Total Least Squares Fitting the Three-Parameter Inverse Weibull Density

Size: px
Start display at page:

Download "Total Least Squares Fitting the Three-Parameter Inverse Weibull Density"

Transcription

1 EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 7, No. 3, 2014, ISSN Total Last Squars Fttng th Thr-Paramtr Invrs Wbull Dnsty Dragan Juć, Darja Marovć Dpartmnt of Mathmatcs, J.J. Strossmayr Unvrsty of Osj, Trg Ljudvta Gaja 6, HR Osj, Croata Abstract. Th focus of ths papr s on a nonlnar wghtd total last squars fttng problm for th thr-paramtr nvrs Wbull dnsty whch s frquntly mployd as a modl n rlablty and lftm studs. As a man rsult, a thorm on th xstnc of th total last squars stmator s obtand, as wll as ts gnralzaton n th l q norm (1 q ) Mathmatcs Subjct Classfcatons: 65D10, 62J02, 62G07, 62N05 Ky Words and Phrass: nvrs Wbull dnsty, total last squars, total last squars stmat, xstnc problm, data fttng 1. Introducton Th probablty dnsty functon of th random varabl T havng a thr-paramtr nvrs Wbull dstrbuton (IWD) wth locaton paramtrα 0, scal paramtrη>0and shap paramtrβ> 0 s gvn by f(t;α,β,η)= β η β+1 η t α ( η t α )β t>α 0 t α. (1) If α = 0, th rsultng dstrbuton s calld th two-paramtr nvrs Wbull dstrbuton. Ths modl was dvlopd by Erto[6]. Th IWD s vry flxbl and by an approprat choc of th shap paramtrβ th dnsty curv can assum a wd varty of shaps (s Fg. 1). Th dnsty functon s strctly ncrasng on(α, t m ] and strctly dcrasng on[t m, ), whr t m =α+η(1+1/β) 1/β. Ths mpls that th dnsty functon s unmodal wth th maxmum valu at t m. Ths s n contrast to th standard Wbull modl whr th shap s thr dcrasng (forβ 1) or unmodal (for β > 1). Whn β = 1, th IWD bcoms an nvrs xponntal dstrbuton; Corrspondng author. Emal addrsss: jucd@mathos.hr (D. Juć),darja@mathos.hr (D. Marovć) c 2014 EJPAM All rghts rsrvd.

2 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), whnβ= 2, t s dntcal to th nvrs Raylgh dstrbuton; whnβ= 0.5, t approxmats th nvrs Gamma dstrbuton. That s th rason why th IWD s a frquntly usd modl n rlablty and lftm studs (s.g. Cohn and Whttn[5], Lawls[18], Murthy t al.[21], Nlson[22]). f(t) β=0.5 t Fgur 1: Plots of th nvrs Wbull dnsty for som valus ofβ and by assumngα=0and η=1.2 β=3 β=2 β=1 In practc, th unnown paramtrs α, β and η of th thr-paramtr nvrs Wbull dnsty (1) ar not nown n advanc and must b stmatd from a random sampl t 1,..., t n consstng of n obsrvatons of th thr-paramtr nvrs Wbull random varabl T. Thr s no unqu way to stmat th unnown paramtrs and many dffrnt mthods hav bn proposd n th ltratur (s.g. Abbas t al.[1], Lawlss[18], Marušć t al.[20], Murthy t al.[21], Nlson[22], Slvrman[26], Smth and Naylor[27, 28], Tapa and Thompson[29]). A vry popular mthod for paramtr stmaton s th last squars mthod. Th nonlnar wghtd ordnary last squars (OLS) fttng problm for th thr-paramtr nvrs Wbull dnsty s consdrd by Marušć t al. [20]. In ths papr w consdr th nonlnar wghtd total last squars (TLS) fttng problm for th thr-paramtr nvrs Wbull dnsty functon. Th structur of th papr s as follows. In Scton 2 w brfly dscrb th TLS mthod and prsnt our man rsult (Thorm 1) whch guarants th xstnc of th TLS stmator for th thr-paramtrc nvrs Wbull dnsty. Its gnralzaton n th l q norm (1 q ) s gvn n Thorm 2. All proofs ar gvn n Scton Th TLS Fttng Problm for th Thr-paramtr Invrs Wbull Dnsty Both th OLS and th TLS mthod rqur th ntal nonparamtrc dnsty stmats ˆf whch nd to b as good as possbl (s.g. Slvrman[26], Marušć t al.[20]). Suppos w ar gvn th ponts(t, y ), = 1,..., n, n>3, whr 0 t 1 t 2... t n ar obsrvatons of th nonngatv thr-paramtr nvrs Wbull random varabl T and y := ˆf(t ) ar th rspctv dnsty stmats.

3 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), Th goal of th OLS mthod (s.g.[2, 3, 8, 11, 13, 14, 19, 25]) s to choos th unnown paramtrs of dnsty functon (1) such that th wghtd sum of squard dstancs btwn th modl and th data s as small as possbl. To b mor prcs, lt w > 0, = 1,..., n, b th data wghts whch dscrb th assumd rlatv accuracy of th data. Th unnown paramtrsα,β andηhav to b stmatd by mnmzng th functonal on th st S(α,β,η)= n w [f(t ;α,β,η) y ] 2 =1 := (α,β,η) 3 :α 0;β,η>0. A pont(α,β,η ) such that S(α,β,η )=nf (α,β,η) S(α,β,η) s calld th OLS stmator, f t xsts. As w hav alrady mntond, ths problm has bn solvd by Marušć t al.[20]. In th OLS approach th obsrvatons t of th ndpndnt varabl ar assumd to b xact and only th stmats y of th dnsty (dpndnt varabl) ar subjct to random rrors. Unfortunatly, ths assumpton dos not sm to b vry ralstc n practc, and many rrors (samplng rrors, human rrors, modlng rrors and nstrumnt rrors) prvnt us from nowng t xactly. In such stuaton, whn also th obsrvatons of th ndpndnt varabl contans rrors, t sms rasonabl to stmat th unnown paramtrs so that th wghtd sum of squars of all rrors s mnmzd. Ths approach, nown as th total last squars (TLS) mthod, s a natural gnralzaton of th OLS mthod (s.g. [7]). In th statstcs ltratur, th TLS approach s nown as rrors-n-varabls rgrsson or orthogonal dstanc rgrsson, and n numrcal analyss t was frst consdrd by Golub and Van Loan[9]. Th TLS mthod can b dscrbd as follows. Lt w, p > 0, = 1,..., n, b som wghts. If w assum that y contans unnown addtv rrorǫ and that t has unnown addtv rrorδ, thn th mathmatcal modl bcoms y = f(t +δ ;α,β,η)+ǫ, = 1,..., n. Th unnown paramtrsα,β andηof dnsty functon (1) hav to b stmatd by mnmzng th wghtd sum of squars of all rrors,.. by mnmzng th functonal (s.g. [4, 7, 10, 17, 24]) T(α,β,η,δ)= n w [f(t +δ ;α,β,η) y ] 2 + =1 n p δ 2 (2) on th st n. A pont(α,β,η ) n s calld th total last squars stmator (TLS stmator) of th unnown paramtrs(α, β, η) for th thr-paramtr nvrs Wbull dnsty, f thr xstsδ n such that =1 T(α,β,η,δ )= nf (α,β,η,δ) n T(α,β,η,δ). Numrcal mthods for solvng th nonlnar TLS problm ar dscrbd n Boggs t al. [4] and Schwtlc and Tllr[24]. As n th cas of th OLS approach, bfor th tratv

4 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), mnmzaton of th sum of squars t s stll ncssary to as whthr th TLS stmator xsts. In th cas of nonlnar TLS problms t s stll xtrmly dffcult to answr ths quston (s.g.[3, 7, 12, 15 17]). Th dffrnc btwn th OLS and th TLS approach s llustratd n Fg. 2. Gomtrcally, f w = p for all = 1,..., n, mnmzaton of functonal T corrsponds to mnmzaton of th wghtd sum of squars of dstancs from data ponts to th modl curv. y (t,y ) y (t,y ) (t +δ,f(t +δ ;α,β,η)) t (a) OLS (b) TLS Fgur 2: Th dffrnc btwn th OLS and TLS approachs t Our man xstnc rsult for th TLS problm for th thr-paramtr nvrs Wbull dnsty s gvn n th nxt thorm. Thorm 1. Lt th ponts(t, y ), = 1,..., n, n>3, b gvn, such that 0 t 1 t 2... t n and y > 0, = 1,..., n. Furthrmor, lt w, p > 0, = 1,..., n, b som wghts. Thn thr xsts a pont(α,β,η,δ ) n such that.. th TLS stmator xsts. T(α,β,η,δ )= nf (α,β,η,δ) n T(α,β,η,δ), Th proof s gvn n Scton 3. Th followng total l q norm (q 1) gnralzaton of Thorm 1 holds tru. Thorm 2. Suppos 1 q. Lt th ponts and wghts b th sam as n Thorm 1. Dfn n n T q (α,β,η,δ) := w f(t +δ ;α,β,η) y q + p δ q. (3) Thn thr xsts a pont(α q,β q,η q,δ q ) n such that =1 =1 T q (α q,β q,η q,δ q )= nf T q(α,β,η,δ). (α,β,η,δ) n Th proof of ths thorm s omttd as t s smlar to that of Thorm 1. It suffcs to rplac th l 2 norm wth th l q norm. Thrby all parts of th proof rman th sam.

5 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), Proof of Thorm 1 Bfor startng th proof of Thorm 1, w nd som prlmnary rsults. Lmma 1. Suppos w ar gvn data(w, t, y ), I :={1,..., n}, n>3, such that 0 t 1 t 2... t n and y > 0, I. Lt w, p > 0, I, b som wghts. Gvn any ral numbr q, 1 q, and any nonmpty subst I 0 of I, lt Σ I0 := w y q + p t τ 0 q, I\I 0 I 0 whr τ 0 argmn x n p t x q. =1 Thn thr xsts a pont n n at whch functonal T q dfnd by (3) attans a valu lss than Σ I0. Summaton I 0 s to b undrstood as follows: Th sum ovr thos ndcs nfor whch I 0. If thr ar no such ndcs, th sum s mpty; followng th usual convnton, w dfn t to b zro. Summaton I\I 0 has smlar manngs. It s asy to vrfy that t 1 mn I0 t τ 0 max I0 t t n. Not that for th cas whn q=2,τ 0 s a wll nown wghtd arthmtc man, and for th cas whn q=1,τ 0 s a wghtd mdan of th data (s.g. Sabo and Sctovs[23]). Proof. Sncτ 0 s an lmnt of th closd ntrval[t 1, t n ], thr xsts r {1,..., n} such that τ 0 (t r 1, t r ], whr t 0 = 0 by dfnton. Lt us frst choos ral y 0 such that 0 y 0 mn I and thn dfn functonsα,β,η :(0,1) by: b β(b) :=τ 0 y 0 b η(b) :=τ 0 b 1/β(b), y (4) α(b) :=τ 0 η(b)b 1/2β(b) =η(b) b 1/β(b) b 1/2β(b). Clarly, functonsβ andηar postv. Furthrmor, by usng th nqualty b 1/β(b) b 1/2β(b) > 0, whch holds for vry b (0,1), t s asy to show that functonαs also postv. Thus, w hav showd that(α(b),β(b),η(b)) for all b (0,1). Lt us now assocat wth ach ral b (0,1) a thr-paramtrc nvrs Wbull dnsty functon β(b) η(b) β(b) β(b) f(t;α(β),β(b),η(b))= t α(b) t α(b) η(b) t α(b) t>α(b) (5) 0 t α(b).

6 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), Ths functon has maxmum at th pont whr α(b)+η(b)(1+1/β(b)) 1/β(b) =τ 0 ǫ(b), ǫ(b) :=η(b) b 1/2β(b) /β(b). β(b) It s strctly ncrasng on(α(b),τ 0 ǫ(b)] and strctly dcrasng on[τ 0 ǫ(b), ). Furthrmor, by a straghtforward calculaton, t can b vrfd that Now w ar gong to show that Frst, n vw of (8) and (9), w obtan f(τ 0 +α(b);α(b),β(b),η(b))= y 0, (6) lmβ(b)=, b 0 (7) lm 0, b 0 (8) lmα(b)=0. b 0 (9) lm f(t;α(b),β(b),η(b))=0, t τ 0. (10) b 0 η(b) lm = τ 0 b 0 t α(b) t. β(b) Ifτ 0 t, thn from (7) and (9) t follows radly that lm b 0 η(b) t α(b) = 1 and lm b 0 β(b) lm b 0 η(b) t α(b) β(b)= 0, and thrfor β(b) η(b) β(b) f(t;α(b),β(b),η(b))= lm η(b) β(b) t α(b) = 0. b 0 t α(b) t α(b) Ifτ 0 > t, thn thr xsts a suffcntly grat 0 such that η(b) 0 t α(b) for vry suffcntly small b>0. Now, by usng th nqualty x x (x 0) w obtan η(b) β(b) β(b) 0 β(b), t α(b) b 0, and thrfor, for any b 0 w hav 0f(t;α(b),β(b),η(b))= β(b) η(b) β(b) η(b) β(b) t α(b) t α(b) t α(b)

7 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), Snc 1 η(b) β(b) (0 +1)β(b) η(b) t α(b). t α(b) t α(b) η(b) β(b) (0 +1)β(b) lm η(b) t α(b) = 0, b 0 t α(b) thn from th abov-mntond nqualty t follows that lm f(t;α(b),β(b),η(b))=0, t>τ 0. b 0 Thus, w provd th dsrd lmts (10). Not that f(τ 0 ;α(b),β(b),η(b))= β(b) η(b) β(b) η(b) β(b) τ 0 α(b) τ 0 α(b) τ 0 α(b) = β(b) b b = τ 0 y 0 b b τ 0 α(b) (τ 0 α(b)) b, from whr tang th lmt as b 0 t follows that lm f(τ 0;α(b),β(b),η(b))=. (11) b 0 Du to (9), (10) and (11), w may suppos that b s suffcntly small, so that 0α(b) t 1 (12) 0 f(t ;α(b),β(b),η(b)) y, f t τ 0 (13) f(τ 0 ;α(b),β(b),η(b))>max I y. (14) Lt us now show that for ach I 0 and for vry b (0,1) thr xsts a unqu numbr τ (b) such that (s Fgur 3) t τ (b)τ 0 ǫ(b)τ 0, f t τ 0 t τ (b) t +ǫ(b), f t =τ 0 (15) τ 0 τ (b) t, f t >τ 0 and f(τ (b);α(b),β(b),η(b))= y. (16) Frst, snc th functon t f(t ;α(b),β(b),η(b)) has maxmum at th pontτ 0 ǫ(b) and t s strctly ncrasng on(α(b),τ 0 ǫ(b)] and strctly dcrasng on[τ 0 ǫ(b), ), by usng (4), (6), (13) and (14) w obtan f(t ;α(b),β(b),η(b)) y f(τ 0 ǫ(b);α(b),β(b),η(b)), f t τ 0 f(t ;α(b),β(b),η(b)) y f(τ 0 ;α(b),β(b),η(b)), f t >τ 0 f(t +ǫ(b);α(b),β(b),η(b)) y f(t ;α(b),β(b),η(b)), f t =τ 0.

8 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), Th xstnc of th dsrd numbrsτ (b), I 0, follows from th wll-nown Intrmdat Valu Thorm whch stats that a contnuous ral functon assums all ntrmdat valus on a closd ntrval, whl unqunss follows from monotoncty. f(t) (t, y ) (τ (b), y ) (τ j (b), y j ) (t j, y j ) τ 0 ε(b) τ 0 τ 0 +ε(b) Fgur 3:, j I 0, t τ 0, t j >τ 0 ; 0δ (b)=τ (b) t τ 0 ǫ(b) t τ 0 t ; τ 0 t j τ j (b) t j =δ j (b)0 t Sttng (16) bcoms δ (b) := τ (b) t, f I 0 0, f I\I 0, (17) f(t +δ (b);α(b),β(b),η(b))= y, I 0. (18) Not that only on of th followng two cass can occur: () I 0 =1, or () I 0 >1. Cas (): I 0 =1. In ths cas w havτ 0 = t r. It follows from (15) that 0δ r (b)ǫ(b). Wthout loss of gnralty, n addton to (12)-(14) w may suppos that b s suffcntly small, so that t r 1 +ǫ(b) t r 1+t r t r ǫ(b) 2 and f((t r 1 + t r )/2;α(b),β(b),η(b))mn y. I Du to ths two addtonal assumptons and th fact that th functon t f(t ;α(b),β(b),η(b)) s strctly ncrasng on(α(b), t r ǫ(b)] and strctly dcrasng on[t r ǫ(b), ), w dduc:

9 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), If t t r, thn whras f t > t r, thn 0f(t ;α(b) δ r (b),β(b),η(b))= f(t +δ r (b);α(b),β(b),η(b)) f(t +ǫ(b);α(b),β(b),η(b)) f(t r 1 +ǫ(b);α(b),β(b),η(b)) f((t r 1 + t r )/2;α(b),β(b),η(b))mn I y y, (19) 0f(t ;α(b) δ r (b),β(b),η(b))= f(t +δ r (b);α(b),β(b),η(b)) f(t ;α(b),β(b),η(b)) y. (20) Thus, t follows from (18), (19) and (20) that, for vry b (0,1), T q (α(b) δ r (b),β(b),η(b),0)= n w f(t ;α(b) δ r (b),β(b),η(b)) y q =1 n w y q =Σ I0 Cas I 0 >1. Not that only on of th followng two subcass can occur: () τ 0 t for all I 0, or () τ 0 = t r for som r I 0. =1 r Subcas (): In ths subcas, t follows from (13), (15), (17) and (18) that, for vry b (0,1), T q (α(b),β(b),η(b),δ(b))= f(t ;α(b),β(b),η(b)) y q + I\I 0 w w y q + p t τ 0 q =Σ I0. I\I 0 I 0 I 0 p δ (b) q Subcas (): Assum thatτ 0 = t r for som r I 0. Lt ndx s I 0 b such that t s τ 0. Thn by (15), for vry b (0,1), and thrfor 0δ r (b)ǫ(b) and 0δ s (b) t r ǫ(b) t s p s δ s (b) q + p r δ r (b) q p s t r ǫ(b) t s q + p r ǫ q (b). It can b asly shown that th abov rght-hand sd s lss than p s t r t s q whnvr b s small nough. Thrfor, for vry small nough b w hav T q (α(b),β(b),η(b),δ(b))= f(t ;α(b),β(b),η(b)) y q I\I 0 w

10 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), p r δ r (b) q + p s δ s (b) q + p δ (b) q Ths complts th proof of th lmma. I 0 \{r,s} w y q + p t τ 0 q =Σ I0. I\I 0 I 0 Proof of Thorm 1. Proof. Snc functonal T s nonngatv, thr xsts T := nf (α,β,η,δ) n T(α,β,η,δ). To complt th proof t should b shown that thr xsts a pont(α,β,η,δ ) n such that T(α,β,η,δ )= T. Lt(α,β,,δ ) b a squnc n n, such that T = lm T(α,β,,δ )= lm = lm t +δ α w y 2 + t +δ >α w f(t +δ ;α 2+,β, ) y p (δ )2 I β η β+1 w t +δ α I β 2 y + p (δ )2. (21) I whr I={1,..., n}. Th summaton t +δ α (or t +δ >α ) s to b undrstood as follows: Th sum ovr thos ndcs nfor whch t +δ α (or t +δ >α ). If thr ar no such ponts t, th sum s mpty; followng th usual convnton, w dfn t to b zro. Thr s no loss of gnralty n assumng that all squncs(α ),(β ),( ),(δ 1 ),...,(δ n ) ar monoton. Ths s possbl bcaus th squnc(α,β,,δ 1,...,δ n ) has a subsqunc(α l,β l,η l,δ l 1,...,δl n ), such that all ts componnt squncs ar monoton; and snc lm T(α l,β l,η l,δ l )=lm T(α,β,,δ )= T. Snc ach monoton squnc of ral numbrs convrgs n th xtndd ral numbr systm, dfn α := lm α, β := lm β, η := lm, δ := lm δ =(δ 1,...,δ n ). Not that 0 α,β,η, bcaus(α,β, ). Also not thatδ for ach = 1,..., n. Indd, f δ = for som, thn t would follow from (21) that T =, whch s mpossbl. To complt th proof t s nough to show that(α,β,η ),.. that 0 α andβ,η (0, ). Th contnuty of th functonal T wll thn mply that T = lm T(α,β,,δ )= T(α,β,η,δ ).

11 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), It rmans to show that(α,β,η ). Th proof wll b don n fv stps. In stp 1 w wll show thatα t n. In stp 2 w wll show thatβ 0. Th proof thatη wll b don n stp 3. In stp 4 w prov thatη 0. Fnally, n stp 5 w show thatβ. Stp 1. Ifα t n, from (21) t follows that T = n =1 w y 2 + I p δ 2. Snc accordng to Lmma 1 (for q=2and I 0 ={1}) thr xsts a pont n n at whch functonal T attans a valu smallr thanσ I0 and sncσ I0 n =1 w y 2 + I p δ 2, ths mans that n ths way (α t n ) functonal T cannot attan ts nfmum. Thus, w hav provd thatα t n. Bfor contnung th proof, lt us ntroduc som notaton and ma on rmar. Frst lt us dfn Iα, f I α I 0 := {1}, othrws whr I α :={ I : t +δ =α }. Lt us not that Lmma 1 wth q=2 mpls that whrτ I0 = I 0 p t I 0 p. T w y 2 + p (t τ I0 ) 2 =:Σ I0, (22) I\I 0 I 0 By tang an approprat subsqunc of(α,β,,δ ), f ncssary, w may assum that f t +δ α, thn t +δ α for vry. Smlarly, f t +δ >α, w may assum that t +δ >α for vry. Du to ths, now t s asy to show that from (21) t follows that T w y 2 + lm t +δ α + I t +δ >α w β η β+1 t +δ α β 2 y p δ 2. (23) Stp 2. Ifβ = 0, thn by usng th nqualty x x (x 0) w obtan 0 β η β+1 t +δ α whrfrom t follows radly that β η β+1 lm t +δ α β β t +δ α, f t +δ >α, β = 0, f t +δ >α. Now, from (23) t follows that T w y 2 + I\I 0 p δ 2 I 0

12 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), = w y 2 + p (t α ) 2 I\I 0 I 0 w y 2 + p (t τ I0 ) 2 =Σ I0, (24) I\I 0 I 0 whch contradcts (22). Thrfor, n ths way (β = 0) functonal T cannot attan ts nfmum. Thus, w hav provd thatβ 0. Th last nqualty n (24) follows drctly from a wll-nown fact that th quadratc functon x I 0 p (t x) 2 attans ts mnmum I 0 p (t τ I0 ) 2 at pontτ I0. Stp 3. Lt us show thatη. W prov ths by contradcton. Suppos on th contrary thatη =. Wthout loss of gnralty, w may thn assum that f t +δ >α, thn η for all. Thn from th nqualty x x (x 0) t follows that f t +δ >α, thn Thus, f t +δ >α, thn 0 β η β+1 t +δ α β β η β t +δ α,. 1 η 2β t +δ α t +δ α β β η β = η β t +δ t +δ α t +δ α α η β t +δ α. (25) η Furthrmor, snc lm t +δ = andβ η 0, w hav lm β α = η and thrfor lm 2β η β t +δ t +δ α α = 0, so that from (25) t follows that β η β+1 lm t +δ α Puttng th abov lmts nto (23), w mmdatly obtan T w y 2 + p δ 2 Σ I0, I\I 0 I β = 0, f t +δ >α. whch contradcts (22). Hnc w provd thatη. So far w hav shown thatα t n,β 0 andη. By usng ths, n th nxt stp w wll show thatη 0. Stp 4. Lt us show thatη 0. To s ths, suppos on th contrary thatη = 0. Thn only on of th followng two cass can occur:

13 D. Juć, D. Marovć/Eur. J. Pur Appl. Math, 7 (2014), () η = 0 andβ (0, ), or () η = 0 andβ =. Now, w ar gong to show that functonal T cannot attan ts nfmum n thr of ths two cass, whch wll prov thatη 0. Cas ():η = 0 andβ (0, ). In ths cas w would hav lm β η β+1 t +δ α β β η β = lm t +δ α t +δ α = 0, f t +δ >α and hnc from (23) t would follow that T w y 2 + t +δ α I p δ 2 Σ I0 whch contradcts assumpton (22). Cas ():η = 0 andβ =. Snc 0, thr xsts a ral numbr L> 1 and suffcntly grat 0 such that f t +δ >α and > 0, thn /(t +δ α )1/L. Wthout loss of gnralty, w may assum that 0 = 1. Thus, f t +δ >α, thn 0 β η β+1 t +δ α 1 β t +δ α L β Furthrmor, snc from (26) t follows that β β η β = η β t +δ t +δ α t +δ α α β. (26) β lm L β = 0 and lm β η β+1 lm t +δ α β = 1, β β = 0, f t +δ >α. Fnally, from (23) w obtan T t +δ w y 2 α + I p δ 2 Σ I0, whch contradcts assumpton (22). Ths mans that n ths cas functonal T cannot attan ts nfmum. Thus, w hav provd thatη 0.

14 REFERENCES 243 Stp 5. It rmans to show thatβ. W prov ths by contradcton. Suppos that β =. Argung as n cas () from stp 4, t can b shown that β η β lm t +δ α t +δ α β = 0, f 0 η t +δ 1. (27) α η If t +δ > 1, thn thr xsts a suffcntly grat α 0 such that η 0. Now, by usng th nqualty x x (x 0) w obtan β β η 0β t +δ α,, and thrfor β η β 0 t +δ α t +δ α 1 η (0+1)β t +δ α t +δ α β β. (28) η Snc lm β =, w hav that and thrfor from (28) t follows that ( lm 0+1)β t +δ α β η β lm t +δ α t +δ α β = 0 β = 0, f From (23), (27) and (29) w would obtan T t +δ w y 2 α + I p δ 2 contradcts (22). Thus, w hav provd thatβ and compltd th proof. η t +δ 1. (29) α > Σ I0, whch Rfrncs [1] B. Abbas, A.H.E. Jahrom, J. Arat, and M. Hossnouchac. Estmatng th paramtrs of Wbull dstrbuton usng smulatd annalng algorthm. Appld Mathmatcs and Computaton, 183:85-93, [2] D.M. Bats and D.G. Watts. Nonlnar rgrsson analyss and ts applcatons. Wly, Nw Yor, 1988.

15 REFERENCES 244 [3] Å. Björc. Numrcal Mthods for Last Squars Problms. SIAM, Phladlpha, [4] P.T. Boggs, R.H. Byrd, and R.B. Schnabl. A stabl and ffcnt algorthm for nonlnar orthogonal dstanc rgrsson. SIAM Journal on Scntfc and Statstcal Computaton, 8: , [5] A.C. Cohn and B.J. Whttn. Paramtr Estmaton n Rlablty and Lf Span Modls. Marcl Dr Inc., Nw Yor and Basl, [6] P. Erto. Nw Practcal Bays stmators for th 2-Paramtr Wbull dstrbuton. IEEE Transactons on Rlablty, R-31: , [7] W.A. Fullr. Masurmnt Error Modls. Wly, Nw Yor, [8] P.E. Gll, W. Murray, and M.H. Wrght. Practcal Optmzaton. Acadmc Prss, London, [9] G.H Golub and C.F. Van Loan. An analyss of th total last squars problm. SIAM Journal on Numrcal Analyss, 17: , [10] S. Van Huffl and H. Zha. Th Total Last Squars Problm. Elsvr, North Holland, Amstrdam, [11] D. Juć. On th l s -norm gnralzaton of th NLS mthod for th Bass modl. Europan Journal of Pur and Appld Mathmatcs, 6: , [12] D. Juć and D. Marovć. On nonlnar wghtd rrors-n-varabls paramtr stmaton problm n th thr-paramtr Wbull modl. Appld Mathmatcs and Computaton, 215: , [13] D. Juć and D. Marovć. On nonlnar wghtd last squars fttng of th thrparamtr nvrs Wbull dstrbuton. Mathmatcal Communcatons, 15:13-24, [14] D. Ju, M. Bnšć, and R. Sctovs. On th xstnc of th nonlnar wghtd last squars stmat for a thr-paramtr Wbull dstrbuton. Computatonal Statstcs and Data Analyss, 52: , [15] D. Juć, K. Sabo, and R. Sctovs. Total last squars fttng Mchals-Mntn nzym ntc modl functon. Journal of Computatonal and Appld Mathmatcs, 201: , [16] D. Juć, R. Sctovs, and H. Späth. Partal lnarzaton of on class of th nonlnar total last squars problm by usng th nvrs modl functon. Computng, 62: , [17] D. Juć and R. Sctovs. Exstnc rsults for spcal nonlnar total last squars problm. Journal of Mathmatcal Analyss and Applcatons, 226: , 1998.

16 REFERENCES 245 [18] J.F. Lawlss. Statstcal modls and mthods for lftm data. Wly, Nw Yor, [19] D. Marovć, D. Juć, and M. Bnšć. Nonlnar wghtd last squars stmaton of a thr-paramtr Wbull dnsty wth a nonparamtrc start. Journal of Computatonal and Appld Mathmatcs, 228: , [20] M. Marušć, D. Marovć, and D. Juć. Last squars fttng th thr-paramtr nvrs Wbull dnsty. Mathmatcal Communcatons, 15: , [21] D.N.P. Murthy, M. X, and R. Jang. Wbull Modls. Wly, Nw Yor, [22] W. Nlson. Appld lf data analyss. Wly, Nw Yor, [23] K. Sabo and R. Sctovs. Th bst last absolut dvatons ln - proprts and two ffcnt mthods for ts drvaton. ANZIAM Journal., 50: , [24] H. Schwtlc and V. Tllr. Numrcal mthods for stmatng paramtrs n nonlnar modls wth rrors n th varabls. Tchnomtrcs, 27:17-24, [25] G.A.F. Sbr and C.J. Wld. Nonlnar Rgrsson. Wly, Nw Yor, [26] B.W. Slvrman. Dnsty stmaton for Statstcs and Data Analyss. Chapman & Hall/CRC, Boca Raton, [27] R.L. Smth and J.C. Naylor. A comparson of maxmum llhood and Baysan stmators for th thr-paramtr Wbull dstrbuton. Bomtra, 73:67-90, [28] R.L. Smth and J.C. Naylor. Statstcs of th thr-paramtr Wbull dstrbuton. Annals of Opratons Rsarch, 9: , [29] R. A. Tapa and J. R. Thompson. Nonparamtrc probablty dnsty stmaton. Johns Hopns Unvrsty Prss, Baltmor, 1978.

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Group Codes Define Over Dihedral Groups of Small Order

Group Codes Define Over Dihedral Groups of Small Order Malaysan Journal of Mathmatcal Scncs 7(S): 0- (0) Spcal Issu: Th rd Intrnatonal Confrnc on Cryptology & Computr Scurty 0 (CRYPTOLOGY0) MALAYSIA JOURAL OF MATHEMATICAL SCIECES Journal hompag: http://nspm.upm.du.my/ournal

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13)

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13) Pag- Econ7 Appld Economtrcs Topc : Dummy Dpndnt Varabl (Studnmund, Chaptr 3) I. Th Lnar Probablty Modl Suppos w hav a cross scton of 8-24 yar-olds. W spcfy a smpl 2-varabl rgrsson modl. Th probablty of

More information

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015 Journal of Informaton Scncs and Computng Tchnologs(JISCT) ISSN: 394-966 SCITECH Volum 5, Issu RESEARCH ORGANISATION Novmbr 7, 5 Journal of Informaton Scncs and Computng Tchnologs www.sctcrsarch.com/journals

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

A Probabilistic Characterization of Simulation Model Uncertainties

A Probabilistic Characterization of Simulation Model Uncertainties A Proalstc Charactrzaton of Sulaton Modl Uncrtants Vctor Ontvros Mohaad Modarrs Cntr for Rsk and Rlalty Unvrsty of Maryland 1 Introducton Thr s uncrtanty n odl prdctons as wll as uncrtanty n xprnts Th

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

Folding of Regular CW-Complexes

Folding of Regular CW-Complexes Ald Mathmatcal Scncs, Vol. 6,, no. 83, 437-446 Foldng of Rgular CW-Comlxs E. M. El-Kholy and S N. Daoud,3. Dartmnt of Mathmatcs, Faculty of Scnc Tanta Unvrsty,Tanta,Egyt. Dartmnt of Mathmatcs, Faculty

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS

ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS ON EISENSTEIN-DUMAS AND GENERALIZED SCHÖNEMANN POLYNOMIALS Anuj Bshno and Sudsh K. Khanduja Dpartmnt of Mathmatcs, Panjab Unvrsty, Chandgarh-160014, Inda. E-mal: anuj.bshn@gmal.com, skhand@pu.ac.n ABSTRACT.

More information

arxiv: v1 [math.pr] 28 Jan 2019

arxiv: v1 [math.pr] 28 Jan 2019 CRAMÉR-TYPE MODERATE DEVIATION OF NORMAL APPROXIMATION FOR EXCHANGEABLE PAIRS arxv:190109526v1 [mathpr] 28 Jan 2019 ZHUO-SONG ZHANG Abstract In Stn s mthod, an xchangabl par approach s commonly usd to

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

Decision-making with Distance-based Operators in Fuzzy Logic Control

Decision-making with Distance-based Operators in Fuzzy Logic Control Dcson-makng wth Dstanc-basd Oprators n Fuzzy Logc Control Márta Takács Polytchncal Engnrng Collg, Subotca 24000 Subotca, Marka Orškovća 16., Yugoslava marta@vts.su.ac.yu Abstract: Th norms and conorms

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2

VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 514.7(045) : : Eberhard Malkowsky 1, Vesna Veličković 2 FACTA UNIVERSITATIS Srs: Mchancs, Automatc Control Robotcs Vol.3, N o, 00, pp. 7-33 VISUALIZATION OF DIFFERENTIAL GEOMETRY UDC 54.7(045)54.75.6:59.688:59.673 Ebrhard Malkowsky, Vsna Vlčkovć Dpartmnt of

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

Consider a system of 2 simultaneous first order linear equations

Consider a system of 2 simultaneous first order linear equations Soluon of sysms of frs ordr lnar quaons onsdr a sysm of smulanous frs ordr lnar quaons a b c d I has h alrna mar-vcor rprsnaon a b c d Or, n shorhand A, f A s alrady known from con W know ha h abov sysm

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park

ON RIGHT(LEFT) DUO PO-SEMIGROUPS. S. K. Lee and K. Y. Park Kangwon-Kyungki Math. Jour. 11 (2003), No. 2, pp. 147 153 ON RIGHT(LEFT) DUO PO-SEMIGROUPS S. K. L and K. Y. Park Abstract. W invstigat som proprtis on right(rsp. lft) duo po-smigroups. 1. Introduction

More information

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.

Section 6.1. Question: 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation. MAT 444 H Barclo Spring 004 Homwork 6 Solutions Sction 6 Lt H b a subgroup of a group G Thn H oprats on G by lft multiplication Dscrib th orbits for this opration Th orbits of G ar th right costs of H

More information

Basic Polyhedral theory

Basic Polyhedral theory Basic Polyhdral thory Th st P = { A b} is calld a polyhdron. Lmma 1. Eithr th systm A = b, b 0, 0 has a solution or thr is a vctorπ such that π A 0, πb < 0 Thr cass, if solution in top row dos not ist

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm . Grundlgnd Vrfahrn zur Übrtragung dgtalr Sgnal (Zusammnfassung) wt Dc. 5 Transmsson of Dgtal Sourc Sgnals Sourc COD SC COD MOD MOD CC dg RF s rado transmsson mdum Snk DC SC DC CC DM dg DM RF g physcal

More information

You already learned about dummies as independent variables. But. what do you do if the dependent variable is a dummy?

You already learned about dummies as independent variables. But. what do you do if the dependent variable is a dummy? CHATER 5: DUMMY DEENDENT VARIABLES AND NON-LINEAR REGRESSION. Th roblm of Dummy Dpndnt Varabls You alrady larnd about dumms as ndpndnt varabls. But what do you do f th dpndnt varabl s a dummy? On answr

More information

An Overview of Markov Random Field and Application to Texture Segmentation

An Overview of Markov Random Field and Application to Texture Segmentation An Ovrvw o Markov Random Fld and Applcaton to Txtur Sgmntaton Song-Wook Joo Octobr 003. What s MRF? MRF s an xtnson o Markov Procss MP (D squnc o r.v. s unlatral (causal: p(x t x,

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk

Shortest Paths in Graphs. Paths in graphs. Shortest paths CS 445. Alon Efrat Slides courtesy of Erik Demaine and Carola Wenk S 445 Shortst Paths n Graphs lon frat Sls courtsy of rk man an arola Wnk Paths n raphs onsr a raph G = (V, ) wth -wht functon w : R. Th wht of path p = v v v k s fn to xampl: k = w ( p) = w( v, v + ).

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

Derangements and Applications

Derangements and Applications 2 3 47 6 23 Journal of Intgr Squncs, Vol. 6 (2003), Articl 03..2 Drangmnts and Applications Mhdi Hassani Dpartmnt of Mathmatics Institut for Advancd Studis in Basic Scincs Zanjan, Iran mhassani@iasbs.ac.ir

More information

JEE-2017 : Advanced Paper 2 Answers and Explanations

JEE-2017 : Advanced Paper 2 Answers and Explanations DE 9 JEE-07 : Advancd Papr Answrs and Explanatons Physcs hmstry Mathmatcs 0 A, B, 9 A 8 B, 7 B 6 B, D B 0 D 9, D 8 D 7 A, B, D A 0 A,, D 9 8 * A A, B A B, D 0 B 9 A, D 5 D A, B A,B,,D A 50 A, 6 5 A D B

More information

Decentralized Adaptive Control and the Possibility of Utilization of Networked Control System

Decentralized Adaptive Control and the Possibility of Utilization of Networked Control System Dcntralzd Adaptv Control and th Possblty of Utlzaton of Ntworkd Control Systm MARIÁN ÁRNÍK, JÁN MURGAŠ Slovak Unvrsty of chnology n Bratslava Faculty of Elctrcal Engnrng and Informaton chnology Insttut

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved.

Journal of Theoretical and Applied Information Technology 10 th January Vol. 47 No JATIT & LLS. All rights reserved. Journal o Thortcal and Appld Inormaton Tchnology th January 3. Vol. 47 No. 5-3 JATIT & LLS. All rghts rsrvd. ISSN: 99-8645 www.att.org E-ISSN: 87-395 RESEARCH ON PROPERTIES OF E-PARTIAL DERIVATIVE OF LOGIC

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

cycle that does not cross any edges (including its own), then it has at least

cycle that does not cross any edges (including its own), then it has at least W prov th following thorm: Thorm If a K n is drawn in th plan in such a way that it has a hamiltonian cycl that dos not cross any dgs (including its own, thn it has at last n ( 4 48 π + O(n crossings Th

More information

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH.

SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. SOME PARAMETERS ON EQUITABLE COLORING OF PRISM AND CIRCULANT GRAPH. K VASUDEVAN, K. SWATHY AND K. MANIKANDAN 1 Dpartmnt of Mathmatics, Prsidncy Collg, Chnnai-05, India. E-Mail:vasu k dvan@yahoo.com. 2,

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Reliability of time dependent stress-strength system for various distributions

Reliability of time dependent stress-strength system for various distributions IOS Joural of Mathmatcs (IOS-JM ISSN: 78-578. Volum 3, Issu 6 (Sp-Oct., PP -7 www.osrjourals.org lablty of tm dpdt strss-strgth systm for varous dstrbutos N.Swath, T.S.Uma Mahswar,, Dpartmt of Mathmatcs,

More information

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14

APPROXIMATE PRICES OF BASKET AND ASIAN OPTIONS DUPONT OLIVIER. Premia 14 APPROXIMAE PRICES OF BASKE AND ASIAN OPIONS DUPON OLIVIER Prema 14 Contents Introducton 1 1. Framewor 1 1.1. Baset optons 1.. Asan optons. Computng the prce 3. Lower bound 3.1. Closed formula for the prce

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #20 11/14/2013 18.782 Introduction to Arithmtic Gomtry Fall 2013 Lctur #20 11/14/2013 20.1 Dgr thorm for morphisms of curvs Lt us rstat th thorm givn at th nd of th last lctur, which w will now prov. Thorm 20.1. Lt φ:

More information

On Selection of Best Sensitive Logistic Estimator in the Presence of Collinearity

On Selection of Best Sensitive Logistic Estimator in the Presence of Collinearity Amrcan Journal of Appld Mathmatcs and Statstcs, 05, Vol. 3, No., 7- Avalabl onln at http://pubs.scpub.com/ajams/3// Scnc and Educaton Publshng DOI:0.69/ajams-3-- On Slcton of Bst Snstv Logstc Estmator

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions

Stress-Based Finite Element Methods for Dynamics Analysis of Euler-Bernoulli Beams with Various Boundary Conditions 9 Strss-Basd Fnt Elmnt Mthods for Dynamcs Analyss of Eulr-Brnoull Bams wth Varous Boundary Condtons Abstract In ths rsarch, two strss-basd fnt lmnt mthods ncludng th curvatur-basd fnt lmnt mthod (CFE)

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

Naresuan University Journal: Science and Technology 2018; (26)1

Naresuan University Journal: Science and Technology 2018; (26)1 Narsuan Unvrsty Journal: Scnc and Tchnology 018; (6)1 Th Dvlopmnt o a Corrcton Mthod or Ensurng a Contnuty Valu o Th Ch-squar Tst wth a Small Expctd Cll Frquncy Kajta Matchma 1 *, Jumlong Vongprasrt and

More information

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA

NEW APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA NE APPLICATIONS OF THE ABEL-LIOUVILLE FORMULA Mirca I CÎRNU Ph Dp o Mathmatics III Faculty o Applid Scincs Univrsity Polithnica o Bucharst Cirnumirca @yahoocom Abstract In a rcnt papr [] 5 th indinit intgrals

More information

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1

Recall that by Theorems 10.3 and 10.4 together provide us the estimate o(n2 ), S(q) q 9, q=1 Chaptr 11 Th singular sris Rcall that by Thorms 10 and 104 togthr provid us th stimat 9 4 n 2 111 Rn = SnΓ 2 + on2, whr th singular sris Sn was dfind in Chaptr 10 as Sn = q=1 Sq q 9, with Sq = 1 a q gcda,q=1

More information

Construction of asymmetric orthogonal arrays of strength three via a replacement method

Construction of asymmetric orthogonal arrays of strength three via a replacement method isid/ms/26/2 Fbruary, 26 http://www.isid.ac.in/ statmath/indx.php?modul=prprint Construction of asymmtric orthogonal arrays of strngth thr via a rplacmnt mthod Tian-fang Zhang, Qiaoling Dng and Alok Dy

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

Supplementary Materials

Supplementary Materials 6 Supplmntary Matrials APPENDIX A PHYSICAL INTERPRETATION OF FUEL-RATE-SPEED FUNCTION A truck running on a road with grad/slop θ positiv if moving up and ngativ if moving down facs thr rsistancs: arodynamic

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information

Another converse of Jensen s inequality

Another converse of Jensen s inequality Another converse of Jensen s nequalty Slavko Smc Abstract. We gve the best possble global bounds for a form of dscrete Jensen s nequalty. By some examples ts frutfulness s shown. 1. Introducton Throughout

More information

UNTYPED LAMBDA CALCULUS (II)

UNTYPED LAMBDA CALCULUS (II) 1 UNTYPED LAMBDA CALCULUS (II) RECALL: CALL-BY-VALUE O.S. Basic rul Sarch ruls: (\x.) v [v/x] 1 1 1 1 v v CALL-BY-VALUE EVALUATION EXAMPLE (\x. x x) (\y. y) x x [\y. y / x] = (\y. y) (\y. y) y [\y. y /

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Combinatorial Networks Week 1, March 11-12

Combinatorial Networks Week 1, March 11-12 1 Nots on March 11 Combinatorial Ntwors W 1, March 11-1 11 Th Pigonhol Principl Th Pigonhol Principl If n objcts ar placd in hols, whr n >, thr xists a box with mor than on objcts 11 Thorm Givn a simpl

More information

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0

Function Spaces. a x 3. (Letting x = 1 =)) a(0) + b + c (1) = 0. Row reducing the matrix. b 1. e 4 3. e 9. >: (x = 1 =)) a(0) + b + c (1) = 0 unction Spacs Prrquisit: Sction 4.7, Coordinatization n this sction, w apply th tchniqus of Chaptr 4 to vctor spacs whos lmnts ar functions. Th vctor spacs P n and P ar familiar xampls of such spacs. Othr

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM

LINEAR DELAY DIFFERENTIAL EQUATION WITH A POSITIVE AND A NEGATIVE TERM Elctronic Journal of Diffrntial Equations, Vol. 2003(2003), No. 92, pp. 1 6. ISSN: 1072-6691. URL: http://jd.math.swt.du or http://jd.math.unt.du ftp jd.math.swt.du (login: ftp) LINEAR DELAY DIFFERENTIAL

More information

3.4 Properties of the Stress Tensor

3.4 Properties of the Stress Tensor cto.4.4 Proprts of th trss sor.4. trss rasformato Lt th compots of th Cauchy strss tsor a coordat systm wth bas vctors b. h compots a scod coordat systm wth bas vctors j,, ar gv by th tsor trasformato

More information

Α complete processing methodology for 3D monitoring using GNSS receivers

Α complete processing methodology for 3D monitoring using GNSS receivers 7-5-5 NATIONA TECHNICA UNIVERSITY OF ATHENS SCHOO OF RURA AND SURVEYING ENGINEERING DEPARTMENT OF TOPOGRAPHY AORATORY OF GENERA GEODESY Α complt procssng mthodology for D montorng usng GNSS rcvrs Gorg

More information

SCRIBE: JAKE LEVINSON

SCRIBE: JAKE LEVINSON GL n REPRESENTATION THEORY NOTES FOR 12-03 SCRIBE: JAKE LEVINSON As th th last lctur, ths on s basd on John Stmbrdg s papr: A local charactrzaton of smpl-lacd crstals, Trans. Amr. Math. Soc. 355 (2003),

More information

Independent Domination in Line Graphs

Independent Domination in Line Graphs Itratoal Joural of Sctfc & Egrg Rsarch Volum 3 Issu 6 Ju-1 1 ISSN 9-5518 Iddt Domato L Grahs M H Muddbhal ad D Basavarajaa Abstract - For ay grah G th l grah L G H s th trscto grah Thus th vrtcs of LG

More information

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R.

Hardy-Littlewood Conjecture and Exceptional real Zero. JinHua Fei. ChangLing Company of Electronic Technology Baoji Shannxi P.R. Hardy-Littlwood Conjctur and Excptional ral Zro JinHua Fi ChangLing Company of Elctronic Tchnology Baoji Shannxi P.R.China E-mail: fijinhuayoujian@msn.com Abstract. In this papr, w assum that Hardy-Littlwood

More information

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases.

Thus, because if either [G : H] or [H : K] is infinite, then [G : K] is infinite, then [G : K] = [G : H][H : K] for all infinite cases. Homwork 5 M 373K Solutions Mark Lindbrg and Travis Schdlr 1. Prov that th ring Z/mZ (for m 0) is a fild if and only if m is prim. ( ) Proof by Contrapositiv: Hr, thr ar thr cass for m not prim. m 0: Whn

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

Abstract Interpretation: concrete and abstract semantics

Abstract Interpretation: concrete and abstract semantics Abstract Intrprtation: concrt and abstract smantics Concrt smantics W considr a vry tiny languag that manags arithmtic oprations on intgrs valus. Th (concrt) smantics of th languags cab b dfind by th funzcion

More information

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d)

Ερωτήσεις και ασκησεις Κεφ. 10 (για μόρια) ΠΑΡΑΔΟΣΗ 29/11/2016. (d) Ερωτήσεις και ασκησεις Κεφ 0 (για μόρια ΠΑΡΑΔΟΣΗ 9//06 Th coffcnt A of th van r Waals ntracton s: (a A r r / ( r r ( (c a a a a A r r / ( r r ( a a a a A r r / ( r r a a a a A r r / ( r r 4 a a a a 0 Th

More information

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results

BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES. 1. Statement of results BINOMIAL COEFFICIENTS INVOLVING INFINITE POWERS OF PRIMES DONALD M. DAVIS Abstract. If p is a prim and n a positiv intgr, lt ν p (n dnot th xponnt of p in n, and u p (n n/p νp(n th unit part of n. If α

More information

The Equitable Dominating Graph

The Equitable Dominating Graph Intrnational Journal of Enginring Rsarch and Tchnology. ISSN 0974-3154 Volum 8, Numbr 1 (015), pp. 35-4 Intrnational Rsarch Publication Hous http://www.irphous.com Th Equitabl Dominating Graph P.N. Vinay

More information

On the irreducibility of some polynomials in two variables

On the irreducibility of some polynomials in two variables ACTA ARITHMETICA LXXXII.3 (1997) On th irrducibility of som polynomials in two variabls by B. Brindza and Á. Pintér (Dbrcn) To th mmory of Paul Erdős Lt f(x) and g(y ) b polynomials with intgral cofficints

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

Square of Hamilton cycle in a random graph

Square of Hamilton cycle in a random graph Squar of Hamilton cycl in a random graph Andrzj Dudk Alan Friz Jun 28, 2016 Abstract W show that p = n is a sharp thrshold for th random graph G n,p to contain th squar of a Hamilton cycl. This improvs

More information

Application of Local Influence Diagnostics to the Linear Logistic Regression Models

Application of Local Influence Diagnostics to the Linear Logistic Regression Models Dhaka Unv. J. Sc., 5(): 6978 003(July) Applcaton of Local Influnc Dagnostcs to th Lnar Logstc Rgrsson Modls Monzur Hossan * and M. Ataharul Islam Dpartmnt of Statstcs, Unvrsty of Dhaka Rcvd on 5.0.00.

More information

10. The Discrete-Time Fourier Transform (DTFT)

10. The Discrete-Time Fourier Transform (DTFT) Th Discrt-Tim Fourir Transform (DTFT Dfinition of th discrt-tim Fourir transform Th Fourir rprsntation of signals plays an important rol in both continuous and discrt signal procssing In this sction w

More information

FEFF and Related Codes

FEFF and Related Codes FEFF and Rlatd Cods Anatoly Frnl Profssor Physcs Dpartmnt, Yshva Unvrsty, w Yor, USA Synchrotron Catalyss Consortum, Broohavn atonal Laboratory, USA www.yu.du/faculty/afrnl Anatoly.Frnl@yu.du FEFF: John

More information

GPC From PeakSimple Data Acquisition

GPC From PeakSimple Data Acquisition GPC From PakSmpl Data Acquston Introducton Th follong s an outln of ho PakSmpl data acquston softar/hardar can b usd to acqur and analyz (n conjuncton th an approprat spradsht) gl prmaton chromatography

More information

Einstein Equations for Tetrad Fields

Einstein Equations for Tetrad Fields Apiron, Vol 13, No, Octobr 006 6 Einstin Equations for Ttrad Filds Ali Rıza ŞAHİN, R T L Istanbul (Turky) Evry mtric tnsor can b xprssd by th innr product of ttrad filds W prov that Einstin quations for

More information

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms

Preview. Graph. Graph. Graph. Graph Representation. Graph Representation 12/3/2018. Graph Graph Representation Graph Search Algorithms /3/0 Prvw Grph Grph Rprsntton Grph Srch Algorthms Brdth Frst Srch Corrctnss of BFS Dpth Frst Srch Mnmum Spnnng Tr Kruskl s lgorthm Grph Drctd grph (or dgrph) G = (V, E) V: St of vrt (nod) E: St of dgs

More information