precision Instrument Clean e+e- (polarized intial state, controllable s for hard scattering) Detailed study of the properties of Higgs particles mass to 0.03%, couplings to 1-3%, spin & CP structure, total width (6%) factor 2-5 better than LHC/measure couplings in model indep. way Precision measurements of SUSY particles properties, i.e. slepton masses to better than 1%, if within reach Precision measurements a la LEP (TGC s, Top and W mass) Large indirect sensitivity to new phenomena (eg W L W L scattering) LC will very likely play important role to disentangle the underlying new theory 31

32 ILC: Few More Examples Understanding SUSY High accuracy of sparticle mass measurements relevant for reconstruction of SUSY breaking mechanism Dark Matter LC will accurately measure m and couplings, i.e. Higgsino/Wino/Bino content Essential input to cosmology & searches LC will make a prediction of DMh²~ ~ 3% (SPS1a) A mismatch with WMAP/Planck would reveal extra sources of DM (Axions, heavy objects) Quantum level consistency: M H (direct)= M H (indirect)? sin 2 W ~10-5 (GigaZ), M W ~ 6 MeV (+theory progress) M H (indirect) ~ 5% 1/M GeV -1 Gaugino mass parameters G. Blair et al F. Richard/SPS1a 32

33 Extrapolation to physics at high scales From a combination of LHC and ILC results, precise measurements of masses of SUSY particles, couplings: Evolution of gaugino mass parameters LHC LHC ILC Good case for LHC/ILC interplay, see G. Weiglein et al., hep-ph/

34 Input from the LHC for the LC F. Gianotti, ADR et al. Something to watch for the ILC LHC/ILC workshop 34

35 ILC Global Design Effort ~31 km (500 GeV) Luminosity ~ cm -2 s -1 Barry Barish GDE LCWS07 DESY LCWS06 Bangalore Active since March

36 The GDE Plan and Schedule for ILC CLIC Global Design Effort Project Baseline configuration Reference Design LHC Physics Technical Design ILC R&D Program Expression of Interest to Host International Mgmt Costing made public in February 2007: 6.6 GUSD+ manpower 36

37 Timeline for ILC options? Plan of 2007 optimistic J. Gronberg LCWS07 37

38 CLIC Compact LInear Collider A multi-tev e+e- collider High acceleration gradients CERN + 38

39 CLIC: a Multi-TeV Linear Collider Two beam acceleration presently only feasible way to reach multi-tev region Principle demonstrated with CTF2 More than 150 MV/m for short pulses but 100 MV/m for long pulses? Present R&D CTF3: drive beam CLIC: 3 TeV (5 TeV) LC L=O(10 35 )cm -2 s -1 CERN: accelerate CLIC R&D support to evaluate the technology by 2009/2010 CLIC collaboration. FAQs: CLIC technology O(5) years behind TeV class LCs CLIC can operate from 90 GeV 3 (5) TeV. Physics case for CLIC documented in a CERN yellow report CERN (June) 39

40 CLIC: Examples of the Large Reach E.g.: Contact interactions: Sensitivity to scales up to TeV (few years of data) Eur.Phys. J C (2004) E.g. Supersymmetry # sparticles that can be detected Expect higher precision at LC vs LHC 40

41 CLIC: Overview of Physics Reach M H =900 GeV New Z resonance s=5 Heavy Higgs s=3 ADD Extra Dimensions Measuring the Higgs self coupling to 5-10% 41

42 Indicative Physics Reach all Machines Units are TeV (except W L W L reach) Ldt correspond to 1 year of running Ellis, Gianotti, ADR hep-ex/ few updates at nominal luminosity for 1 experiment PROCESS LHC SLHC DLHC VLHC VLHC LC LC 14 TeV 14 TeV 28 TeV 40 TeV 200 TeV 0.8 TeV 5 TeV 100 fb fb fb fb fb fb fb -1 Squarks W L W L Z Extra-dim ( =2) q* compositeness TGC ( ) indirect reach (from precision measurements) Approximate mass reach machines: s = 14 TeV, L=10 34 (LHC) : up to 6.5 TeV s = 14 TeV, L=10 35 (SLHC) : up to s = 28 TeV, L=10 34 (DLHC) : up to 8 TeV 10 TeV 42

43 Summary The LHC luminosity upgrade to cm -2 s -1 Natural continuation of the LHC in O(10) years from now Extends the program for discoveries. Explore further the mysteriess of the universe Later energy upgrade? A high luminosity linear collider as the next frontier accelerator Linear Colliders: Precision measurements, eg improve by an order of magnitude on properties of particles, within its production reach model independent unravel the underlying theory/model in detail. Discovery of particles which are difficult to find in pp collisions Optimal LC energy will be known better LHC results by

44 Expected Luminosity in the next months 44

45

46 World-wide CLIC&CT TF3 Collaboration Aarhus University (Denmark) Ankara University (Turkey) Argonne National Laboratory (USA) Athens University (Greece) BINP (Russia) CERN CIEMAT (Spain) Cockcroft Institute (UK) Gazi Universities (Turkey) 33 Institutes involving 21 funding agencies and 18 countries Helsinki Institute of Physics (Finland) IAP (Russia) IAP NASU (Ukraine) INFN / LNF (Italy) Instituto de Fisica Corpuscular (Spain) IRFU / Saclay (France) Jefferson Lab (USA) John Adams Institute (UK) JINR (Russia) Karlsruhe University (Germany) KEK (Japan) LAL / Orsay (France) LAPP / ESIA (France) NCP (Pakistan) North-West. Univ. Illinois (USA) Oslo University (Norway) Patras University (Greece) Polytech. University of Catalonia (Spain) PSI (Switzerland) RAL (UK) RRCAT / Indore (India) SLAC (USA) Thrace University (Greece) Uppsala University (Sweden)

47 The Full CLIC Scheme 326 klystrons 33 MW, 139 s drive beam accelerator 2.38 GeV, 1.0 GHz 1 km delay loop CR1 CR2 combiner rings Circumferences delay loop 72.4 m CR m CR m CR2 CR1 delay loop 326 klystrons 33 MW, 139 s drive beam accelerator 2.38 GeV, 1.0 GHz 1 km decelerator, 24 sectors of 876 m TA BC2 245m R=120m BDS 2.75 km e - main linac, 12 GHz, 100 MV/m, km 48.3 km IP BDS 2.75 km e + main linac BC2 245m TA R=120m CLIC 3 TeV booster linac, 9 GeV Not to scale! e - injector 2.4 GeV e - PDR 365m e - DR 365m BC1 e + DR 365m e + PDR 365m e + injector, 2.4 GeV 47

48 CERN DG 27/6/07 48

CLIC THE COMPACT LINEAR COLLIDER

CLIC THE COMPACT LINEAR COLLIDER CLIC THE COMPACT LINEAR COLLIDER Emmanuel Tsesmelis Directorate Office, CERN 9 th Corfu Summer Institute 4 September 2009 1 THE CLIC ACCELERATOR 2 Linear Collider Baseline LEP: 209 GeV next Electron-Positron

More information

SLHC Physics Impact Albert De Roeck/CERN

SLHC Physics Impact Albert De Roeck/CERN SLHC Physics Impact Albert De Roeck/CERN XXXVII SLAC Summer Institute 1 Today s Lecture Contents Introduction Luminosity upgrade scenario for the LHC machine Physics with the SLHC Other possible upgrades

More information

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London

Current and Future Developments in Accelerator Facilities. Jordan Nash, Imperial College London Current and Future Developments in Accelerator Facilities Jordan Nash, Imperial College London Livingston chart (circa 1985) Nearly six decades of continued growth in the energy reach of accelerators Driven

More information

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada

Dean Karlen University of Victoria & TRIUMF. APS NW Section Meeting 2005 Victoria, Canada Dean Karlen University of Victoria & TRIUMF APS NW Section Meeting 2005 Victoria, Canada The International Linear Collider Next in the line of e + e - colliders at the high energy frontier of particle

More information

Roma, 2 febbraio ILC vs CLIC. .cosa si perde e cosa si guadagna. Barbara Mele. Sezione di Roma

Roma, 2 febbraio ILC vs CLIC. .cosa si perde e cosa si guadagna. Barbara Mele. Sezione di Roma Roma, 2 febbraio 2006 ILC vs CLIC.cosa si perde e cosa si guadagna. Barbara Mele Sezione di Roma 2 3 4 Luminosity vs Collision Energy 5 6 7 8 9 10 Experimentation at CLIC: beamstrahlung becomes more severe

More information

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders

Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Short Introduction to CLIC and CTF3, Technologies for Future Linear Colliders Explanation of the Basic Principles and Goals Visit to the CTF3 Installation Roger Ruber Collider History p p hadron collider

More information

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units

The European Strategy for Particle Physics. Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units The European Strategy for Particle Physics Discussion with staff and fellows of IR Sector, FHR Sector, HSE, DG units Purpose of this meeting q To inform CERN s employees (staff, fellows) about the goals

More information

The HL-LHC physics program

The HL-LHC physics program 2013/12/16 Workshop on Future High Energy Circular Collider 1 The HL-LHC physics program Takanori Kono (KEK/Ochanomizu University) for the ATLAS & CMS Collaborations Workshop on Future High Energy Circular

More information

The ILC and its complementarity to the LHC

The ILC and its complementarity to the LHC The ILC and its complementarity to the LHC Outline: 1. ILC physics motivation 2. ILC LHC synergy 31 st Johns Hopkins Workshop Heidelberg 2007 3. LHC ILC implications Klaus Desch Universität Bonn The Terascale

More information

CLIC Detector studies status + plans

CLIC Detector studies status + plans CLIC Detector studies status + plans Contents: - Introduction to CLIC accelerator - 2004 CLIC Study group report: "Physics at the CLIC Multi-TeV Linear Collider - CERN participation in Linear Collider

More information

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential

Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential IL NUOVO CIMENTO 4 C (27) 8 DOI.393/ncc/i27-78-7 Colloquia: IFAE 26 Upgrade of ATLAS and CMS for High Luminosity LHC: Detector performance and Physics potential M. Testa LNF-INFN - Frascati (RM), Italy

More information

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay

Studies of Higgs hadronic decay channels at CLIC. IMPRS Young Scientist Workshop at Ringberg Castle 18 th July 2014 Marco Szalay Studies of Higgs hadronic decay channels at CLIC IMPRS Young Scientist Workshop at Ringberg Castle 8 th July 24 Outline Physics at e + e - colliders CLIC - collider and detectors BDT intermezzo Higgs branching

More information

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV

Measurement of Higgs couplings and mass in e + e collisions at CLIC in the s range of 350 GeV - 3 TeV Measurement of iggs couplings and mass in collisions at CLIC in the s range of 350 GeV - 3 TeV Tomáš Laštovička Institute of Physics, Academy of Sciences, Prague E-mail: lastovic@fzu.cz on behalf of The

More information

The God particle at last? Astronomy Ireland, Oct 8 th, 2012

The God particle at last? Astronomy Ireland, Oct 8 th, 2012 The God particle at last? Astronomy Ireland, Oct 8 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV I The Higgs boson

More information

CLICdp work plan and foreseen documents in preparation for the next European Strategy Update

CLICdp work plan and foreseen documents in preparation for the next European Strategy Update CLICdp work plan and foreseen documents in preparation for the next European Strategy Update (CERN PH-LCD) CLIC Common Project Meeting at the International Workshop on Future Linear Colliders (LCWS15),

More information

arxiv: v1 [hep-ex] 5 Sep 2014

arxiv: v1 [hep-ex] 5 Sep 2014 Proceedings of the Second Annual LHCP CMS CR-2014/199 September 8, 2014 Future prospects of Higgs Physics at CMS arxiv:1409.1711v1 [hep-ex] 5 Sep 2014 Miguel Vidal On behalf of the CMS Experiment, Centre

More information

Whither colliders after the Large Hadron Collider?

Whither colliders after the Large Hadron Collider? PRAMANA c Indian Academy of Sciences Vol. 79, No. 5 journal of November 2012 physics pp. 993 1002 Whither colliders after the Large Hadron Collider? ROLF-DIETER HEUER CERN, CH-1211, Geneva 23, Switzerland

More information

Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009

Fermilab Program. Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009 Fermilab Program Pier Oddone, Fermilab NAS Board of Physics and Astronomy, 2009 Outline State of the program and future evolution Energy Frontier Cosmic Frontier Intensity Frontier Any other items the

More information

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06

The International Linear Collider. Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06 The International Linear Collider Barry Barish Caltech 2006 SLUO Annual Meeting 11-Sept-06 Why e + e - Collisions? elementary particles well-defined energy, angular momentum uses full COM energy produces

More information

arxiv:hep-ph/ v1 17 Apr 2000

arxiv:hep-ph/ v1 17 Apr 2000 SEARCH FOR NEW PHYSICS WITH ATLAS AT THE LHC arxiv:hep-ph/0004161v1 17 Apr 2000 V.A. MITSOU CERN, EP Division, CH-1211 Geneva 23, Switzerland and University of Athens, Physics Department, Nuclear and Particle

More information

e + e - (1) Silicon Vertex Detector

e + e - (1) Silicon Vertex Detector 3.1 GeV (4) Electromagnetic Calorimeter (3) Cerenkov- Detector (2) Drift Chamber (5) 1.5 T Solenoid (6) Instrumented Iron Yoke e + e - (1) Silicon Vertex Detector 9.0 GeV e + e - Colliders as B Factories

More information

Experiments at the Large Hadron Collider Challenges and Opportunities

Experiments at the Large Hadron Collider Challenges and Opportunities Experiments at the Large Hadron Collider Challenges and Opportunities Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK 11 December 2014 What

More information

The FP420 R&D Project

The FP420 R&D Project The FP420 R&D Project LOI to LHCC signed by 29 institutes from 11 countries - more in the process of joining The aim of FP420 is to install high precision silicon tracking and fast timing detectors close

More information

Status and Future Prospects

Status and Future Prospects Status and uture Prospects for CLIC Introduction CLIC design CLIC Test acility (CT 3) results Outlook and Conclusions Steffen öbert, LINAC 08, 29.9-3.10, 2008, Victoria, Canada Introduction CLIC = Compact

More information

Towards a CLIC detector, opportunities for R&D. Lucie Linssen CERN

Towards a CLIC detector, opportunities for R&D. Lucie Linssen CERN Towards a CLIC detector, opportunities for R&D Lucie Linssen CERN 1 Outline: Outline and useful links Short introduction to the CLIC accelerator CLIC physics CLIC detector issues

More information

News from CERN LHC Status and Strategy for Linear Colliders

News from CERN LHC Status and Strategy for Linear Colliders News from CERN LHC Status and Strategy for Linear Colliders Rolf-Dieter Heuer CERN Director-General CH-1211 Geneva 23 Switzerland This paper presents the latest development at CERN, concentrating on the

More information

Discovery Physics at the Large Hadron Collider

Discovery Physics at the Large Hadron Collider + / 2 GeV N evt 4 10 3 10 2 10 CMS 2010 Preliminary s=7 TeV -1 L dt = 35 pb R > 0.15 R > 0.20 R > 0.25 R > 0.30 R > 0.35 R > 0.40 R > 0.45 R > 0.50 10 1 100 150 200 250 300 350 400 [GeV] M R Discovery

More information

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of

Accelerators. Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of Accelerators Acceleration mechanism always electromagnetic Start with what s available: e - or p Significant differences between accelerators of e - : Always ultra-relativistic, therefore constant speed

More information

Top Quark Precision Physics at Linear Colliders

Top Quark Precision Physics at Linear Colliders Top Quark Precision Physics at Linear Colliders Frank Simon 1 on behalf of the ILC Physics and Detector Study and the CLICdp Collaboration 1 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München,

More information

CLIC. Introduction Experimenting at a Multi-TeV e+e- Collider Physics Studies and Physics Potential Outlook.

CLIC. Introduction Experimenting at a Multi-TeV e+e- Collider Physics Studies and Physics Potential Outlook. Physics @ CLIC Albert De Roeck CERN Introduction Experimenting at a Multi-TeV e+e- Collider Physics Studies and Physics Potential Outlook CLIC Albert De Roeck (CERN) 1 Linear e+e- Colliders Since end of

More information

The Standard Model and Beyond

The Standard Model and Beyond The Standard Model and Beyond Nobuchika Okada Department of Physics and Astronomy The University of Alabama 2011 BCVSPIN ADVANCED STUDY INSTITUTE IN PARTICLE PHYSICS AND COSMOLOGY Huê, Vietnam, 25-30,

More information

Signaling the Arrival of the LHC Era December Current Status of the LHC. Albert De Roeck CERN Switzerland

Signaling the Arrival of the LHC Era December Current Status of the LHC. Albert De Roeck CERN Switzerland 1970-1 Signaling the Arrival of the LHC Era 8-13 December 2008 Current Status of the LHC Albert De Roeck CERN Switzerland Status of the LHC Albert De Roeck CERN and University of Antwerp and the IPPP Durham

More information

Identifying Particle Trajectories in CMS using the Long Barrel Geometry

Identifying Particle Trajectories in CMS using the Long Barrel Geometry Identifying Particle Trajectories in CMS using the Long Barrel Geometry Angela Galvez 2010 NSF/REU Program Physics Department, University of Notre Dame Advisor: Kevin Lannon Abstract The Compact Muon Solenoid

More information

The God particle at last? Science Week, Nov 15 th, 2012

The God particle at last? Science Week, Nov 15 th, 2012 The God particle at last? Science Week, Nov 15 th, 2012 Cormac O Raifeartaigh Waterford Institute of Technology CERN July 4 th 2012 (ATLAS and CMS ) A new particle of mass 125 GeV Why is the Higgs particle

More information

CERN & the High Energy Frontier

CERN & the High Energy Frontier CERN & the High Energy Frontier Emmanuel Tsesmelis CERN Directorate Office Corfu Summer Institute 13th Hellenic School & Workshop on Elementary Particle Physics & Gravity Corfu, Greece 1 September 2013

More information

Compositeness at ILC250?

Compositeness at ILC250? Compositeness at ILC250? F. Richard LAL-Orsay International workshop on future linear colliders LCWS Strasbourg 23-27 October 2017 F. Richard LAL-Orsay October 2017 1 Introduction There are various interpretations

More information

Particle + Physics at ATLAS and the Large Hadron Coillder

Particle + Physics at ATLAS and the Large Hadron Coillder Particle + Physics at ATLAS and the Large Hadron Coillder Discovering the elementary particles of the Universe Kate Shaw The International Centre for Theoretical Physics + Overview Introduction to Particle

More information

Future Directions in Experimental Nuclear and Particle Physics

Future Directions in Experimental Nuclear and Particle Physics Future Directions in Experimental Nuclear and Particle Physics Robert Bacher Bacher at the Caltech Synchrotron Barry Barish Bacher Symposium Caltech 5-Nov-05 Bacher and the Energy Frontier In the Spring

More information

Why a muon collider?

Why a muon collider? Why a muon collider? What will we learn? Mary Anne Cummings Northern Illinois Center for Accelerator and Detector Development Northern Illinois University 1 Why consider a Muon Collider? The current story

More information

Thanks to all Contributors

Thanks to all Contributors Thanks to all Contributors High Gradient versus High Field Dr. José Miguel Jiménez CERN Technology Department Head CERN-Spain Liaison Officer 2 Main topics A worldwide success? Full exploitation of the

More information

arxiv: v2 [hep-ex] 21 Feb 2017

arxiv: v2 [hep-ex] 21 Feb 2017 Prospects for beyond Standard Model Higgs boson searches at future LHC runs and other machines arxiv:1701.05124v2 [hep-ex] 21 Feb 2017 Deutsches Elektronen-Synchrotron (DESY) E-mail: krisztian.peters@desy.de

More information

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad

Introduction of CMS Detector. Ijaz Ahmed National Centre for Physics, Islamabad Introduction of CMS Detector Ijaz Ahmed National Centre for Physics, Islamabad Layout of my Lectures: 1) Introduction of CMS Detector 2) CMS sub-detectors 3) CMS Trigger System Contents Introduction of

More information

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory

Future of LHC. Beate Heinemann. University of California, Berkeley Lawrence Berkeley National Laboratory Future of LHC Beate Heinemann University of California, Berkeley Lawrence Berkeley National Laboratory PiTP, July 2013 1 LHC Run 1: 2009-2012 25 fb -1 of 7+8 TeV pp data Higgs boson found! Looks like SM

More information

Searches for Exotica with CMS

Searches for Exotica with CMS Searches for Exotica with CMS Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA NTU, Singapore 17 th May 2017 Introduction to Searches Searches for Outline New

More information

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK

Higgs Physics. Yasuhiro Okada (KEK) November 26, 2004, at KEK Higgs Physics Yasuhiro Okada (KEK) November 26, 2004, at KEK 1 Higgs mechanism One of two principles of the Standard Model. Gauge invariance and Higgs mechanism Origin of the weak scale. Why is the weak

More information

Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department. 05 Novembre

Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department. 05 Novembre Welcome to CERN! Dr. Yannis PAPAPHILIPPOU ACCELERATOR AND BEAMS Department 05 Novembre 2003 1 1949-1950: First ideas for creating a European laboratory in physics 1952: Foundation of the European Council

More information

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1

LHC & ATLAS. The largest particle physics experiment in the world. Vincent Hedberg - Lund University 1 LHC & ATLAS The largest particle physics experiment in the world 1 CERN A laboratory for the world Torsten Gustavson CERN was founded in 1954 There were 12 member states in the beginning. 2 OBSERVERS:

More information

Particle Physics Today, Tomorrow and Beyond. John Ellis

Particle Physics Today, Tomorrow and Beyond. John Ellis Particle Physics Today, Tomorrow and Beyond John Ellis Summary of the Standard Model Particles and SU(3) SU(2) U(1) quantum numbers: Lagrangian: gauge interactions matter fermions Yukawa interactions Higgs

More information

Modern experiments - ATLAS

Modern experiments - ATLAS Modern experiments - ATLAS, paula.eerola [at] hep.lu.se,, 046-222 7695 Outline Introduction why new experiments? The next generation of experiments: ATLAS at the Large Hadron Collider Physics basics luminosity,

More information

the quest for certainty

the quest for certainty the quest for certainty LHC project Why an entity like CERN exists? To produce certainty, to provide solid and «undoubtable», i.e. «scientific», answers to some fundamental questions Particle physics looks

More information

Large Hadron Collider at CERN

Large Hadron Collider at CERN Large Hadron Collider at CERN Steve Playfer 27km circumference depth 70-140m University of Edinburgh 15th Novemebr 2008 17.03.2010 Status of the LHC - Steve Playfer 1 17.03.2010 Status of the LHC - Steve

More information

Physics at Hadron Colliders

Physics at Hadron Colliders Physics at Hadron Colliders Part 2 Standard Model Physics Test of Quantum Chromodynamics - Jet production - W/Z production - Production of Top quarks Precision measurements -W mass - Top-quark mass QCD

More information

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München

Physics at the ILC. Ariane Frey, MPI München 38. Herbstschule Maria Laach Ariane Frey, MPI München Physics at the ILC Beyond the Standard Model: Supersymmetry Extra Dimensions Heavy Z, Z, Strong EWSB Precision Physics (top, W, ) CLIC top, W LHC ILC Synergy Ariane Frey, MPI München 1 Higgs Profile Use

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb (Tohoku Univ.)

Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb (Tohoku Univ.) Exploring New Physics beyond the Standard Model of Particle Physics Kiwoon Choi (KAIST) 3 rd GCOE Symposium Feb. 2011 (Tohoku Univ.) We are confronting a critical moment of particle physics with the CERN

More information

Where is Europe going?

Where is Europe going? Where is Europe going? Lars Bergström The Oskar Klein Centre for Cosmoparticle Physics Department of Physics, Stockholm University 1 www.aspensnowmass.com In Swedish, Snowmass may translate to two different

More information

Physics potential of ATLAS upgrades at HL-LHC

Physics potential of ATLAS upgrades at HL-LHC M.Testa on behalf of the ATLAS Collaboration INFN LNF, Italy E-mail: marianna.testa@lnf.infn.it ATL-PHYS-PROC-207-50 22 September 207 The High Luminosity-Large Hadron Collider (HL-LHC) is expected to start

More information

Modern Accelerators for High Energy Physics

Modern Accelerators for High Energy Physics Modern Accelerators for High Energy Physics 1. Types of collider beams 2. The Tevatron 3. HERA electron proton collider 4. The physics from colliders 5. Large Hadron Collider 6. Electron Colliders A.V.

More information

Proton-driven plasma wakefield acceleration

Proton-driven plasma wakefield acceleration Proton-driven plasma wakefield acceleration Matthew Wing (UCL) Motivation : particle physics; large accelerators General concept : proton-driven plasma wakefield acceleration Towards a first test experiment

More information

LHC detectors: commissioning and early physics

LHC detectors: commissioning and early physics Journal of Physics: Conference Series LHC detectors: commissioning and early physics To cite this article: O Buchmüller 2008 J. Phys.: Conf. Ser. 110 012015 Related content - The LHC detector challenge

More information

LHC State of the Art and News

LHC State of the Art and News LHC State of the Art and News ATL-GEN-SLIDE-2010-139 16 June 2010 Arno Straessner TU Dresden on behalf of the ATLAS Collaboration FSP 101 ATLAS Vulcano Workshop 2010 Frontier Objects in Astrophysics and

More information

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system.

(a) (b) Fig. 1 - The LEP/LHC tunnel map and (b) the CERN accelerator system. Introduction One of the main events in the field of particle physics at the beginning of the next century will be the construction of the Large Hadron Collider (LHC). This machine will be installed into

More information

Large Hadron Collider

Large Hadron Collider Large Hadron Collider Himadri Barman TSU, JNCASR September 18, 2008 0-0 Large Hadron Collider (LHC): Plan We ll see 4 short videos. In between I ll give you a little guideline. Purpose is to understand

More information

TLEP White Paper : Executive Summary

TLEP White Paper : Executive Summary TLEP White Paper : Executive Summary q TLEP : A first step in a long- term vision for particle physics In the context of a global project CERN implementation A. Blondel J. Osborne and C. Waajer See Design

More information

7 Physics at Hadron Colliders

7 Physics at Hadron Colliders 7 Physics at Hadron Colliders The present and future Hadron Colliders - The Tevatron and the LHC Test of the Standard Model at Hadron Colliders Jet, W/Z, Top-quark production Physics of Beauty Quarks (T.

More information

PHYSICS AT TESLA. 1 Introduction

PHYSICS AT TESLA. 1 Introduction PHYSICS AT TESLA G.A.BLAIR Department of Physics, Royal Holloway, University of London, Egham, Surrey. TW20 0EX, UK E-mail: g.blair@rhul.ac.uk arxiv:hep-ex/0104044v1 25 Apr 2001 The physics at a 500 800

More information

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University

Physics at Photon Colliders. Prof. Mayda M. Velasco Northwestern University Physics at Photon Colliders Prof. Mayda M. Velasco Northwestern University Higgs Boson discovered in 2012 at the LHC using 8 TeV data and is still there at 13 TeV J @LHC the Higgs is better detected in

More information

Going beyond the Standard Model of Elementary Particle Physics

Going beyond the Standard Model of Elementary Particle Physics Going beyond the Standard Model of Elementary Particle Physics Saurabh D. Rindani PRL, Ahmedabad Symposium on Recent Trends in High Energy Physics November 19, 2011 77th Annual Meeting of the Indian Academy

More information

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Top physics at HL-LHC

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland. Top physics at HL-LHC Available on CMS information server CMS CR -2017/029 The Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland February 2017 (v3, 14 February 2017)

More information

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN

OVERVIEW OF THE LHEC DESIGN STUDY AT CERN OVERVIEW OF THE LHEC DESIGN STUDY AT CERN 1 CERN CH-1211 Geneve 23, Switzerland E-mail: Oliver.bruning@cern.ch Abstract The Large Hadron electron Collider (LHeC) offers the unique possibility of exploring

More information

Last Friday: pp(bar) Physics Intro, the TeVatron

Last Friday: pp(bar) Physics Intro, the TeVatron Last Friday: pp(bar) Physics Intro, the TeVatron Today: The Large Hadron Collider (LHC) The Large Hadron Collider (LHC) 7 TeV + 7 TeV Protons Protons 10 11 Protons per bunch Bunch Crossings 4x10 7 Hz Proton

More information

The Large Hadron Collider, a marvel of technology Lyn Evans. Royal Institution of South Wales St David s day lecture, 16 th March 2017

The Large Hadron Collider, a marvel of technology Lyn Evans. Royal Institution of South Wales St David s day lecture, 16 th March 2017 The Large Hadron Collider, a marvel of technology Lyn Evans Royal Institution of South Wales St David s day lecture, 16 th March 2017 CERN was founded 1954: 12 European States Science for Peace Today:

More information

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK BUE, Cairo, Egypt NTU, Singapore

Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK BUE, Cairo, Egypt NTU, Singapore Albert De Roeck CERN, Geneva, Switzerland Antwerp University Belgium UC-Davis California USA IPPP, Durham UK BUE, Cairo, Egypt NTU, Singapore UCDavis California 5 th May 2015 The LHC today and the near

More information

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe

The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe The Discovery of the Higgs Boson: one step closer to understanding the beginning of the Universe Anna Goussiou Department of Physics, UW & ATLAS Collaboration, CERN Kane Hall, University of Washington

More information

Highlights from. Part I HEPP-EPS EPS Lisbon, Portugal, July 21 st 27 th, International Europhysics Conference on High Energy Physics

Highlights from. Part I HEPP-EPS EPS Lisbon, Portugal, July 21 st 27 th, International Europhysics Conference on High Energy Physics Highlights from HEPP-EPS EPS 2005 International Europhysics Conference on High Energy Physics Lisbon, Portugal, July 21 st 27 th, 2005 Part I Uta Stösslein (DESY) Zeuthen, September 7 th, 2005 Programme

More information

Laboratory for Nuclear Science

Laboratory for Nuclear Science The Laboratory for Nuclear Science (LNS) provides support for research by faculty and research staff members in the fields of particle, nuclear, and theoretical plasma physics. This includes activities

More information

R&D ON FUTURE CIRCULAR COLLIDERS

R&D ON FUTURE CIRCULAR COLLIDERS R&D ON FUTURE CIRCULAR COLLIDERS Double Chooz ALICE Edelweiss HESS Herschel CMS Detecting radiations from the Universe. Conseil Scientifique de l Institut 2015 Antoine Chance and Maria Durante MOTIVATIONS

More information

MICROPHYSICS AND THE DARK UNIVERSE

MICROPHYSICS AND THE DARK UNIVERSE MICROPHYSICS AND THE DARK UNIVERSE Jonathan Feng University of California, Irvine CAP Congress 20 June 2007 20 June 07 Feng 1 WHAT IS THE UNIVERSE MADE OF? Recently there have been remarkable advances

More information

New Frontiers in Particle Physics and The Splendors of a Linear Collider

New Frontiers in Particle Physics and The Splendors of a Linear Collider New Frontiers in Particle Physics and The Splendors of a Linear Collider Barry Barish Caltech University of Iowa 16-Sept-02 Developing a Long Range Strategy for Particle Physics A roadmap is an extended

More information

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK)

LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK) 1 LHC status and upgrade plan (physics & detector) 17 3/30 Yosuke Takubo (KEK) ATLAS experiment in 2016 2 3 ATLAS experiment The experiment started in 2008. Discovered Higgs in 2012. Run-2 operation started

More information

Higgs Searches at CMS

Higgs Searches at CMS Higgs Searches at CMS Ashok Kumar Department of Physics and Astrophysics University of Delhi 110007 Delhi, India 1 Introduction A search for the Higgs boson in the Standard Model (SM) and the Beyond Standard

More information

Search for a Z at an e + e - Collider Thomas Walker

Search for a Z at an e + e - Collider Thomas Walker Search for a Z at an e + e - Collider Thomas Walker Significance: Many theories predict that another neutral gauge boson (Z ) may exist. In order to detect this Z, I would use an e + e - linear collider

More information

Top quark physics and Electroweak measurements at the ILC. Roman Pöschl

Top quark physics and Electroweak measurements at the ILC. Roman Pöschl Top quark physics and Electroweak measurements at the ILC Roman Pöschl Journees Collisionneur Lineaire - Lyon Mai 2013 The solid pillars of the LC phyics program Top quark W Boson Higgs Boson Discovered

More information

UK input to European Particle Physics Strategy Update FINAL DRAFT

UK input to European Particle Physics Strategy Update FINAL DRAFT UK input to European Particle Physics Strategy Update STFC Particle Physics Advisory Panel: P.N. Burrows, C. Da Via, E.W.N. Glover, P. Newman, J. Rademacker, C. Shepherd-Themistocleous, W. Spence, M. Thomson,

More information

CLIC Project Status. Roger Ruber. Uppsala University. On behalf of the CLIC Collaborations. Thanks to all colleagues for materials

CLIC Project Status. Roger Ruber. Uppsala University. On behalf of the CLIC Collaborations. Thanks to all colleagues for materials CLIC Project Status Roger Ruber Uppsala University On behalf of the CLIC Collaborations Thanks to all colleagues for materials IAS 2018 Program on High Energy Physics Hong Kong, 23 January 2018 CLIC Collaborations

More information

Day2: Physics at TESLA

Day2: Physics at TESLA Day2: Physics at TESLA Origin of Electroweak Symmetry Breaking as one great Motivation for a Linear Collider The TESLA project Higgs Precision Physics at TESLA Leaving the Standard Model Behind Precision

More information

Ali Celik, Will H. Flanagan

Ali Celik, Will H. Flanagan Search for Supersymmetry in Dilepton Final States with Energetic Two-jets in Vector Boson Fusion-like Topology Using the CMS Detector at the LHC Ali Celik, Will H. Flanagan On behalf of the CMS Collaboration

More information

Higgs Production at LHC

Higgs Production at LHC Higgs Production at LHC Vittorio Del Duca INFN LNF WONP-NURT La Habana 5 february 2013 CERN North Jura ATLAS Sketch of LHC North Ring 26,6 Km long and 3,8 m of diameter, made of 8 arches connected by 8

More information

Reminder : scenarios of light new physics

Reminder : scenarios of light new physics Reminder : scenarios of light new physics No new particle EW scale postulated Heavy neutral lepton AND well motivated! Neutrino masses Matter-antimatter asymmetry Dark matter Dark photon Muon g-2 anomaly

More information

2. Dec ILC Detector Workshop T. Kobayashi (Univ. of Tokyo /ICEPP) CMS

2. Dec ILC Detector Workshop T. Kobayashi (Univ. of Tokyo /ICEPP) CMS LHC Status and Prospect 2. Dec. 2009 ILC Detector Workshop T. Kobayashi (Univ. of Tokyo /ICEPP) CMS 1 Large Hadron Collider (LHC) at CERN 14 TeV pp collider using LEP tunnel 14 years of construction period

More information

Physics at a Photon Collider A.De Roeck CERN/Antwerp University

Physics at a Photon Collider A.De Roeck CERN/Antwerp University Physics at a Photon Collider A.De Roeck CERN/Antwerp University clic 1 Contents Introduction: experimental aspects of gamma-gamma collider Machine and detector issues, kinematics, luminosity spectra Short

More information

Searches for exotic particles in the dilepton and lepton plus missing transverse energy final states with ATLAS

Searches for exotic particles in the dilepton and lepton plus missing transverse energy final states with ATLAS Searches for exotic particles in the dilepton and lepton plus missing transverse energy final states with ATLAS, Vanja Morisbak, Farid Ould-Saada Spåtind conference January 4th 2012 Motivation In spite

More information

Report on the LHC2FC workshop (From the LHC to Future Colliders)

Report on the LHC2FC workshop (From the LHC to Future Colliders) Report on the LHC2FC workshop (From the LHC to Future Colliders) Sven Heinemeyer, IFCA (CSIC, Santander) Barcelona, 05/2009 Sven Heinemeyer, Spain for the ILC, Barcelona, 08.05.2009 1 What can we learn

More information

The ESS neutrino facility for CP violation discovery

The ESS neutrino facility for CP violation discovery The ESS neutrino facility for CP violation discovery IPHC, Université de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg, France E-mail: marcos.dracos@in2p3.fr The relatively large value of the neutrino mixing

More information

Particle physics where to next? David Milstead

Particle physics where to next? David Milstead Particle physics where to next? David Milstead Where are we? What are we doing now? What can/should we do in the future? The European PP Strategy Update Disclaimer PP is a very broad field. Focus on the

More information

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns

Diameter 8.5 km Beam energy: 7 TeV Luminosity: Protons/bunch: 1.15x10 11 Bunches: 2808 Bunch spacing: 25 ns Compact Muon Solenoid o Results and Plans Stephan Linn - Florida International Univ. on behalf of the CMS Collaboration 1 Large Hadron Collider Diameter 8.5 km Beam energy: 7 TeV Luminosity: 10 34 Protons/bunch:

More information

Searches Beyond the Standard Model at the LHC. Yuri Gershtein

Searches Beyond the Standard Model at the LHC. Yuri Gershtein Searches Beyond the Standard Model at the LHC Yuri Gershtein There Must Be New Physics! Explain low mass of Higgs (hierarchy problem) Explain Dark Matter why shouldn t it be produced at colliders? Explain

More information

Frontier Particle Accelerators

Frontier Particle Accelerators AAAS February 2005 Frontier Particle Accelerators For Elementary Particle Physics Together with Cosmology and Astrophysics, Elementary Particle Physics seeks understanding of the basic physical character

More information

Proposal for a US strategy towards physics & detectors at future lepton colliders

Proposal for a US strategy towards physics & detectors at future lepton colliders Proposal for a US strategy towards physics & detectors at future lepton colliders Argonne National Laboratory Brookhaven National Laboratory Fermi National Accelerator Laboratory Lawrence Berkeley National

More information

Higgs cross-sections

Higgs cross-sections Ph.D. Detailed Research Project Search for a Standard Model Higgs boson in the H ZZ ( ) 4l decay channel at the ATLAS Experiment at Cern Ph.D. Candidate: Giacomo Artoni Supervisor: Prof. Carlo Dionisi,

More information