MECHANICS of FLUIDS INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMPANY FOURTH EDITION. MERLE C. POTTER Michigan State University DAVID C.

Size: px
Start display at page:

Download "MECHANICS of FLUIDS INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMPANY FOURTH EDITION. MERLE C. POTTER Michigan State University DAVID C."

Transcription

1 INSTRUCTOR'S SOLUTIONS MANUAL TO ACCOMPANY MECHANICS of FLUIDS FOURTH EDITION MERLE C. POTTER Michigan State University DAVID C. WIGGERT Michigan State University BASSEM RAMADAN Kettering University

2 Contents Chapter 1 Basic Considerations 1 Chapter Fluid Statics 15 Chapter Introction to Fluids in Motion 4 Chapter 4 The Integral Fors of the Fundaental Laws 61 Chapter 5 The Differential Fors of the Fundaental Laws 107 Chapter 6 Diensional Analysis and Siilitude 15 Chapter 7 Internal Flows 145 Chapter 8 External Flows 19 Chapter 9 Copressible Flow 7 Chapter 10 Flow in Open Channels 59 Chapter 11 Flows in Piping Systes 0 Chapter 1 Turboachinery 45 Chapter 1 Measureents in Fluid Mechanics 69 Chapter 14 Coputational Fluid Dynaics 75

3 CHAPTER 1 Basic Considerations Chapter 1/ Basic Considerations FE-type Exa Review Probles: Probles 1-1 to (C) = F/a or kg = N//s = N. s /. 1. (B) [μ [τ /] = (F/L )/(L/T)/L = F. T/L. 1. (A) npa. 1.4 (C) The ass is the sae on earth and the oon: [4(8 r)] r. dr 1.5 (C) Fshear F sin 400sin N. 1.6 (B) Fshear 100 N = Pa or 84 kpa A (D) water ( T 4) (80 4) kg/ (A) dr [ r] Pa. 1.9 (D) 1.10 (C) h 4 cos N/ 1 gd kg/ 9.81 /s We used kg = N s / or 00 c (C) pv RT 800 kn/ kj/(kg K) (10 7) K kg 1

4 Chapter 1 / Basic Considerations 1.1 (B) Eice Ewater. ice 0 water cwater T. 6 5 (40 10 ) ( 10 ) T. T 7.66 C. We assued the density of ice to be equal to that of water, naely 1000 kg/. Ice is actually slightly lighter than water, but it is not necessary for such accuracy in this proble. 1.1 (D) For this high-frequency wave, c RT /s. Chapter 1 Probles: Diensions, Units, and Physical Quantities 1.14 Conservation of ass Mass density Newton s second law Moentu velocity The first law of theronaics internal energy teperature 1.15 a) density = ass/volue = M / L b) pressure = force/area = F / L ML / T L M / LT c) power = force velocity = F L / T ML / T L / T ML / T d) energy = force distance = ML / T L ML / T e) ass flux = ρav = M/L L L/T = M/T f) flow rate = AV = L L/T = L /T 1.16 a) density = M FT / L L L b) pressure = F/L FT / L 4 c) power = F velocity = F L/T = FL/T d) energy = F L = FL e) ass flux = M FT / L FT / L T T f) flow rate = AV = L L/T = L /T 1.17 a) L = [C] T. [C] = L/T b) F = [C]M. [C] = F/M = ML/T M = L/T c) L /T = [C] L L /. [C] = L / T L / L 1/ L T Note: the slope S 0 has no diensions a) = [C] s. [C] = /s b) N = [C] kg. [C] = N/kg = kg /s kg = /s c) /s = [C] /. [C] = /s / = 1/ /s

5 Chapter 1/ Basic Considerations 1.19 a) pressure: N/ = kg /s / = kg/ s b) energy: N = kg /s = kg /s c) power: N /s = kg /s d) viscosity: N s/ = kg s 1 kg / s s e) heat flux: J/s = N kg kg / s s s s J N kg f) specific heat: kg K kg K s kg K / K s 1.0 kg c k f. Since all ters ust have the sae diensions (units) we require: s s [c] = kg/s, [k] = kg/s = N s / s N /, [f] = kg / s N. Note: we could express the units on c as [c] = kg / s N s / s N s / 1.1 a) 50 kn b) 57 GPa c) 4 npa d) 17.6 c e) 1. c f) a) N b) s c) Pa d) 5.6 e) f) d d where is in slugs, in slug/ft and d in feet. We used the conversions in the front cover. 0/ a) 0 c/hr = /s 600 b) 000 rev/in = 000 /60 = 09.4 rad/s c) 50 Hp = = 7 85 W d) 100 ft /in = /60 = /s e) 000 kn/c = 10 6 N/c 100 c / = N/ f) 4 slug/in = /60 = kg/s g) 500 g/l = kg/ kg/ h) 500 kwh = = J 1.5 a) F = a = = 400 N. b) F W = a. F = = N. c) F W sin 0 = a. F = = 449 N. 1.6 The ass is the sae on the earth and the oon: 60 = W oon = = lb.

6 Chapter 1 / Basic Considerations 1.7 a) b) c) or d (.7 10 ) d (.7 10 ) 6 6 or or.9 10 d (.7 10 ) Pressure and Teperature 1.8 Use the values fro Table B. in the Appendix. a) = 15.6 kpa. b) = 14. kpa. c) = kpa (use a straight-line interpolation). d) = 78.8 kpa. e) = 5.5 kpa. 1.9 a) = 70 kpa abs. b) c) = 10. psia. d) e) 0 0 = 0.8 in. of Hg abs = 57 of Hg abs. 4 =.6 ft of H O abs. 1.0 p = p o e gz/rt = 101 e /87 (15 + 7) = 6.8 kpa Fro Table B., at 4000 : p = 61.6 kpa. The percent error is % error = 100 = 1.95 %. 61.6,560 0, a) p = 97 + (785 97) = 877 psf 5,000 0,000,560 0,000 T = 1. + ( ) = 1.4 F 5,000 0,000 b) p = (785 97) (.488) ( ) = 87 psf T = ( ) (.488) ( ) = 1.4 F Note: The results in (b) are ore accurate than the results in (a). When we use a linear interpolation, we lose significant digits in the result. 1. T = 48 +,000 0,000 5,000 0,000 ( ) = 59 F or ( 59 ) 5 9 = 50.6 C 4

7 Chapter 1/ Basic Considerations F 1. p = n A = 6.5 cos = 196 MN/ = 196 MPa. 1.4 F F n t (10000) N N 4 F = n t F F =.400 N. = tan = Density and Specific Weight 1.5 = V / 178 = 1.9 slug/ft. = g = 1.9. = 61.8 lb/ft. 1.6 = 1000 (T 4) /180 = 1000 (70 4) /180 = 976 kg/ = 9800 (T 4) /18 = 9800 (70 4) /180 = 9560 N/ % error for = =.0% % error for = =.6% 1.7 S = T = = % error = 100 =.88% a) = W V g g b) = c) = = 0.65 kg = 0.61 kg = 0.6 kg 1.9 S = water V / 10/ V water V = 4.0 ft 5

8 Chapter 1 / Basic Considerations Viscosity 1.40 Assue carbon dioxide is an ideal gas at the given conditions, then p RT W g V V 00 kn/ kj/kg K 90 7 K g Fro Fig. B.1 at 90 C,.915 kg/.915 kg/ 9.81 /s 8.6 kg/ s 8.6 N/ 5 10 N s/, so that the kineatic viscosity is 5 10 N s/ /s.915 kg/ The kineatic viscosity cannot be read fro Fig. B.; the pressure is not 100 kpa At equilibriu the weight of the piston is balanced by the resistive force in the oil e to wall shear stress. This is represented by Wpiston DL where D is the diaeter of the piston and L is the piston length. Since the gap between the piston and cylinder is sall, assue a linear velocity distribution in the oil e to the piston otion. That is, the shear stress is V Vpiston 0 r D D cylinder piston / Using Wpiston piston g, we can write Solve V piston : Vpiston pistong DL D D / cylinder piston V piston g D D piston cylinder piston DL 0.50 kg 9.81 /s kg /N s 0.91 /s where we used N = kg /s N s/

9 Chapter 1/ Basic Considerations 1.4 The shear stress can be calculated using /. distribution, u( y) 10(0.05 y y ) 10(0.05 y) Fro the given velocity Fro Table B.1 at 10 C, N s/ so, at the lower plate where y = 0, y 0 10(0.05 0) 6 s N/ 1 At the upper plate where y = 0.05, y ( ) 6 s N/ = dr = 1.9 0( 1/1) (1/1) = lb/ft ( 1/1) (1/1) dr 0 r r0 [ r / r ] /. r = 0 = 0, r = 0.5 = /100 =. Pa, (0.5 /100) r = 0.5 = /100 = 6.4 Pa (0.5 /100) 1.45 T = force oent ar = RL R = = dr R L = T RL R R = N. s/. R L Use Eq.1.5.8: T = R L h = power = T / / = 1.04 hp 550 =.74 ft-lb. 7

10 Chapter 1 / Basic Considerations 1.47 F belt = A power = F V (0.6 4) = 15.7 N = 0.10 hp r 1.48 Assue a linear velocity so. h eleent shown, dt = df r = da r = Due to the area r dr r. r dr T = R 0 h r dr = (/1) R 60 h /1 5 4 = ft-lb. u 1.49 The velocity at a radius r is r. The shear stress is y. The torque is dt = rda on a differential eleent. We have 1.50 If 0.08 r T = rda= rdx, rad/s where x is easured along the rotating surface. Fro the geoetry x r, so that x/ x T= 0.1 dx x dx (0.08 ) = 56.1 N = cons t and = Ae Cy = cons t. Finally, or u(y) = D e C Cy AeB/T = Ae By/K = Ae Cy, then y 0 = De Cy. = E (e Cy 1) where A, B, C, D, E, and K are constants BT / Ae Ae Ae B/9 B/5 A = , B = = e 1776/1 = N. s/ 8

CHAPTER 1 Basic Considerations

CHAPTER 1 Basic Considerations CHAPTER 1 Basic Considerations FE-type Exam Review Problems: Problems 1.1 to 1.1. 1.1 (C) m F/a or kg N/m/s N. s /m. 1. (B) [µ] [τ//dy] (F/L )/(L/T)/L F. T/L. Chapter 1 / Basic Considerations 1. (A) 8

More information

CHAPTER 1 Basic Considerations

CHAPTER 1 Basic Considerations CHAPTER Basic Considerations FE-type Exam Review Problems: Problems. to. Chapter / Basic Considerations. (C) m = F/a or kg = N/m/s = N s /m. (B) [μ] = [τ/(/dy)] = (F/L )/(L/T)/L = F. T/L. (A) 8 9.6 0 Pa

More information

) = slugs/ft 3. ) = lb ft/s. ) = ft/s

) = slugs/ft 3. ) = lb ft/s. ) = ft/s 1. Make use of Tables 1. in the text book (See the last page in this assignent) to express the following quantities in SI units: (a) 10. in./in, (b) 4.81 slugs, (c).0 lb, (d) 7.1 ft/s, (e) 0.04 lb s/ft.

More information

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009

ME Machine Design I. FINAL EXAM. OPEN BOOK AND CLOSED NOTES. Friday, May 8th, 2009 ME 5 - Machine Design I Spring Seester 009 Nae Lab. Div. FINAL EXAM. OPEN BOOK AND LOSED NOTES. Friday, May 8th, 009 Please use the blank paper for your solutions. Write on one side of the paper only.

More information

I. Concepts and Definitions. I. Concepts and Definitions

I. Concepts and Definitions. I. Concepts and Definitions F. Properties of a syste (we use the to calculate changes in energy) 1. A property is a characteristic of a syste that can be given a nuerical value without considering the history of the syste. Exaples

More information

2.003 Engineering Dynamics Problem Set 2 Solutions

2.003 Engineering Dynamics Problem Set 2 Solutions .003 Engineering Dynaics Proble Set Solutions This proble set is priarily eant to give the student practice in describing otion. This is the subject of kineatics. It is strongly recoended that you study

More information

Physics 41 Homework #2 Chapter 16. fa. Here v is the speed of the wave. 16. The speed of a wave on a massless string would be infinite!

Physics 41 Homework #2 Chapter 16. fa. Here v is the speed of the wave. 16. The speed of a wave on a massless string would be infinite! Physics 41 Hoewor # Chapter 1 Serway 7 th Conceptual: Q: 3,, 8, 11, 1, Probles P: 1, 3, 5, 9, 1, 5, 31, 35, 38, 4, 5, 57 Conceptual 3. (i) d=e, f, c, b, a (ii) Since, the saller the (the coefficient of

More information

Definition of Work, The basics

Definition of Work, The basics Physics 07 Lecture 16 Lecture 16 Chapter 11 (Work) v Eploy conservative and non-conservative forces v Relate force to potential energy v Use the concept of power (i.e., energy per tie) Chapter 1 v Define

More information

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015

Physics 2210 Fall smartphysics 20 Conservation of Angular Momentum 21 Simple Harmonic Motion 11/23/2015 Physics 2210 Fall 2015 sartphysics 20 Conservation of Angular Moentu 21 Siple Haronic Motion 11/23/2015 Exa 4: sartphysics units 14-20 Midter Exa 2: Day: Fri Dec. 04, 2015 Tie: regular class tie Section

More information

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition

Physics 41 HW Set 1 Chapter 15 Serway 7 th Edition Physics HW Set Chapter 5 Serway 7 th Edition Conceptual Questions:, 3, 5,, 6, 9 Q53 You can take φ = π, or equally well, φ = π At t= 0, the particle is at its turning point on the negative side of equilibriu,

More information

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2.

Moment of Inertia. Terminology. Definitions Moment of inertia of a body with mass, m, about the x axis: Transfer Theorem - 1. ( )dm. = y 2 + z 2. Terinology Moent of Inertia ME 202 Moent of inertia (MOI) = second ass oent Instead of ultiplying ass by distance to the first power (which gives the first ass oent), we ultiply it by distance to the second

More information

PHYSICS 2210 Fall Exam 4 Review 12/02/2015

PHYSICS 2210 Fall Exam 4 Review 12/02/2015 PHYSICS 10 Fall 015 Exa 4 Review 1/0/015 (yf09-049) A thin, light wire is wrapped around the ri of a unifor disk of radius R=0.80, as shown. The disk rotates without friction about a stationary horizontal

More information

FOUNDATION STUDIES EXAMINATIONS January 2016

FOUNDATION STUDIES EXAMINATIONS January 2016 1 FOUNDATION STUDIES EXAMINATIONS January 2016 PHYSICS Seester 2 Exa July Fast Track Tie allowed 2 hours for writing 10 inutes for reading This paper consists of 4 questions printed on 11 pages. PLEASE

More information

Work, Energy and Momentum

Work, Energy and Momentum Work, Energy and Moentu Work: When a body oves a distance d along straight line, while acted on by a constant force of agnitude F in the sae direction as the otion, the work done by the force is tered

More information

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along

1 (40) Gravitational Systems Two heavy spherical (radius 0.05R) objects are located at fixed positions along (40) Gravitational Systes Two heavy spherical (radius 0.05) objects are located at fixed positions along 2M 2M 0 an axis in space. The first ass is centered at r = 0 and has a ass of 2M. The second ass

More information

CHAPTER 7: Linear Momentum

CHAPTER 7: Linear Momentum CHAPTER 7: Linear Moentu Solution Guide to WebAssign Probles 7.1 [1] p v ( 0.08 kg) ( 8.4 s) 0.4 kg s 7. [] Fro Newton s second law, p Ft. For a constant ass object, p v. Equate the two expression for

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Answers to assigned problems from Chapter 1

Answers to assigned problems from Chapter 1 Answers to assigned probles fro Chapter 1 1.7. a. A colun of ercury 1 in cross-sectional area and 0.001 in height has a volue of 0.001 and a ass of 0.001 1 595.1 kg. Then 1 Hg 0.001 1 595.1 kg 9.806 65

More information

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer

PHYS 1443 Section 003 Lecture #21 Wednesday, Nov. 19, 2003 Dr. Mystery Lecturer PHYS 443 Section 003 Lecture # Wednesday, Nov. 9, 003 Dr. Mystery Lecturer. Fluid Dyanics : Flow rate and Continuity Equation. Bernoulli s Equation 3. Siple Haronic Motion 4. Siple Bloc-Spring Syste 5.

More information

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-1D Spring Oscillations. Lectures Chapter 15 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-1D Spring 013 Oscillations Lectures 35-37 Chapter 15 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 15 Oscillations In this chapter we will cover the following topics: Displaceent,

More information

Chapter 1: Basics of Vibrations for Simple Mechanical Systems

Chapter 1: Basics of Vibrations for Simple Mechanical Systems Chapter 1: Basics of Vibrations for Siple Mechanical Systes Introduction: The fundaentals of Sound and Vibrations are part of the broader field of echanics, with strong connections to classical echanics,

More information

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance.

Chapter Torque equals the diver s weight x distance from the pivot. List your variables and solve for distance. Chapter 9 1. Put F 1 along the x axis. Add the three y-coponents (which total 0) and solve for the y- coponent of F 3. Now add the x-coponents of all three vectors (which total 0) and solve for the x-coponent

More information

Fluids and their Properties

Fluids and their Properties Chapter (1) Fluids and their Properties Dr. KHALIL MAHMOUD ALASTAL Eng.Mohammed AbuRahma Eng.Reem Sbaih 2017 Newton s Law of Viscosity: - / Non-Newtonian Fluids: - Mass Density: - / Specific weight: -

More information

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

More information

ME357 Problem Set The wheel is a thin homogeneous disk that rolls without slip. sin. The wall moves with a specified motion x t. sin..

ME357 Problem Set The wheel is a thin homogeneous disk that rolls without slip. sin. The wall moves with a specified motion x t. sin.. ME357 Proble Set 3 Derive the equation(s) of otion for the systes shown using Newton s Method. For ultiple degree of freedo systes put you answer in atri for. Unless otherwise speified the degrees of freedo

More information

Physics with Health Science Applications Ch. 3 pg. 56

Physics with Health Science Applications Ch. 3 pg. 56 Physics with Health Science Applications Ch. 3 pg. 56 Questions 3.4 The plane is accelerating forward. The seat is connected to the plane and is accelerated forward. The back of the seat applies a forward

More information

Daniel López Gaxiola 1 Student View Jason M. Keith

Daniel López Gaxiola 1 Student View Jason M. Keith Suppleental Material for Transport Process and Separation Process Principles Chapter Principles of Moentu Transfer and Overall Balances In fuel cells, the fuel is usually in gas or liquid phase. Thus,

More information

which proves the motion is simple harmonic. Now A = a 2 + b 2 = =

which proves the motion is simple harmonic. Now A = a 2 + b 2 = = Worked out Exaples. The potential energy function for the force between two atos in a diatoic olecules can be expressed as follows: a U(x) = b x / x6 where a and b are positive constants and x is the distance

More information

HW 6 - Solutions Due November 20, 2017

HW 6 - Solutions Due November 20, 2017 Conteporary Physics I HW 6 HW 6 - Solutions Due Noveber 20, 2017 1. A 4 kg block is attached to a spring with a spring constant k 200N/, and is stretched an aount 0.2 [5 pts each]. (a) Sketch the potential

More information

Simple Harmonic Motion

Simple Harmonic Motion Reading: Chapter 15 Siple Haronic Motion Siple Haronic Motion Frequency f Period T T 1. f Siple haronic otion x ( t) x cos( t ). Aplitude x Phase Angular frequency Since the otion returns to its initial

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

Physics 218 Exam 3 Fall 2010, Sections

Physics 218 Exam 3 Fall 2010, Sections Physics 28 Exa 3 Fall 200, Sections 52-524 Do not fill out the inforation below until instructed to do so! Nae Signature Student ID E-ail Section # : SOUTIONS ules of the exa:. You have the full class

More information

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s

MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER 2) FALL v=by 2 =-6 (1/2) 2 = -3/2 m/s MM303 FLUID MECHANICS I PROBLEM SET 1 (CHAPTER ) FALL 018 1) For the velocity fields given below, determine: i) Whether the flow field is one-, two-, or three-dimensional, and why. ii) Whether the flow

More information

Chapter 11 Simple Harmonic Motion

Chapter 11 Simple Harmonic Motion Chapter 11 Siple Haronic Motion "We are to adit no ore causes of natural things than such as are both true and sufficient to explain their appearances." Isaac Newton 11.1 Introduction to Periodic Motion

More information

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like:

Lecture 3. Properties of Fluids 11/01/2017. There are thermodynamic properties of fluids like: 11/01/2017 Lecture 3 Properties of Fluids There are thermodynamic properties of fluids like: Pressure, p (N/m 2 ) or [ML -1 T -2 ], Density, ρ (kg/m 3 ) or [ML -3 ], Specific weight, γ = ρg (N/m 3 ) or

More information

Problem T1. Main sequence stars (11 points)

Problem T1. Main sequence stars (11 points) Proble T1. Main sequence stars 11 points Part. Lifetie of Sun points i..7 pts Since the Sun behaves as a perfectly black body it s total radiation power can be expressed fro the Stefan- Boltzann law as

More information

Lecture 8.2 Fluids For a long time now we have been talking about classical mechanics, part of physics which studies macroscopic motion of

Lecture 8.2 Fluids For a long time now we have been talking about classical mechanics, part of physics which studies macroscopic motion of Lecture 8 luids or a long tie now we have een talking aout classical echanics part of physics which studies acroscopic otion of particle-like ojects or rigid odies Using different ethods we have considered

More information

Chapter 4: Temperature

Chapter 4: Temperature Chapter 4: Teperature Objectives: 1. Define what teperature is. 2. Explain the difference between absolute and relative teperature. 3. Know the reference points for the teperature scales. 4. Convert a

More information

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1

Phys102 First Major-143 Zero Version Coordinator: xyz Sunday, June 28, 2015 Page: 1 Coordinator: xyz Sunday, June 28, 2015 Page: 1 Q1. A transverse sinusoidal wave propagating along a stretched string is described by the following equation: y (x,t) = 0.350 sin [1.25x + 99.6t], where x

More information

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area

Spine Fin Efficiency A Three Sided Pyramidal Fin of Equilateral Triangular Cross-Sectional Area Proceedings of the 006 WSEAS/IASME International Conference on Heat and Mass Transfer, Miai, Florida, USA, January 18-0, 006 (pp13-18) Spine Fin Efficiency A Three Sided Pyraidal Fin of Equilateral Triangular

More information

MECHANICS OF MATERIALS Design of a Transmission Shaft

MECHANICS OF MATERIALS Design of a Transmission Shaft Design of a Transission Shaft If power is transferred to and fro the shaft by ygears or sprocket wheels, the shaft is subjected to transverse loading as well as shear loading. Noral stresses due to transverse

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics Physics 115.3 MIDTERM TEST October 22, 2008 Tie: 90 inutes NAME: (Last) Please Print (Given) STUDENT NO.: LECTURE SECTION (please

More information

821. Study on analysis method for deepwater TTR coupled vibration of parameter vibration and vortex-induced vibration

821. Study on analysis method for deepwater TTR coupled vibration of parameter vibration and vortex-induced vibration 81. Study on analysis ethod for deepwater TTR coupled vibration of paraeter vibration and vortex-induced vibration Wu Xue-Min 1, Huang Wei-Ping Shandong Key aboratory of Ocean Engineering, Ocean University

More information

Department of Physics Preliminary Exam January 3 6, 2006

Department of Physics Preliminary Exam January 3 6, 2006 Departent of Physics Preliinary Exa January 3 6, 2006 Day 1: Classical Mechanics Tuesday, January 3, 2006 9:00 a.. 12:00 p.. Instructions: 1. Write the answer to each question on a separate sheet of paper.

More information

Problem Set 14: Oscillations AP Physics C Supplementary Problems

Problem Set 14: Oscillations AP Physics C Supplementary Problems Proble Set 14: Oscillations AP Physics C Suppleentary Probles 1 An oscillator consists of a bloc of ass 050 g connected to a spring When set into oscillation with aplitude 35 c, it is observed to repeat

More information

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field

THE ROCKET EXPERIMENT 1. «Homogenous» gravitational field THE OCKET EXPEIENT. «Hoogenous» gravitational field Let s assue, fig., that we have a body of ass Μ and radius. fig. As it is known, the gravitational field of ass Μ (both in ters of geoetry and dynaics)

More information

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

INTRODUCTION DEFINITION OF FLUID. U p F FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION INTRODUCTION DEFINITION OF FLUID plate solid F at t = 0 t > 0 = F/A plate U p F fluid t 0 t 1 t 2 t 3 FLUID IS A SUBSTANCE THAT CAN NOT SUPPORT SHEAR FORCES OF ANY MAGNITUDE WITHOUT CONTINUOUS DEFORMATION

More information

Pressure measurements

Pressure measurements Next Previous 8/6/01 Chapter six + seven Pressure and Flow easureents Laith Batarseh Hoe End Basic concepts Pressure is represented as a force per unit area Absolute pressure refers to the absolute value

More information

MAE 110A. Homework 6: Solutions 11/9/2017

MAE 110A. Homework 6: Solutions 11/9/2017 MAE 110A Hoework 6: Solutions 11/9/2017 H6.1: Two kg of H2O contained in a piston-cylinder assebly, initially at 1.0 bar and 140 C undergoes an internally ersible, isotheral copression to 25 bar. Given

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Volue 19, 2013 htt://acousticalsociety.org/ ICA 2013 Montreal Montreal, Canada 2-7 June 2013 Physical Acoustics Session 1PAb: Acoustics in Microfluidics and for Particle

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6.

Reading from Young & Freedman: For this topic, read the introduction to chapter 25 and sections 25.1 to 25.3 & 25.6. PHY10 Electricity Topic 6 (Lectures 9 & 10) Electric Current and Resistance n this topic, we will cover: 1) Current in a conductor ) Resistivity 3) Resistance 4) Oh s Law 5) The Drude Model of conduction

More information

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10

Physics 140 D100 Midterm Exam 2 Solutions 2017 Nov 10 There are 10 ultiple choice questions. Select the correct answer for each one and ark it on the bubble for on the cover sheet. Each question has only one correct answer. (2 arks each) 1. An inertial reference

More information

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015

12 Towards hydrodynamic equations J Nonlinear Dynamics II: Continuum Systems Lecture 12 Spring 2015 18.354J Nonlinear Dynaics II: Continuu Systes Lecture 12 Spring 2015 12 Towards hydrodynaic equations The previous classes focussed on the continuu description of static (tie-independent) elastic systes.

More information

PART 4. Theoretical Competition

PART 4. Theoretical Competition PART 4 Theoretical Copetition Exa coission page 98 Probles in English page 99 Solutions in English page 106 Probles in three other languages and back-translations of these page 117 Exaples of student papers

More information

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE Bulletin of the Transilvania University of Braşov Series II: Forestry Wood Industry Agricultural Food Engineering Vol. 5 (54) No. 1-1 THE EFFECT OF SOLID PARTICLE SIZE UPON TIME AND SEDIMENTATION RATE

More information

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March

EN40: Dynamics and Vibrations. Midterm Examination Tuesday March EN4: Dynaics and ibrations Midter Exaination Tuesday Marc 4 14 Scool of Engineering Brown University NAME: General Instructions No collaboration of any kind is peritted on tis exaination. You ay bring

More information

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011

EN40: Dynamics and Vibrations. Final Examination Tuesday May 15, 2011 EN40: ynaics and Vibrations Final Exaination Tuesday May 15, 011 School of Engineering rown University NME: General Instructions No collaboration of any ind is peritted on this exaination. You ay use double

More information

What is mass? What is inertia? Turn to a partner and discuss. Turn to a new partner and discuss. Mass is. Newton s Law of Universal Gravitation

What is mass? What is inertia? Turn to a partner and discuss. Turn to a new partner and discuss. Mass is. Newton s Law of Universal Gravitation Turn to a partner and discuss Newton s Law of Universal Gravitation ass? Mass is the aount of atter in an object.! a easure of the inertia of an object.! easured in units of kilogras.! constant everywhere.!!

More information

PROBLEM SOLUTIONS. g, recognizing that 2 is a dimensionless. 1.1 Substituting dimensions into the given equation T 2. constant, we have.

PROBLEM SOLUTIONS. g, recognizing that 2 is a dimensionless. 1.1 Substituting dimensions into the given equation T 2. constant, we have. PROBLEM SOLUTIONS 1.1 Substituting diensions into the given equation T g, recognizing that is a diensionless constant, we have T g L or T T T LT Thus, the diensions are consistent. 1. (a) Fro x = Bt, we

More information

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page

5/09/06 PHYSICS 213 Exam #1 NAME FEYNMAN Please write down your name also on the back side of the last page 5/09/06 PHYSICS 13 Exa #1 NAME FEYNMAN Please write down your nae also on the back side of the last page 1 he figure shows a horizontal planks of length =50 c, and ass M= 1 Kg, pivoted at one end. he planks

More information

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators

Supplementary Information for Design of Bending Multi-Layer Electroactive Polymer Actuators Suppleentary Inforation for Design of Bending Multi-Layer Electroactive Polyer Actuators Bavani Balakrisnan, Alek Nacev, and Elisabeth Sela University of Maryland, College Park, Maryland 074 1 Analytical

More information

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition)

PH 221-2A Fall Waves - I. Lectures Chapter 16 (Halliday/Resnick/Walker, Fundamentals of Physics 9 th edition) PH 1-A Fall 014 Waves - I Lectures 4-5 Chapter 16 (Halliday/Resnick/Walker, Fundaentals of Physics 9 th edition) 1 Chapter 16 Waves I In this chapter we will start the discussion on wave phenoena. We will

More information

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynamics of Turbopump Systems: The Shuttle Engine 6.5, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 30: Dynaics of Turbopup Systes: The Shuttle Engine Dynaics of the Space Shuttle Main Engine Oxidizer Pressurization Subsystes Selected Sub-Model

More information

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm.

( ) ( ) 1. (a) The amplitude is half the range of the displacement, or x m = 1.0 mm. 1. (a) The aplitude is half the range of the displaceent, or x = 1.0. (b) The axiu speed v is related to the aplitude x by v = ωx, where ω is the angular frequency. Since ω = πf, where f is the frequency,

More information

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a

A4 The fundamental. A5 One needs to know the exact length. Q0 6 Q0 An ambulance emits sound with a frequency of 2600 Hz. After 18 Q0 passing a FIRS MAJOR -041 1 Figure 1 shows the snap shot of part of a transverse wave 17 traveling along a string. Which stateent about the otion 7 of eleents of the string is correct? For the eleent at A1 S, the

More information

Number of extra papers used if any

Number of extra papers used if any Last Nae: First Nae: Thero no. ME 00 Therodynaics 1 Fall 018 Exa 1 Circle your instructor s last nae Division 1 (7:0): Naik Division (1:0): Wassgren Division 6 (11:0): Sojka Division (9:0): Choi Division

More information

Chapter 2: Introduction to Damping in Free and Forced Vibrations

Chapter 2: Introduction to Damping in Free and Forced Vibrations Chapter 2: Introduction to Daping in Free and Forced Vibrations This chapter ainly deals with the effect of daping in two conditions like free and forced excitation of echanical systes. Daping plays an

More information

Polymerization Technology Laboratory Course

Polymerization Technology Laboratory Course Polymerization Technology Laboratory Course Viscometry/Rheometry Tasks 1. Comparison of the flow behavior of polystyrene- solution and dispersion systems 2. Determination of the flow behaviour of polyvinylalcohol

More information

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste,

Non-Newtonian fluids is the fluids in which shear stress is not directly proportional to deformation rate, such as toothpaste, CHAPTER1: Basic Definitions, Zeroth, First, and Second Laws of Thermodynamics 1.1. Definitions What does thermodynamic mean? It is a Greeks word which means a motion of the heat. Water is a liquid substance

More information

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2!

Q5 We know that a mass at the end of a spring when displaced will perform simple m harmonic oscillations with a period given by T = 2! Chapter 4.1 Q1 n oscillation is any otion in which the displaceent of a particle fro a fixed point keeps changing direction and there is a periodicity in the otion i.e. the otion repeats in soe way. In

More information

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers

Ocean 420 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers Ocean 40 Physical Processes in the Ocean Project 1: Hydrostatic Balance, Advection and Diffusion Answers 1. Hydrostatic Balance a) Set all of the levels on one of the coluns to the lowest possible density.

More information

Preface to the Instructor

Preface to the Instructor Preface to the Instructor With the exception of soe open-ended probles, this Instructor s Solutions Manual contains a solution to each of the nuerical probles in the textbook An Introduction to Mechanical

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Simple Schemes of Multi anchored Flexible Walls Dynamic Behavior

Simple Schemes of Multi anchored Flexible Walls Dynamic Behavior 6 th International Conference on Earthquake Geotechnical Engineering -4 Noveber 05 Christchurch, New Zealand Siple Schees of Multi anchored Flexible Walls Dynaic Behavior A. D. Garini ABSTRACT Siple schees

More information

Chem/Biochem 471 Exam 3 12/18/08 Page 1 of 7 Name:

Chem/Biochem 471 Exam 3 12/18/08 Page 1 of 7 Name: Che/Bioche 47 Exa /8/08 Pae of 7 Please leave the exa paes stapled toether. The forulas are on a separate sheet. This exa has 5 questions. You ust answer at least 4 of the questions. You ay answer ore

More information

CHAPTER ONE. Physics and the Life Sciences

CHAPTER ONE. Physics and the Life Sciences Solution anual for Physics for the Life Sciences 2nd Edition by Allang Link download full: http://testbankair.co/download/solution-anual-forphysics-for-the-life-sciences-2nd-edition-by-allang/ CHAPTER

More information

Problem 1.1 [3] Some of these substances exhibit characteristics of solids and fluids under different conditions.

Problem 1.1 [3] Some of these substances exhibit characteristics of solids and fluids under different conditions. Proble. []. A nuber of coon substances are Tar Silly Putty Modeling clay Wax Sand Jello Toothpaste Shaving crea Soe of these aterials exhibit characteristics of both solid and fluid behavior under different

More information

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10

Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 Problem 1.6 Make a guess at the order of magnitude of the mass (e.g., 0.01, 0.1, 1.0, 10, 100, or 1000 lbm or kg) of standard air that is in a room 10 ft by 10 ft by 8 ft, and then compute this mass in

More information

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL

2. A crack which is oblique (Swedish sned ) with respect to the xy coordinate system is to be analysed. TMHL (Del I, teori; 1 p.) 1. In fracture echanics, the concept of energy release rate is iportant. Fro the fundaental energy balance of a case with possible crack growth, one usually derives the equation where

More information

Chapter 8. Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia

Chapter 8. Lecture Notes Dr. Rakhmad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Chapter 8 Screw, Fasteners and the Design of Nonperanent Joint Lecture Notes Dr. Rakhad Arief Siregar Kolej Universiti Kejuruteraan Utara Malaysia Mechanical Engineering Design Sixth Metric Edition J.E.

More information

Monitoring and system identification of suspension bridges: An alternative approach

Monitoring and system identification of suspension bridges: An alternative approach Monitoring and syste identification of suspension bridges: An alternative approach Erdal Şafak Boğaziçi University, Kandilli Observatory and Earthquake Reseach Institute, Istanbul, Turkey Abstract This

More information

ME325 EXAM I (Sample)

ME325 EXAM I (Sample) ME35 EXAM I (Sample) NAME: NOTE: COSED BOOK, COSED NOTES. ONY A SINGE 8.5x" ORMUA SHEET IS AOWED. ADDITIONA INORMATION IS AVAIABE ON THE AST PAGE O THIS EXAM. DO YOUR WORK ON THE EXAM ONY (NO SCRATCH PAPER

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To determine the torsional deformation of a perfectly elastic circular shaft. To determine the support reactions when these reactions cannot be determined solely from the moment equilibrium

More information

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation

Today s s topics are: Collisions and Momentum Conservation. Momentum Conservation Today s s topics are: Collisions and P (&E) Conservation Ipulsive Force Energy Conservation How can we treat such an ipulsive force? Energy Conservation Ipulsive Force and Ipulse [Exaple] an ipulsive force

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS 00 The McGraw-Hill Copanies, Inc. All rights reserved. T Edition CHAPTER MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University

More information

Only if handing in. Name: Student No.: Page 2 of 7

Only if handing in. Name: Student No.: Page 2 of 7 UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 10, 2014 2:00 PM 2.5 HOURS CHE 211F FLUID MECHANICS EXAMINER: PROFESSOR D.G. ALLEN ANSWER ALL SEVEN (7) QUESTIONS

More information

CHAPTER 4 The Integral Forms of the Fundamental Laws

CHAPTER 4 The Integral Forms of the Fundamental Laws CHAPTER 4 The Integral Forms of the Fundamental Laws FE-type Exam Review Problems: Problems 4- to 4-5 4 (B) 4 (D) 4 (A) 44 (D) p m ρa A π 4 7 87 kg/s RT 87 9 Refer to the circle of Problem 47: 757 Q A

More information

Particle Kinetics Homework

Particle Kinetics Homework Chapter 4: article Kinetics Hoework Chapter 4 article Kinetics Hoework Freefor c 2018 4-1 Chapter 4: article Kinetics Hoework 4-2 Freefor c 2018 Chapter 4: article Kinetics Hoework Hoework H.4. Given:

More information

ABSTRACT INTRODUCTION

ABSTRACT INTRODUCTION Wave Resistance Prediction of a Cataaran by Linearised Theory M.INSEL Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, TURKEY A.F.MOLLAND, J.F.WELLICOME Departent of

More information

Title. Author(s)Izumida, Yuki; Okuda, Koji. CitationPhysical review E, 80(2): Issue Date Doc URL. Rights. Type.

Title. Author(s)Izumida, Yuki; Okuda, Koji. CitationPhysical review E, 80(2): Issue Date Doc URL. Rights. Type. Title Onsager coefficients of a finite-tie Carnot cycle Author(s)Izuida, Yuki; Okuda, Koji CitationPhysical review E, 80(2): 021121 Issue Date 2009-08 Doc URL http://hdl.handle.net/2115/39348 Rights 2009

More information

In the session you will be divided into groups and perform four separate experiments:

In the session you will be divided into groups and perform four separate experiments: Mechanics Lab (Civil Engineers) Nae (please print): Tutor (please print): Lab group: Date of lab: Experients In the session you will be divided into groups and perfor four separate experients: (1) air-track

More information

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y.

Stress Transformation Equations: u = +135 (Fig. a) s x = 80 MPa s y = 0 t xy = 45 MPa. we obtain, cos u + t xy sin 2u. s x = s x + s y. 014 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently 9 7. Determine the normal stress and shear stress acting

More information

DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS *

DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS * IJST, Transactions of Mechanical Engineering, Vol. 39, No. M1, pp 89-100 Printed in The Islaic Republic of Iran, 2015 Shira University DESIGN OF THE DIE PROFILE FOR THE INCREMENTAL RADIAL FORGING PROCESS

More information

Periodic Motion is everywhere

Periodic Motion is everywhere Lecture 19 Goals: Chapter 14 Interrelate the physics and atheatics of oscillations. Draw and interpret oscillatory graphs. Learn the concepts of phase and phase constant. Understand and use energy conservation

More information

At the end of this lesson, the students should be able to understand

At the end of this lesson, the students should be able to understand Instructional Objectives At the end of this lesson, the students should be able to understand Power screw echanis. The thread fors used in power screws. Torque required to raise and lower a load in a power

More information

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY

IDE 110 Mechanics of Materials Spring 2006 Final Examination FOR GRADING ONLY Spring 2006 Final Examination STUDENT S NAME (please print) STUDENT S SIGNATURE STUDENT NUMBER IDE 110 CLASS SECTION INSTRUCTOR S NAME Do not turn this page until instructed to start. Write your name on

More information

Ufuk Demirci* and Feza Kerestecioglu**

Ufuk Demirci* and Feza Kerestecioglu** 1 INDIRECT ADAPTIVE CONTROL OF MISSILES Ufuk Deirci* and Feza Kerestecioglu** *Turkish Navy Guided Missile Test Station, Beykoz, Istanbul, TURKEY **Departent of Electrical and Electronics Engineering,

More information

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions

Introduction to Robotics (CS223A) (Winter 2006/2007) Homework #5 solutions Introduction to Robotics (CS3A) Handout (Winter 6/7) Hoework #5 solutions. (a) Derive a forula that transfors an inertia tensor given in soe frae {C} into a new frae {A}. The frae {A} can differ fro frae

More information