( )! ±" and g( x)! ±" ], or ( )! 0 ] as x! c, x! c, x! c, or x! ±". If f!(x) g!(x) "!,

Size: px
Start display at page:

Download "( )! ±" and g( x)! ±" ], or ( )! 0 ] as x! c, x! c, x! c, or x! ±". If f!(x) g!(x) "!,"

Transcription

1 IV. MORE CALCULUS There are some miscellaneous calculus topics to cover today. Though limits have come up a couple of times, I assumed prior knowledge, or at least that the idea makes sense. Limits are pretty straightforward. If f is a function defined on a neighborhood of a point x, then the limit of the function as it approaches x is!! lim x" x f (x if for all! > 0 there is some! > 0 such that f ( x!! < " whenever x! x but these points are less than distance! away from each other. In other words, some point in the domain, not much different from x, will give you a value which is as close to! as you like. A function f is continuous at a point x if and only if f ( x = lim f x x! x (. This makes finding limits very easy where the function is continuous. The tougher cases are when we have zeros in the denominator, or when taking a limit approaching infinity. These are the conventions: lim x = " x!" 1 lim x!0 x = "# lim x = "# x!"# lim 1 x!0 x = " 1 lim x!" x = 0 These are all fine if you have a problem with only one thing going to a point at which it is not defined; what about two? This is my favorite example: x lim x!" x =? lim x x!0 x =? Judging by the rules above, as the function approaches either of these points, it would see to go off to zero or to infinity. The function in question is, of course, essentially the constant function f ( x = 1. Writing it this way means that it is not defined at these two points, but everywhere else it would equal one so these limits are equal to one. Cases like 0 0, 0! ", and!! are called indeterminate forms. When evaluating limits that take one of these forms, we use L Hôpital s rule: (! ±" and g( x! ±" ], or (! 0 ] as x! c, x! c, x! c, or x! ±". If f!(x g!(x "!, Let f,g : X! R, X! R. Suppose that [ f x that [ f ( x! 0 and g x then f (x g(x!!. Fall 2007 math class notes, page 27

2 This can be used to verify that the limit of f ( x = x x is indeed one at the points in question. Keep in mind that L Hôpital s rule works only for these indeterminate forms. However, it always works in these cases, provided the derivative exists. If the derivative is still an indeterminate form, you can apply the rule again. When you have interesting functions limits may be more complicated. Here are some to keep in mind, as n = 1,2,3, goes to positive infinity: If x > 0, then x 1 n! 1 If x < 1, then x n! 0 For all x, x n n!! 0 If! > 0, then n!" # 0 n If! < 0,! i "! n $ If! < 0, i=1 $! i " 1 i=0 1#! 1#! (lnn n! 0 n 1 n! 1 While on the topic of interesting functions, some polynomials have tricky derivatives. One way to cope with some of these is to use the differential approach mentioned previous. However, consider this wacky function: y = 2 x What is dy dx? You can t use the power rule here that works only when you have a constant (not an independent or dependent variable as the exponent. When you have something to the power of x, try this trick: ln y = x ln2 Then take the differential: dy y = dx ln2 Substituting back in the original y = 2 x and rearranging, dy dx = 2x ln2 Logarithms, exponentials, and other transformations are useful tricks when trying to differentiate difficult functions. Multiple integrals show up a few times. Let s say you have some function z = f ( x, y, and you want to find the volume of the area underneath some area! in the x-y plane. This is written as: V = ""! f ( x, ydx dy Fall 2007 math class notes, page 28

3 First, you need to identify the values that one of the variables runs over, and then express the other variable s values in these terms. For instance, suppose! is the unit circle. Then x runs from!1 to +1. Given a particular x, y takes values between! 1! x 2 and 1! x 2. Let s let f x, y ( = x 2 y 2. This problem is then rewritten: x=1 $ y=# 1# x 2 ' V = "" f ( x, ydx dy = x 2 y 2 dy! " " dx % & ( x=#1 y=# 1# x 2 We first integrate with respect to the innermost term, and evaluate at the limits. x=1 " 1 V = 3 x2 y 3 y= 1! x 2 % 2 ( # $ y=! 1! x 2 & ' dx = ( 3 x2 1! x 2 x=!1 x=1 x=!1 ( 3 2 ( dx At this point, we are simply integrating a function of one variable, which we ve reviewed. This iterative procedure works for when for triple, etc., integrals. The number of years it takes students to complete a PhD is distributed: f ( t = 0.187e!1.87t. The starting salaries of new PhDs in economics is distributed: g( y = ( 2 1! 2" exp $ & # y # µ % 2! 2 ' ( As before, µ = 56,412 and! = 8,273. Expected utility is discounted in the following manner: U ( y = (!y " #y 2 + $ (% " t What is the expected utility of future consumption for a person starting a PhD program? Oliver and I go out rent a movie, not knowing how much we will enjoy it. My valuation of the movie ( v m and my friend s valuation ( v o are jointly distributed uniformly between $0 and $1; that is: ( = 1 f v m,v f What is the expected value of our joint benefit, E[v m + v o ]? Earlier I used the fact that the first derivative can be used to approximate the change in a function:!y " f #( x!x Fall 2007 math class notes, page 29

4 This is sometimes called a first-order approximation. It is particularly good when the function is approximately linear and when!x is fairly small. A better approximation would use the second derivative to compensate for this error:!y " f #( x!x f ## x ( (!x 2 This has the property that it corrects for very nonlinear functions, and corrects more the farther you move from x. This is often called a second-order approximation of the function f. Because it s a quadratic (the derivatives evaluated at x are constants as far as we re concerned, it might be a lot easier to work with than the function f itself. These approximations may come up frequently in macro. They are derived from a Taylor series or a Maclaurin series. This principle is stated in many ways. Let f ( k denote the k-th derivative of f. In the univariate case,! Let f : X! R be C X (infinitely differentiable on X! R. f (x +!x " f (x = # $ k =1 ((!x k % f ( k (x k! Then Let f : X! R be C X m on X! R. Then there exists some point ˆx in the interval from x to (x +!x such that f (x +!x " f (x =! k =1 ((#x k $ f k (x k! +(!x m " f m ( ˆx m! Let f : X! R be C m X on X! R. Then there is some remainder function such that f (x +!x " f (x =! m k =1 (("x k # f ( k (x k!+ R( x,"x,m, with R(x,!x,m (!x m " 0 as!x " 0 or m! ". All of these can be generalized to the multivariate case, for vectors x and!x, by replacing the derivatives with the appropriate matrix of derivatives, and replacing the!x k with a suitable arrangement of multiplications of the vector!x. For instance, the second order Taylor approximation looks like: f (x +!x " f (x! #f #x!x + 1! x $ 2 #2 f #x# x $!x Consult Simon and Blume (Chapter 30 for more on this. Derivatives are also used to determine concavity and convexity of functions. A function f : X! R, where X! Rk, is concave if for any! "[0,1], f (!x + ( 1"! x# $! f ( x + ( 1"! f ( x# for any x and x! in X. This relationship for concave functions is sometimes called Jensen s inequality. Alternatively, the function f : X! R is convex if f is concave (that is, the inequality above is reversed. When Jensen s inequality holds strictly for all x! x " and! "(0,1, the function is strictly concave. My utility function is strictly concave in consumption. I have an initial wealth of $1,089. My friend Oliver offers me a fair deal this time: heads, I get $212; tails, I lose $212. What does accepting this bet do to my expected utility? Fall 2007 math class notes, page 30

5 Oliver and I both have the same strictly concave utility function. However, he has managed to amass much more wealth than I have. His wealth is $12,749, and mine is $1,089. Society s aggregate welfare is the sum of our utilities. Would it be a social improvement to redistribute some money to me? What is the optimal amount of redistribution? An interpretation of Jensen s inequality is that the expected output of a concave function is less than the value of the expected input. This appears often when dealing with expected utility. Here are two properties that are equivalent to the definition of a concave function. concave if and only if: The continuously differentiable function f : X! R, defined on X! R k, is f ( x +!x " f ( x + f # ( x!x (for k = 1 f ( x +!x " f ( x + #f!x (for k > 1 #x provided x and x +!x are both in X. The inequality holds strictly for all!x " 0 if and only if the function is strictly concave. The twice continuously differentiable function f : X! R, defined on X! R k, is concave if and only if: f!! ( x " 0 (for k = 1!x " D 2 f ( x!x # 0 (for k > 1 for all!x in R k. The inequality holds strictly for all!x " 0 if and only if the function is strictly concave. The second theorem is very useful. Often this is called the second derivative test for concavity. In each of these theorems, reversing the sign of the inequality gives the condition equivalent to convexity. Is the utility function U ( c = ln( c concave? Verify this all three ways. Is the utility function U ( c, h = Ac a h 1!" concave in each of its variables? (That is, use the k = 1 conditions. ( " 0 Can a function be both concave and convex? Yes, but this requires that f!! x and f!! ( x " 0, which means pretty clearly that f!! ( x = 0. An affine function on a set X is a function that is both concave and convex on X. From the definition of concavity and convexity, we see that affine functions have the property that ( ( # =! f ( x + ( 1"! f ( x# f!x + 1"! x Fall 2007 math class notes, page 31

6 for! between 0 and 1, inclusive. It follows that a function f : X! R, X! R k, is affine if and only if it can be expressed in the form: f ( x = a! x + b where a is a k-dimensional vector, and b one-dimensional. [You ve doubtlessly heard these called linear functions before, and you ll probably hear them carelessly called linear functions again, but there s a difference.] A linear function is a one that for any real! and!, f (!x + " x# =! f ( x + " f ( x# By setting! = "# and x = x!, you can see that a proper linear function must run through the origin. This means that linear functions take the form: f ( x = a! x It s a picky difference, but one that you should at least be aware of. When people say a linear transformation of x, they mean that x has been multiplied by something. When you are told to take an affine transformation of x, you multiply it by something and then add on something else. A tax is called proportional if the average tax rate (total tax over total income is the same at all levels of income. It is called progressive if this is increasing; regressive if it is decreasing. A linear tax schedule (that is, total tax is a linear function of total income is necessarily proportional. An affine tax schedule need not be. Moving on from technical nitpicking, a property of functions that shows up frequently is homogeneity. A function f : X! R, X! R k, is homogeneous of degree r if for any! > 0 : f (!x =! r f ( x In other words, a function is homogenous of degree one if doubling all the inputs means all outputs are doubled; of degree two if doubling inputs means outputs are quadrupled; of degree three if doubling inputs leads to an eight-fold increase in output; and so forth. The Cobb-Douglas production function, F( K, L = AK! L 1"!, is homogeneous of degree one in capital and labor. A linear function is homogeneous of degree one. An affine function need not be. (Think back to taxes! The utility function U ( c =! lnc isn t homogeneous of degree anything. Fall 2007 math class notes, page 32

7 The demand functions: x 1 w, p 1, p 2 are homogeneous of degree zero in w, p 1, p 2 in( p 1, p 2. ( =!w p 1, x 2 ( w, p 1, p 2 = (1! "w p 2 (. They are homogeneous of degree minus one Homogeneity of degree r is abbreviated hd(r. A very, very important property of homogeneous functions is Euler s theorem: only if: for all x in X. The continuously differentiable function f : X! R, X! R k, is hd(r if and ( k! f x " x i=1 i = r f x!x i ( ( = AK! L 1"!, is hd(1. Profits The Cobb-Douglas production function, F K, L are given by! ( K, L = pf( K, L " wl " rk, where p is the price of output, w the wage rate, and r the rental rate on capital. Given that the equilibrium factor prices are marginal revenue products, what are pure profits? This example illustrates one reason why Euler s theorem is important. It should also indicate that chances are pretty good you ll be working with lots of hd(1 functions in economics. A final note about homogenous functions is this theorem.!i = 1,2,,k,! f x If the continuously differentiable function f : X! R, X! R k, is hd(r, then (!x i is hd(r-1 in X. The Cobb-Douglas production function, F( K, L = AK! L 1"!, is hd(1. What happens to the marginal product of labor when you increase all inputs n-fold? References: Limits: Salas and Hille (Chapter 2; Sydsæter et al. (Chapter 3 Taylor series: Simon and Blume (Chapter 30; Mas-Collel et al. (Math Appendix Convexity and concavity: Simon and Blume (Chapter 21; Mas-Collel et al. (Math. Appendix Linear functions, affine functions, and cousins: Rockafellar. Homogeneity: Simon and Blume (Chapter 20 Fall 2007 math class notes, page 33

f( x) f( y). Functions which are not one-to-one are often called many-to-one. Take the domain and the range to both be all the real numbers:

f( x) f( y). Functions which are not one-to-one are often called many-to-one. Take the domain and the range to both be all the real numbers: I. UNIVARIATE CALCULUS Given two sets X and Y, a function is a rule that associates each member of X with exactly one member of Y. That is, some x goes in, and some y comes out. These notations are used

More information

Sometimes the domains X and Z will be the same, so this might be written:

Sometimes the domains X and Z will be the same, so this might be written: II. MULTIVARIATE CALCULUS The first lecture covered functions where a single input goes in, and a single output comes out. Most economic applications aren t so simple. In most cases, a number of variables

More information

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW

Math Review ECON 300: Spring 2014 Benjamin A. Jones MATH/CALCULUS REVIEW MATH/CALCULUS REVIEW SLOPE, INTERCEPT, and GRAPHS REVIEW (adapted from Paul s Online Math Notes) Let s start with some basic review material to make sure everybody is on the same page. The slope of a line

More information

In economics, the amount of a good x demanded is a function of the price of that good. In other words,

In economics, the amount of a good x demanded is a function of the price of that good. In other words, I. UNIVARIATE CALCULUS Given two sets X and Y, a function is a rule that associates each member of X with eactly one member of Y. That is, some goes in, and some y comes out. These notations are used to

More information

Tvestlanka Karagyozova University of Connecticut

Tvestlanka Karagyozova University of Connecticut September, 005 CALCULUS REVIEW Tvestlanka Karagyozova University of Connecticut. FUNCTIONS.. Definition: A function f is a rule that associates each value of one variable with one and only one value of

More information

Economics th April 2011

Economics th April 2011 Economics 401 8th April 2011 Instructions: Answer 7 of the following 9 questions. All questions are of equal weight. Indicate clearly on the first page which questions you want marked. 1. Answer both parts.

More information

MATH 31B: BONUS PROBLEMS

MATH 31B: BONUS PROBLEMS MATH 31B: BONUS PROBLEMS IAN COLEY LAST UPDATED: JUNE 8, 2017 7.1: 28, 38, 45. 1. Homework 1 7.2: 31, 33, 40. 7.3: 44, 52, 61, 71. Also, compute the derivative of x xx. 2. Homework 2 First, let me say

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo Economics, HKU September 17, 2018 Luo, Y. (Economics, HKU) ME September 17, 2018 1 / 46 Static Optimization and Extreme Values In this topic, we will study goal

More information

Econ Slides from Lecture 10

Econ Slides from Lecture 10 Econ 205 Sobel Econ 205 - Slides from Lecture 10 Joel Sobel September 2, 2010 Example Find the tangent plane to {x x 1 x 2 x 2 3 = 6} R3 at x = (2, 5, 2). If you let f (x) = x 1 x 2 x3 2, then this is

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Calculus Review Session. Rob Fetter Duke University Nicholas School of the Environment August 13, 2015

Calculus Review Session. Rob Fetter Duke University Nicholas School of the Environment August 13, 2015 Calculus Review Session Rob Fetter Duke University Nicholas School of the Environment August 13, 2015 Schedule Time Event 2:00 2:20 Introduction 2:20 2:40 Functions; systems of equations 2:40 3:00 Derivatives,

More information

Constrained optimization.

Constrained optimization. ams/econ 11b supplementary notes ucsc Constrained optimization. c 2016, Yonatan Katznelson 1. Constraints In many of the optimization problems that arise in economics, there are restrictions on the values

More information

Continuity and One-Sided Limits

Continuity and One-Sided Limits Continuity and One-Sided Limits 1. Welcome to continuity and one-sided limits. My name is Tuesday Johnson and I m a lecturer at the University of Texas El Paso. 2. With each lecture I present, I will start

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

Approximation, Taylor Polynomials, and Derivatives

Approximation, Taylor Polynomials, and Derivatives Approximation, Taylor Polynomials, and Derivatives Derivatives for functions f : R n R will be central to much of Econ 501A, 501B, and 520 and also to most of what you ll do as professional economists.

More information

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x

ln(9 4x 5 = ln(75) (4x 5) ln(9) = ln(75) 4x 5 = ln(75) ln(9) ln(75) ln(9) = 1. You don t have to simplify the exact e x + 4e x Math 11. Exponential and Logarithmic Equations Fall 016 Instructions. Work in groups of 3 to solve the following problems. Turn them in at the end of class for credit. Names. 1. Find the (a) exact solution

More information

Math 110 Final Exam General Review. Edward Yu

Math 110 Final Exam General Review. Edward Yu Math 110 Final Exam General Review Edward Yu Da Game Plan Solving Limits Regular limits Indeterminate Form Approach Infinities One sided limits/discontinuity Derivatives Power Rule Product/Quotient Rule

More information

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4

Solow Growth Model. Michael Bar. February 28, Introduction Some facts about modern growth Questions... 4 Solow Growth Model Michael Bar February 28, 208 Contents Introduction 2. Some facts about modern growth........................ 3.2 Questions..................................... 4 2 The Solow Model 5

More information

Adding Production to the Theory

Adding Production to the Theory Adding Production to the Theory We begin by considering the simplest situation that includes production: two goods, both of which have consumption value, but one of which can be transformed into the other.

More information

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and

Economics 210B Due: September 16, Problem Set 10. s.t. k t+1 = R(k t c t ) for all t 0, and k 0 given, lim. and Economics 210B Due: September 16, 2010 Problem 1: Constant returns to saving Consider the following problem. c0,k1,c1,k2,... β t Problem Set 10 1 α c1 α t s.t. k t+1 = R(k t c t ) for all t 0, and k 0

More information

EC5555 Economics Masters Refresher Course in Mathematics September 2013

EC5555 Economics Masters Refresher Course in Mathematics September 2013 EC5555 Economics Masters Refresher Course in Mathematics September 013 Lecture 3 Differentiation Francesco Feri Rationale for Differentiation Much of economics is concerned with optimisation (maximise

More information

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the

ter. on Can we get a still better result? Yes, by making the rectangles still smaller. As we make the rectangles smaller and smaller, the Area and Tangent Problem Calculus is motivated by two main problems. The first is the area problem. It is a well known result that the area of a rectangle with length l and width w is given by A = wl.

More information

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017

Calculus Review Session. Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Calculus Review Session Brian Prest Duke University Nicholas School of the Environment August 18, 2017 Topics to be covered 1. Functions and Continuity 2. Solving Systems of Equations 3. Derivatives (one

More information

Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today?

Q 2.0.2: If it s 5:30pm now, what time will it be in 4753 hours? Q 2.0.3: Today is Wednesday. What day of the week will it be in one year from today? 2 Mod math Modular arithmetic is the math you do when you talk about time on a clock. For example, if it s 9 o clock right now, then it ll be 1 o clock in 4 hours. Clearly, 9 + 4 1 in general. But on a

More information

2. Limits at Infinity

2. Limits at Infinity 2 Limits at Infinity To understand sequences and series fully, we will need to have a better understanding of its at infinity We begin with a few examples to motivate our discussion EXAMPLE 1 Find SOLUTION

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS Variables, functions and slopes: A Variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify the

More information

Rice University. Fall Semester Final Examination ECON501 Advanced Microeconomic Theory. Writing Period: Three Hours

Rice University. Fall Semester Final Examination ECON501 Advanced Microeconomic Theory. Writing Period: Three Hours Rice University Fall Semester Final Examination 007 ECON50 Advanced Microeconomic Theory Writing Period: Three Hours Permitted Materials: English/Foreign Language Dictionaries and non-programmable calculators

More information

Mathematics Review Revised: January 9, 2008

Mathematics Review Revised: January 9, 2008 Global Economy Chris Edmond Mathematics Review Revised: January 9, 2008 Mathematics is a precise and efficient language for expressing quantitative ideas, including many that come up in business. What

More information

First Welfare Theorem

First Welfare Theorem First Welfare Theorem Econ 2100 Fall 2017 Lecture 17, October 31 Outline 1 First Welfare Theorem 2 Preliminaries to Second Welfare Theorem Past Definitions A feasible allocation (ˆx, ŷ) is Pareto optimal

More information

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series.

MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. MATH 1231 MATHEMATICS 1B CALCULUS. Section 5: - Power Series and Taylor Series. The objective of this section is to become familiar with the theory and application of power series and Taylor series. By

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

Final Exam Review Packet

Final Exam Review Packet 1 Exam 1 Material Sections A.1, A.2 and A.6 were review material. There will not be specific questions focused on this material but you should know how to: Simplify functions with exponents. Factor quadratics

More information

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y))

2. Which of the following is the ECONOMISTS inverse of the function y = 9/x 2 (i.e. find x as a function of y, x = f(y)) Anwers for Review Quiz #1. Material Covered. Klein 1, 2; Schaums 1, 2 1. Solve the following system of equations for x, y and z: x + y = 2 2x + 2y + z = 5 7x + y + z = 9 Answers: x = 1, y = 1, z = 1. 2.

More information

B553 Lecture 1: Calculus Review

B553 Lecture 1: Calculus Review B553 Lecture 1: Calculus Review Kris Hauser January 10, 2012 This course requires a familiarity with basic calculus, some multivariate calculus, linear algebra, and some basic notions of metric topology.

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

Section 1.x: The Variety of Asymptotic Experiences

Section 1.x: The Variety of Asymptotic Experiences calculus sin frontera Section.x: The Variety of Asymptotic Experiences We talked in class about the function y = /x when x is large. Whether you do it with a table x-value y = /x 0 0. 00.0 000.00 or with

More information

Limits and Continuity

Limits and Continuity Limits and Continuity MATH 151 Calculus for Management J. Robert Buchanan Department of Mathematics Fall 2018 Objectives After this lesson we will be able to: Determine the left-hand and right-hand limits

More information

Dynamic Problem Set 1 Solutions

Dynamic Problem Set 1 Solutions Dynamic Problem Set 1 Solutions Jonathan Kreamer July 15, 2011 Question 1 Consider the following multi-period optimal storage problem: An economic agent imizes: c t} T β t u(c t ) (1) subject to the period-by-period

More information

ARE211, Fall 2005 CONTENTS. 5. Characteristics of Functions Surjective, Injective and Bijective functions. 5.2.

ARE211, Fall 2005 CONTENTS. 5. Characteristics of Functions Surjective, Injective and Bijective functions. 5.2. ARE211, Fall 2005 LECTURE #18: THU, NOV 3, 2005 PRINT DATE: NOVEMBER 22, 2005 (COMPSTAT2) CONTENTS 5. Characteristics of Functions. 1 5.1. Surjective, Injective and Bijective functions 1 5.2. Homotheticity

More information

Final Examination with Answers: Economics 210A

Final Examination with Answers: Economics 210A Final Examination with Answers: Economics 210A December, 2016, Ted Bergstrom, UCSB I asked students to try to answer any 7 of the 8 questions. I intended the exam to have some relatively easy parts and

More information

Business Calculus

Business Calculus Business Calculus 978-1-63545-025-5 To learn more about all our offerings Visit Knewtonalta.com Source Author(s) (Text or Video) Title(s) Link (where applicable) OpenStax Senior Contributing Authors: Gilbert

More information

Descriptive Statistics (And a little bit on rounding and significant digits)

Descriptive Statistics (And a little bit on rounding and significant digits) Descriptive Statistics (And a little bit on rounding and significant digits) Now that we know what our data look like, we d like to be able to describe it numerically. In other words, how can we represent

More information

REVIEW OF MATHEMATICAL CONCEPTS

REVIEW OF MATHEMATICAL CONCEPTS REVIEW OF MATHEMATICAL CONCEPTS 1 Variables, functions and slopes A variable is any entity that can take different values such as: price, output, revenue, cost, etc. In economics we try to 1. Identify

More information

Section Taylor and Maclaurin Series

Section Taylor and Maclaurin Series Section.0 Taylor and Maclaurin Series Ruipeng Shen Feb 5 Taylor and Maclaurin Series Main Goal: How to find a power series representation for a smooth function us assume that a smooth function has a power

More information

New Notes on the Solow Growth Model

New Notes on the Solow Growth Model New Notes on the Solow Growth Model Roberto Chang September 2009 1 The Model The firstingredientofadynamicmodelisthedescriptionofthetimehorizon. In the original Solow model, time is continuous and the

More information

Economic Growth: Lecture 8, Overlapping Generations

Economic Growth: Lecture 8, Overlapping Generations 14.452 Economic Growth: Lecture 8, Overlapping Generations Daron Acemoglu MIT November 20, 2018 Daron Acemoglu (MIT) Economic Growth Lecture 8 November 20, 2018 1 / 46 Growth with Overlapping Generations

More information

The Real Business Cycle Model

The Real Business Cycle Model The Real Business Cycle Model Macroeconomics II 2 The real business cycle model. Introduction This model explains the comovements in the fluctuations of aggregate economic variables around their trend.

More information

EconS Cost Structures

EconS Cost Structures EconS 425 - Cost Structures Eric Dunaway Washington State University eric.dunaway@wsu.edu Industrial Organization Eric Dunaway (WSU) EconS 425 Industrial Organization 1 / 34 Introduction Today, we ll review

More information

EconS 301. Math Review. Math Concepts

EconS 301. Math Review. Math Concepts EconS 301 Math Review Math Concepts Functions: Functions describe the relationship between input variables and outputs y f x where x is some input and y is some output. Example: x could number of Bananas

More information

Consider this problem. A person s utility function depends on consumption and leisure. Of his market time (the complement to leisure), h t

Consider this problem. A person s utility function depends on consumption and leisure. Of his market time (the complement to leisure), h t VI. INEQUALITY CONSTRAINED OPTIMIZATION Application of the Kuhn-Tucker conditions to inequality constrained optimization problems is another very, very important skill to your career as an economist. If

More information

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials

Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Math 10b Ch. 8 Reading 1: Introduction to Taylor Polynomials Introduction: In applications, it often turns out that one cannot solve the differential equations or antiderivatives that show up in the real

More information

Statistics 100A Homework 5 Solutions

Statistics 100A Homework 5 Solutions Chapter 5 Statistics 1A Homework 5 Solutions Ryan Rosario 1. Let X be a random variable with probability density function a What is the value of c? fx { c1 x 1 < x < 1 otherwise We know that for fx to

More information

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity

7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity 30C00300 Mathematical Methods for Economists (6 cr) 7) Important properties of functions: homogeneity, homotheticity, convexity and quasi-convexity Abolfazl Keshvari Ph.D. Aalto University School of Business

More information

Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) Jonathan Heathcote. updated, March The household s problem X

Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) Jonathan Heathcote. updated, March The household s problem X Simple Consumption / Savings Problems (based on Ljungqvist & Sargent, Ch 16, 17) subject to for all t Jonathan Heathcote updated, March 2006 1. The household s problem max E β t u (c t ) t=0 c t + a t+1

More information

Is there a rigorous high school limit proof that 0 0 = 1?

Is there a rigorous high school limit proof that 0 0 = 1? Is there a rigorous high school limit proof that 0 0 =? Peter Haggstrom www.gotohaggstrom.com mathsatbondibeach@gmail.com February 20, 208 A bare hands proof Youtube contains a number of videos seemingly

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS

LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS LIMITS AT INFINITY MR. VELAZQUEZ AP CALCULUS RECALL: VERTICAL ASYMPTOTES Remember that for a rational function, vertical asymptotes occur at values of x = a which have infinite its (either positive or

More information

4) Univariate and multivariate functions

4) Univariate and multivariate functions 30C00300 Mathematical Methods for Economists (6 cr) 4) Univariate and multivariate functions Simon & Blume chapters: 13, 15 Slides originally by: Timo Kuosmanen Slides amended by: Anna Lukkarinen Lecture

More information

Advanced Microeconomic Analysis, Lecture 6

Advanced Microeconomic Analysis, Lecture 6 Advanced Microeconomic Analysis, Lecture 6 Prof. Ronaldo CARPIO April 10, 017 Administrative Stuff Homework # is due at the end of class. I will post the solutions on the website later today. The midterm

More information

Index. Cambridge University Press An Introduction to Mathematics for Economics Akihito Asano. Index.

Index. Cambridge University Press An Introduction to Mathematics for Economics Akihito Asano. Index. , see Q.E.D. ln, see natural logarithmic function e, see Euler s e i, see imaginary number log 10, see common logarithm ceteris paribus, 4 quod erat demonstrandum, see Q.E.D. reductio ad absurdum, see

More information

Existence, Computation, and Applications of Equilibrium

Existence, Computation, and Applications of Equilibrium Existence, Computation, and Applications of Equilibrium 2.1 Art and Bart each sell ice cream cones from carts on the boardwalk in Atlantic City. Each day they independently decide where to position their

More information

Understanding Exponents Eric Rasmusen September 18, 2018

Understanding Exponents Eric Rasmusen September 18, 2018 Understanding Exponents Eric Rasmusen September 18, 2018 These notes are rather long, but mathematics often has the perverse feature that if someone writes a long explanation, the reader can read it much

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 The time limit for this exam is 4 hours. It has four sections. Each section includes two questions. You are

More information

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality

Math 3361-Modern Algebra Lecture 08 9/26/ Cardinality Math 336-Modern Algebra Lecture 08 9/26/4. Cardinality I started talking about cardinality last time, and you did some stuff with it in the Homework, so let s continue. I said that two sets have the same

More information

MATH 19520/51 Class 4

MATH 19520/51 Class 4 MATH 19520/51 Class 4 Minh-Tam Trinh University of Chicago 2017-10-02 1 Functions and independent ( nonbasic ) vs. dependent ( basic ) variables. 2 Cobb Douglas production function and its interpretation.

More information

One-to-one functions and onto functions

One-to-one functions and onto functions MA 3362 Lecture 7 - One-to-one and Onto Wednesday, October 22, 2008. Objectives: Formalize definitions of one-to-one and onto One-to-one functions and onto functions At the level of set theory, there are

More information

1 Functions and Graphs

1 Functions and Graphs 1 Functions and Graphs 1.1 Functions Cartesian Coordinate System A Cartesian or rectangular coordinate system is formed by the intersection of a horizontal real number line, usually called the x axis,

More information

Week 4: Calculus and Optimization (Jehle and Reny, Chapter A2)

Week 4: Calculus and Optimization (Jehle and Reny, Chapter A2) Week 4: Calculus and Optimization (Jehle and Reny, Chapter A2) Tsun-Feng Chiang *School of Economics, Henan University, Kaifeng, China September 27, 2015 Microeconomic Theory Week 4: Calculus and Optimization

More information

Finding Limits Graphically and Numerically

Finding Limits Graphically and Numerically Finding Limits Graphically and Numerically 1. Welcome to finding limits graphically and numerically. My name is Tuesday Johnson and I m a lecturer at the University of Texas El Paso. 2. With each lecture

More information

Lecture 9: Taylor Series

Lecture 9: Taylor Series Math 8 Instructor: Padraic Bartlett Lecture 9: Taylor Series Week 9 Caltech 212 1 Taylor Polynomials and Series When we first introduced the idea of the derivative, one of the motivations we offered was

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Final Exam Study Guide

Final Exam Study Guide Final Exam Study Guide Final Exam Coverage: Sections 10.1-10.2, 10.4-10.5, 10.7, 11.2-11.4, 12.1-12.6, 13.1-13.2, 13.4-13.5, and 14.1 Sections/topics NOT on the exam: Sections 10.3 (Continuity, it definition

More information

Introductory Mathematics and Statistics Summer Practice Questions

Introductory Mathematics and Statistics Summer Practice Questions University of Warwick Introductory Mathematics and Statistics Summer Practice Questions Jeremy Smith Piotr Z. Jelonek Nicholas Jackson This version: 15th August 2018 Please find below a list of warm-up

More information

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series:

Math 112 Rahman. Week Taylor Series Suppose the function f has the following power series: Math Rahman Week 0.8-0.0 Taylor Series Suppose the function f has the following power series: fx) c 0 + c x a) + c x a) + c 3 x a) 3 + c n x a) n. ) Can we figure out what the coefficients are? Yes, yes

More information

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice

Economics 101. Lecture 2 - The Walrasian Model and Consumer Choice Economics 101 Lecture 2 - The Walrasian Model and Consumer Choice 1 Uncle Léon The canonical model of exchange in economics is sometimes referred to as the Walrasian Model, after the early economist Léon

More information

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C)

1. Which one of the following points is a singular point of. f(x) = (x 1) 2/3? f(x) = 3x 3 4x 2 5x + 6? (C) Math 1120 Calculus Test 3 November 4, 1 Name In the first 10 problems, each part counts 5 points (total 50 points) and the final three problems count 20 points each Multiple choice section Circle the correct

More information

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0

8.7 Taylor s Inequality Math 2300 Section 005 Calculus II. f(x) = ln(1 + x) f(0) = 0 8.7 Taylor s Inequality Math 00 Section 005 Calculus II Name: ANSWER KEY Taylor s Inequality: If f (n+) is continuous and f (n+) < M between the center a and some point x, then f(x) T n (x) M x a n+ (n

More information

z = f (x; y) f (x ; y ) f (x; y) f (x; y )

z = f (x; y) f (x ; y ) f (x; y) f (x; y ) BEEM0 Optimization Techiniques for Economists Lecture Week 4 Dieter Balkenborg Departments of Economics University of Exeter Since the fabric of the universe is most perfect, and is the work of a most

More information

The Envelope Theorem

The Envelope Theorem The Envelope Theorem In an optimization problem we often want to know how the value of the objective function will change if one or more of the parameter values changes. Let s consider a simple example:

More information

February 13, Option 9 Overview. Mind Map

February 13, Option 9 Overview. Mind Map Option 9 Overview Mind Map Return tests - will discuss Wed..1.1 J.1: #1def,2,3,6,7 (Sequences) 1. Develop and understand basic ideas about sequences. J.2: #1,3,4,6 (Monotonic convergence) A quick review:

More information

Microeconomic Theory -1- Introduction

Microeconomic Theory -1- Introduction Microeconomic Theory -- Introduction. Introduction. Profit maximizing firm with monopoly power 6 3. General results on maximizing with two variables 8 4. Model of a private ownership economy 5. Consumer

More information

5.9 Representations of Functions as a Power Series

5.9 Representations of Functions as a Power Series 5.9 Representations of Functions as a Power Series Example 5.58. The following geometric series x n + x + x 2 + x 3 + x 4 +... will converge when < x

More information

Advanced Macroeconomics

Advanced Macroeconomics Advanced Macroeconomics The Ramsey Model Marcin Kolasa Warsaw School of Economics Marcin Kolasa (WSE) Ad. Macro - Ramsey model 1 / 30 Introduction Authors: Frank Ramsey (1928), David Cass (1965) and Tjalling

More information

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes Chapter 8 Indeterminate Forms and Improper Integrals Math 1220-004 Class Notes Section 8.1: Indeterminate Forms of Type 0 0 Fact: The it of quotient is equal to the quotient of the its. (book page 68)

More information

The Fundamental Welfare Theorems

The Fundamental Welfare Theorems The Fundamental Welfare Theorems The so-called Fundamental Welfare Theorems of Economics tell us about the relation between market equilibrium and Pareto efficiency. The First Welfare Theorem: Every Walrasian

More information

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems

Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula. 1. Two theorems Math 221 Notes on Rolle s Theorem, The Mean Value Theorem, l Hôpital s rule, and the Taylor-Maclaurin formula 1. Two theorems Rolle s Theorem. If a function y = f(x) is differentiable for a x b and if

More information

ELEMENTARY MATHEMATICS FOR ECONOMICS

ELEMENTARY MATHEMATICS FOR ECONOMICS ELEMENTARY MATHEMATICS FOR ECONOMICS Catering the need of Second year B.A./B.Sc. Students of Economics (Major) Third Semester of Guwahati and other Indian Universities. 2nd Semester R.C. Joshi M.A., M.Phil.

More information

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL.

INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. INTRODUCTORY MATHEMATICS FOR ECONOMICS MSCS. LECTURE 3: MULTIVARIABLE FUNCTIONS AND CONSTRAINED OPTIMIZATION. HUW DAVID DIXON CARDIFF BUSINESS SCHOOL. SEPTEMBER 2009. 3.1 Functions of more than one variable.

More information

ERRATA for Calculus: The Language of Change

ERRATA for Calculus: The Language of Change 1 ERRATA for Calculus: The Language of Change SECTION 1.1 Derivatives P877 Exercise 9b: The answer should be c (d) = 0.5 cups per day for 9 d 0. SECTION 1.2 Integrals P8 Exercise 9d: change to B (11) P9

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works.

We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Analysis I We have been going places in the car of calculus for years, but this analysis course is about how the car actually works. Copier s Message These notes may contain errors. In fact, they almost

More information

Numerical differentiation

Numerical differentiation Numerical differentiation Paul Seidel 1801 Lecture Notes Fall 011 Suppose that we have a function f(x) which is not given by a formula but as a result of some measurement or simulation (computer experiment)

More information

Lecture 5: The neoclassical growth model

Lecture 5: The neoclassical growth model THE UNIVERSITY OF SOUTHAMPTON Paul Klein Office: Murray Building, 3005 Email: p.klein@soton.ac.uk URL: http://paulklein.se Economics 3010 Topics in Macroeconomics 3 Autumn 2010 Lecture 5: The neoclassical

More information

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path

Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ramsey Cass Koopmans Model (1): Setup of the Model and Competitive Equilibrium Path Ryoji Ohdoi Dept. of Industrial Engineering and Economics, Tokyo Tech This lecture note is mainly based on Ch. 8 of Acemoglu

More information

II. An Application of Derivatives: Optimization

II. An Application of Derivatives: Optimization Anne Sibert Autumn 2013 II. An Application of Derivatives: Optimization In this section we consider an important application of derivatives: finding the minimum and maximum points. This has important applications

More information

MATHEMATICS FOR ECONOMISTS. Course Convener. Contact: Office-Hours: X and Y. Teaching Assistant ATIYEH YEGANLOO

MATHEMATICS FOR ECONOMISTS. Course Convener. Contact: Office-Hours: X and Y. Teaching Assistant ATIYEH YEGANLOO INTRODUCTION TO QUANTITATIVE METHODS IN ECONOMICS MATHEMATICS FOR ECONOMISTS Course Convener DR. ALESSIA ISOPI Contact: alessia.isopi@manchester.ac.uk Office-Hours: X and Y Teaching Assistant ATIYEH YEGANLOO

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

L Hopital s Rule. We will use our knowledge of derivatives in order to evaluate limits that produce indeterminate forms.

L Hopital s Rule. We will use our knowledge of derivatives in order to evaluate limits that produce indeterminate forms. L Hopital s Rule We will use our knowledge of derivatives in order to evaluate its that produce indeterminate forms. Main Idea x c f x g x If, when taking the it as x c, you get an INDETERMINATE FORM..

More information