Math /22/2014. Richard McGehee, University of Minnesota 1. Math Energy Balance

Size: px
Start display at page:

Download "Math /22/2014. Richard McGehee, University of Minnesota 1. Math Energy Balance"

Transcription

1 Math 59 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondas and Wednesdas :3 3:5 Streaming video is available at Click on the link: "Live Streaming from 35 Lind Hall". Participation: Perfectl Thermall Conducting lack o Plus Albedo Switch to Surface Temperature Dependence on Latitude Energ alance Dnamical Models Model R QT R Q( T R Q( ( AT Equilibrium T Q T ( Q T ( Q A T(, t R Qs( ( A T (, t t T( ( Qs( A Add Heat Transport global mean temperature Energ alance Dnamical Models T R Qs( ( ( A T C( T T t T( t T(, t Second Law of Thermonamics: Energ travels from hot places to cold places. Equilibrium temperature profile? heat capacit uko s Equation T R Qs( ( ( ( A T C( T T t Smmetr assumption: albedo sin(latitude OLR sin(latitude Chlek and Coakle s quadratic approximation: s. 3 T T( heat transport Energ alance uko s Equilibrium T R Qs( ( ( ( A T C( T T t albedo depends on latitude equilibrium solution: T = T( Qs( ( AT ( C T T ( Integrate: Qs( ( AT ( CT T ( Q s ( Q s ( ( A T( C T T( T Q AT equilibrium global mean temperature T T Q A T Solve for T (. where Energ alance uko s Equilibrium Qs( ( AT ( C T T ( Global mean temperature at equilibrium: T Q A ( s ( Qs( ( A CT T ( CT ( ( C T ( T ( Qs( ( ACT C Equilibrium temperature profile: T ( Qs( ( ACT C T Q A and ( s ( Richard McGehee, Universit of Minnesota

2 temperature (Celsius 6 6 Energ alance uko s Equilibrium Qs( ( AT ( CT T ( Equilibrium temperature profile: T ( Qs( ( ACT C C = 3. α( =.3: ice free α( =.6: snowball (constant albedo sin(latitude ice free snowball ice free (C= snowball (C= temperature (Celsius 6 6 Energ alance uko s Equilibrium 8 ice won t melt (no exit from snowball sin(latitude ice free snowball ice free (C= snowball (C= ice will form (icecap ice melts albedo decreases more sunlight absorbed REPEAT Wh would it stop? ice melts albedo decreases more sunlight absorbed REPEAT Wh would it stop? M. I. uko, "The effect of solar radiation variations on the climate of the Earth," Tellus XXI, 6-69, Wh would it stop? uko s Equation sin(latitude T T( T R Qs( ( ( ( A T C( T T t heat capacit albedo OLR heat transport What if the albedo is not constant? Ice Line Assumption: There is a single ice line at =η between the equator and the pole. The albedo is α below the ice line and α above it. (, and Equilibrium condition: Equilibrium solution: where Qs( (, AT ( C T T ( T ( Qs( (, ACT C T Q ( A ( (, s( Richard McGehee, Universit of Minnesota

3 equilibrium temperature profile: T ( Qs( (, ACT, where T Q ( A C.3, albedo: (,.6, global albedo: let: then: ( (, s ( s ( s ( S( s(, S( s(, since s( ( S( ( S( ( S(.6.3 S( 3 S( s(. 3. Chlek & Coakle equilibrium temperature profile: T( Qs( (, ACT, where T Q ( A C.3, albedo: (,.6, global albedo: let: then: ( (, s ( s ( s ( S( s(, S( s(, since s( ( S( ( S( ( S(.6.3 S( 3 S( s(. 3. Chlek & Coakle T ( Qs( (, ACT C Dnamics T R Qs( ( ( ( A T C( T T t For each fixed η, there is an equilibrium solution for uko s equation. C sine(latitude Let X be the space of functions where T lives. (e.g. L ([,] Let L : X X : LT CT ( C T, f ( Qs( ( A uko s equation can be written as a linear vector field on X. R f LT The operator L has onl point spectrum, with all eigenvalues negative. Therefore, all solutions are stable. True for an albedo function. experts onl For each fixed η, there is a globall stable equilibrium solution for uko s equation. How to pick one? C T R Qs( ( (, ( A T C( T T t Summar If we artificiall hold the ice line at a fixed latitude, then the will come to an equilibrium. However, if the temperature is high, we would expect ice to melt and the ice line to retreat to higher latitudes. If the temperature is low, we would expect ice to form and the ice line to advance to lower latitudes. How to model this expectation? sine(latitude Richard McGehee, Universit of Minnesota 3

4 T( For each fixed η, there is a stable equilibrium solution for uko s equation. Standard assumption: Permanent ice forms if the annual average temperature is below T c =- C and melts if the annual average temperature is above T c. Additional condition: The average temperature across the ice boundar is the critical temperature T c. looks oka T T T c T( ( ( not good T( looks oka T( ice line condition:.. η T T T c ( ( T η (η T η (η Equilibrium: T R Qs( ( (, ( A T C( T T t T ( Qs( (, ACT C T ( T ( T c.3, (,.6, (,, (, Ice line condition: Albedo: T ( Qs( ACT T ( Qs( ACT C C Ice line condition: T ( T ( Qs( ACT T c C where:.7 T R Qs( ( (, ( A T C( T T t Ice line condition: Qs( A CT T c C Rewrite: h( Qs( ACT T c C Recall equilibrium GMT: Recall average albedo: where: T Q ( A ( (, s( ( S(.6.3 S( S s ( ( 3. Q C A h s S( Tc C can be written: Two equilibria (zeros of h satisf the additional condition. T R Qs( ( (, ( A T C( T T t T( T( T c The additional condition: Q C A h s S( Tc C h(η η Equilibrium temperature profiles Interesting Solutions: small cap large cap ice free snowball temperature (ºC T ( Qs( (, ACT C sin(latitude ice free snowball small cap big cap Richard McGehee, Universit of Minnesota

5 T( Dnamics of the Ice Line T R Qs( ( (, ( A T C( T T t Idea: If the average temperature across the ice line is above the critical temperature, some ice will melt, moving the ice line toward the pole. If it is below the critical temperature, the ice will advance toward the equator. stationar Widiasih s equation: T( ice melts d T( Tc T( stationar Widiasih s Theorem. For sufficientl small ε, the sstem has an attracting invariant curve given b the graph of a function Φ ε : [,] X. On this curve, the namics are approximated b the equation d h( experts onl Dnamics of the Ice Line d T( Tc State space: [,] X T R Qs( ( (, ( A T C( T T t unstable stable h(η η Esther R. Widiasih, Dnamics of the uko Energ alance Model, SIAM J. Appl. Dn. Sst., (, d h uko Widiasih Model Temperature profiles heat capacit Summar T R Qs( ( ( ( A T C( T T t albedo reduces to d h( sin(latitude OLR T T( heat transport d Q C A h s S( Tc C uko Widiasih Model uko Widiasih Model sin(latitude T T( d h, A isocline h, A T R Qs( ( ( ( A T C( T T t.9.8 heat capacit albedo OLR heat transport.7.6 What about the greenhouse effect? AT is the outgoing long wave radiation. This term decreases if the greenhouse gases increase. We view A as a parameter. d h, A A high CO low CO Richard McGehee, Universit of Minnesota 5

6 Is it possible for Earth to become completel covered in ice? ( Did it ever happen? There is evidence that Snowball Earth has occurred, the last time about 6 million ears ago. The continents were clustered near the equator. Hoffman & Schrag,, SCIENTIFIC AMERICAN, Januar, Ice rafted debris occurred in ocean sediments near the equator, indicating large equatorial glaciers calving icebergs. Hoffman & Schrag,, SCIENTIFIC AMERICAN, Januar, Large limestone deposits cap carbonates are found immediatel above the glacial debris, indicating a rapid warming period following the snowball. Idea: When the Earth is mostl ice covered, silicate weathering slows down, but volcanic activit stas the same, allowing for a build up of CO in the atmosphere. When the Earth is mostl ice free, silicate weathering speeds up, drawing down the CO in the atmosphere. Hoffman & Schrag,, SCIENTIFIC AMERICAN, Januar, Richard McGehee, Universit of Minnesota 6

7 uko Widiasih Model d h, A What if A is a namical variable? Simple equation: da c New sstem: da c d h, A MCRN Paleocarbon equation (silicate weathering uko Widiasih Paleocarbon Model d da h, A, c stable rest point high CO A low CO c What if η c were here? uko Widiasih Paleocarbon Model d da h, A, c uko Widiasih Paleocarbon Model Snowball Hothouse Oscillations unstable rest point What if η c were here? c. c high CO A low CO high CO A low CO Suggested Reading Hoffman & Schrag,, SCIENTIFIC AMERICAN, Januar, K.K. Tung, Topics in Mathematical Modeling, PRINCETON UNIVERSITY PRESS, 7, Chapter 8 Richard McGehee, Universit of Minnesota 7

Mathematics of Climate Seminar 9/20/2016

Mathematics of Climate Seminar 9/20/2016 Mathematics of Climate Seminar 9//6 uko s Energ alance Model Richard McGehee School of Mathematics Universit of Minnesota Mathematics of Climate Seminar September, 6 Conservation of Energ temperature change

More information

Mathematics of Climate Seminar 9/19/2017

Mathematics of Climate Seminar 9/19/2017 Mathematics of Climate Seminar 9/9/7 n Introduction to Richard McGehee School of Mathematics Universit of Minnesota Mathematics of Climate Seminar September 9, 7 Dnamical Models T dd Heat Transport R Qs(

More information

IMA. Budyko s Model as a Dynamical System. Math and Climate Seminar

IMA. Budyko s Model as a Dynamical System. Math and Climate Seminar Math and Climate Seminar IMA as a Dnamical Sstem Richard McGehee Joint MCRN/IMA Math and Climate Seminar Tuesdas :5 :5 streaming video available at www.ima.umn.edu Seminar on the Mathematics of Climate

More information

An Introduction to Energy Balance Models

An Introduction to Energy Balance Models An Introduction to Energy Balance Models Alice Nadeau (with a lot of slides from Dick McGehee) University of Minnesota Mathematics of Climate Seminar September 25, 2018 Conservation of energy temperature

More information

Undergraduate Research in Conceptual Climate Modeling

Undergraduate Research in Conceptual Climate Modeling Undergraduate Research in Conceptual Climate Modeling Gareth E. Roberts Cara Donovan Department of Mathematics and Computer Science College of the Holy Cross Worcester, MA, USA 2018 SIAM Conference on

More information

The Budyko Energy Balance Models of the Earth s Climate

The Budyko Energy Balance Models of the Earth s Climate The Budyko Energy Balance Models of the Earth s Climate Esther Widiasih Summer Seminar July 22 2013 Where we were left off!"#$%&'()*)"+#',-.#*/ (0.&1-23#**#$/'!"#$%&'()*)"+#',-.#*'4/5 %" ' %& $ "#! "#!"!

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Energy Balance Models

Energy Balance Models Richard McGehee School of Mathematics University of Minnesota NCAR - MSRI July, 2010 Earth s Energy Balance Gary Stix, Scientific American September 2006, pp.46-49 Earth s Energy Balance Historical Overview

More information

PTYS 214 Spring Announcements. Get exam from Kyle!

PTYS 214 Spring Announcements. Get exam from Kyle! PTYS 214 Spring 2018 Announcements Get exam from Kyle! 1 Midterm #3 Total Students: 24 Class Average: 78 Low: 32 High: 100 If you have questions see one of us! 2 All exams Top 2 exams 3 Previously Feedbacks

More information

Recent Developments in the Theory of Glacial Cycles

Recent Developments in the Theory of Glacial Cycles Recent Developments in the Theory of Richard McGehee Seminar on the Mathematics of Climate Change School of Mathematics October 6, 010 Hansen, et al, Target atmospheric CO: Where should humanity aim? Open

More information

Earth s Heat Budget. What causes the seasons? Seasons

Earth s Heat Budget. What causes the seasons? Seasons Earth s Heat Budget Solar energy and the global heat budget Transfer of heat drives weather and climate Ocean circulation A. Rotation of the Earth B. Distance from the Sun C. Variations of Earth s orbit

More information

Math 5490 November 12, 2014

Math 5490 November 12, 2014 Math 5490 November 12, 2014 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2:30 3:45 http://www.math.umn.edu/~mcgehee/teaching/math5490-2014-2fall/ Streaming

More information

The greenhouse effect

The greenhouse effect The greenhouse effect Visible light arrives About half reflected, half is absorbed by the ground. This absorbed energy is then reradiated, but NOT in the visible (would just go out again anyway); in the

More information

Dynamics of Energy Balance Models for Planetary Climate

Dynamics of Energy Balance Models for Planetary Climate Dynamics of Energy Balance Models for Planetary Climate Alice Nadeau University of Minnesota April 13, 2016 Motivation Low dimensional climate models are important for understanding the predominant forces

More information

Budyko s Energy Balance Model: To an Infinite Dimensional Space and Beyond

Budyko s Energy Balance Model: To an Infinite Dimensional Space and Beyond Budyko s Energy Balance Model: To an Infinite Dimensional Space and Beyond Esther Widiasih University of Arizona October 9, 2012 Summary of today s talk Background: energy balance models (EBM), Budyko

More information

Earth s Heat Budget. What causes the seasons?

Earth s Heat Budget. What causes the seasons? Earth s Heat Budget Solar Energy and the global Heat Budget Transfer of heat drives weather and climate Ocean circulation Should we talk about this? What causes the seasons? Before you answer, think. What

More information

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles

Math /29/2014. Richard McGehee, University of Minnesota 1. Math 5490 September 29, Glacial Cycles Math 9 September 29, 21 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2: : http://www.math.umn.edu/~mcgehee/teaching/math9-21-2fall/ Streaming video is

More information

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate

Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate Energy Systems, Structures and Processes Essential Standard: Analyze patterns of global climate change over time Learning Objective: Differentiate between weather and climate Global Climate Focus Question

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

Topic 6: Insolation and the Seasons

Topic 6: Insolation and the Seasons Topic 6: Insolation and the Seasons Solar Radiation and Insolation Insolation: In Sol ation The Sun is the primary source of energy for the earth. The rate at which energy is radiated is called Intensity

More information

Title: Greenhouse Gases & Climate Change 2/19. You should take notes for today s lecture & put the notes into your notebook

Title: Greenhouse Gases & Climate Change 2/19. You should take notes for today s lecture & put the notes into your notebook Title: Greenhouse Gases & Climate Change 2/19 You should take notes for today s lecture & put the notes into your notebook Summary of topics to will be discussed What causes climate to change? (2/19) Is

More information

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years

Lecture 3. - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years Lecture 3 - Global Sulfur, Nitrogen, Carbon Cycles - Short-term vs. Long-term carbon cycle - CO 2 & Temperature: Last 100,000+ years METR 113/ENVS 113 Spring Semester 2011 March 1, 2011 Suggested Reading

More information

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow

Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson 2. Antarctic Oceanography: Component I - Ice/Glaciers Component II - Marine Snow Lesson Objectives: Introduces students to the different kinds of ice found in Antarctica, Students will become familiar

More information

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1

ATS150 Global Climate Change Spring 2019 Candidate Questions for Exam #1 1. How old is the Earth? About how long ago did it form? 2. What are the two most common gases in the atmosphere? What percentage of the atmosphere s molecules are made of each gas? 3. About what fraction

More information

( 1 d 2 ) (Inverse Square law);

( 1 d 2 ) (Inverse Square law); ATMO 336 -- Exam 3 120 total points including take-home essay Name The following equations and relationships may prove useful. F d1 =F d2 d 2 2 ( 1 d 2 ) (Inverse Square law);! MAX = 0.29 " 104 µmk (Wien's

More information

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1

CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 CLIMATE AND CLIMATE CHANGE MIDTERM EXAM ATM S 211 FEB 9TH 2012 V1 Name: Student ID: Please answer the following questions on your Scantron Multiple Choice [1 point each] (1) The gases that contribute to

More information

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look.

Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. Global Climate Change Today we will discuss global climate: how it has changed in the past, and how the current status and possible future look. If you live in an area such as the Mississippi delta (pictured)

More information

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance

History. Late 18 th /early 19 th century Europeans observed that erratic boulders dispersed due to the retention of glaciers caused by climate chance Ice ages What is an ice age? Geological period of long-term reduction in the temperature of the Earth's surface and atmosphere which results in the formation and expansion of continental ice sheets, polar

More information

Natural Climate Variability: Longer Term

Natural Climate Variability: Longer Term Natural Climate Variability: Longer Term Natural Climate Change Today: Natural Climate Change-2: Ice Ages, and Deep Time Geologic Time Scale background: Need a system for talking about unimaginable lengths

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

Chapter 12 - Long term climate regulation. Chapter 10-11* -Brief History of the Atmosphere. What is p really about? New and improved!

Chapter 12 - Long term climate regulation. Chapter 10-11* -Brief History of the Atmosphere. What is p really about? New and improved! What is p16164 really about? New and improved! 1) When CO 2 dissolves in water, some reacts with water to produce acid and ions, making gas exchange NOT just CO 2 (g in atm) CO 2 (aq in ocn) 2) If

More information

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans?

1 Earth s Oceans. TAKE A LOOK 2. Identify What are the five main oceans? CHAPTER 13 1 Earth s Oceans SECTION Exploring the Oceans BEFORE YOU READ After you read this section, you should be able to answer these questions: What affects the salinity of ocean water? What affects

More information

Climate Regulation. - What stabilizes the climate - Greenhouse effect

Climate Regulation. - What stabilizes the climate - Greenhouse effect Climate Regulation - What stabilizes the climate - Greenhouse effect Last time! Processes that shaped Earth: Volcanism, tectonics! How we retain atmospheric molecules ( escape speed )! A magnetic field

More information

Chapter Introduction. Earth. Change. Chapter Wrap-Up

Chapter Introduction. Earth. Change. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Climates of Earth Chapter Wrap-Up Climate Cycles Recent Climate Change What is climate and how does it impact life on Earth? What do you think? Before you

More information

Planetary Atmospheres (Chapter 10)

Planetary Atmospheres (Chapter 10) Planetary Atmospheres (Chapter 10) Based on Chapter 10 This material will be useful for understanding Chapters 11 and 13 on Jovian planet systems and Extrasolar planets Chapters 4, 5, and 8 on Momentum,

More information

11/18/2010. Only part of the spectrum we can see. A rainbow of colors, each corresponding to a different wavelength.

11/18/2010. Only part of the spectrum we can see. A rainbow of colors, each corresponding to a different wavelength. The sun is the source of energy to heat the Earth s surface. Solar energy makes it s way to Earth by an energy transfer mechanism called radiation. Energy transferred this way travels outwards in all directions

More information

Climate and Environment

Climate and Environment Climate and Environment Oxygen Isotope Fractionation and Measuring Ancient Temperatures Oxygen Isotope Ratio Cycles Oxygen isotope ratio cycles are cyclical variations in the ratio of the mass of oxygen

More information

Welcome to ATMS 111 Global Warming.

Welcome to ATMS 111 Global Warming. Welcome to ATMS 111 Global Warming http://www.atmos.washington.edu/2010q1/111 Isotopic Evidence 16 O isotopes "light 18 O isotopes "heavy" Evaporation favors light Rain favors heavy Cloud above ice is

More information

,Solar Energy, Greenhouse effect, Convection.notebook October 31, 2016

,Solar Energy, Greenhouse effect, Convection.notebook October 31, 2016 Essential Question: How is weather created? What is Solar Energy? The driving source of energy for Earth. 1. Heats Earth's land, water, and air. 2. Causes movement in the atmosphere. Key Topics: The sun

More information

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds

The Cosmic Perspective Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Lecture The Cosmic Perspective Seventh Edition Planetary Atmospheres: Earth and the Other Terrestrial Worlds Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics

More information

HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES

HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES HADLEY CELL EXPANSION IN TODAY S CLIMATE AND PALEOCLIMATES Bill Langford University Professor Emeritus Department of Mathematics and Statistics University of Guelph, Canada Presented to the BioM&S Symposium

More information

Climate vs Weather J. J. Hack/A. Gettelman: June 2005

Climate vs Weather J. J. Hack/A. Gettelman: June 2005 Climate vs Weather J. J. Hack/A. Gettelman: June 2005 What is Climate? J. J. Hack/A. Gettelman: June 2005 Characterizing Climate Climate change and its manifestation in terms of weather (climate extremes)

More information

Daisy World Assignment

Daisy World Assignment Daisy World Assignment Learning Objectives: Explore homeostasis on Daisy World, i.e. how it self regulates it global temperature; Understand the faint-young sun paradox; Make graphs and discuss their meaning;

More information

4-1 The Role of Climate

4-1 The Role of Climate 4-1 The Role of Climate 1 of 26 What Is Climate? What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year

More information

4-1 The Role of Climate

4-1 The Role of Climate biology 1 of 26 2 of 26 What Is Climate? What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year conditions

More information

Chapter 12 Long-Term Climate Regulation

Chapter 12 Long-Term Climate Regulation Chapter 12 Long-Term Climate Regulation Sun about 30% less luminous than today - Ts would have been below freezing - Earth seems to have had liquid water nonetheless - Faint Young Sun Paradox (FYSP) Warm

More information

ATMS 321: Natural Climate Variability Chapter 11

ATMS 321: Natural Climate Variability Chapter 11 ATMS 321: Natural Climate Variability Chapter 11 Solar Variability: Total solar irradiance variability is relatively small about a tenth of a percent. Ultraviolet variability is larger, and so could affect

More information

Greenhouse Effect & Global Warming

Greenhouse Effect & Global Warming Chemical Cycles: Greenhouse Effect: Cause and effect Chemical Cycles: CO 2 and O 2 Chemical Fluxes: CO 2 and O 2 Proxies for climate change: Isotopes Greenhouse Effect & Global Warming Global Warming World

More information

PTYS 214 Spring Announcements. Midterm 3 next Thursday!

PTYS 214 Spring Announcements. Midterm 3 next Thursday! PTYS 214 Spring 2018 Announcements Midterm 3 next Thursday! 1 Previously Habitable Zone Energy Balance Emission Temperature Greenhouse Effect Vibration/rotation bands 2 Recap: Greenhouse gases In order

More information

The State of the cryosphere

The State of the cryosphere The State of the cryosphere Course outline Introduction The cryosphere; what is it? The Earth; a unique planet Cryospheric components Classifications Lecture outlines The State of the cryosphere The State

More information

The Distribution of Cold Environments

The Distribution of Cold Environments The Distribution of Cold Environments Over 25% of the surface of our planet can be said to have a cold environment, but defining what we actually mean by that can be very challenging. This is because cold

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Weather Review. Use this graph to answer the next questions. A B C D

Weather Review. Use this graph to answer the next questions. A B C D Weather Review 1. Which of the following lists elements of the weather? a. Radiation, Wind Speed, Precipitation b. Soil type, Plate type, Water type c. Temperature, Precipitation, Air Pressure d. Ocean

More information

DRAFT. arxiv: v1 [astro-ph.ep] 13 Oct 2015 A SIMPLE METHOD FOR CALCULATING A PLANET S MEAN ANNUAL INSOLATION BY LATITUDE

DRAFT. arxiv: v1 [astro-ph.ep] 13 Oct 2015 A SIMPLE METHOD FOR CALCULATING A PLANET S MEAN ANNUAL INSOLATION BY LATITUDE DRAFT arxiv:151.4542v1 [astro-ph.ep] 13 Oct 215 A SIMPLE METHOD FOR CALCULATING A PLANET S MEAN ANNUAL INSOLATION BY LATITUDE ALICE NADEAU AND RICHARD MCGEHEE Abstract. Common methods for calculating a

More information

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE

Today. Events. Terrestrial Planet Atmospheres (continued) Homework DUE Today Terrestrial Planet Atmospheres (continued) Events Homework DUE Sources of Gas Outgassing from volcanoes 2014 Pearson Education, Inc. Evaporation of surface liquid; sublimation of surface ice (cometary

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? 10.1 Atmospheric Basics Our goals for learning:! What is an atmosphere?! How does the greenhouse effect warm

More information

Land Surface Sea Ice Land Ice. (from Our Changing Planet)

Land Surface Sea Ice Land Ice. (from Our Changing Planet) Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice (from Our Changing Planet) Earth s s Climate System Solar forcing Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry

More information

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice

Earth s Climate System. Surface Albedo. Climate Roles of Land Surface. Lecture 5: Land Surface and Cryosphere (Outline) Land Surface Sea Ice Land Ice Lecture 5: Land Surface and Cryosphere (Outline) Earth s Climate System Solar forcing Land Surface Sea Ice Land Ice Atmosphere Ocean Land Solid Earth Energy, Water, and Biochemistry Cycles (from Our Changing

More information

Lesson Overview. Climate. Lesson Overview. 4.1 Climate

Lesson Overview. Climate. Lesson Overview. 4.1 Climate Lesson Overview 4.1 THINK ABOUT IT When you think about climate, you might think of dramatic headlines: Hurricane Katrina floods New Orleans! or Drought parches the Southeast! But big storms and seasonal

More information

8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet

8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet 8.5 GREENHOUSE EFFECT 8.6 GLOBAL WARMING HW/Study Packet Required: READ Tsokos, pp 434-450 Hamper pp 294-307 SL/HL Supplemental: none REMEMBER TO. Work through all of the example problems in the texts

More information

Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded.

Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded. AGS Productions (2009) Hypothesis: an informal idea that has not been thoroughly tested by the scientific community. Most are discarded. Theory: A hypothesis becomes a theory when it can explain and predict

More information

ATMOS 5140 Lecture 1 Chapter 1

ATMOS 5140 Lecture 1 Chapter 1 ATMOS 5140 Lecture 1 Chapter 1 Atmospheric Radiation Relevance for Weather and Climate Solar Radiation Thermal Infrared Radiation Global Heat Engine Components of the Earth s Energy Budget Relevance for

More information

4-1 The Role of Climate. Copyright Pearson Prentice Hall

4-1 The Role of Climate. Copyright Pearson Prentice Hall 4-1 The Role of Climate Copyright Pearson Prentice Hall What Is Climate? Weather is the day-to-day condition of Earth's atmosphere at a particular time and place. Climate refers to the average year-after-year

More information

SEA ICE AND GLOBAL WARMING

SEA ICE AND GLOBAL WARMING jkjk SEA ICE AND GLOBAL WARMING Lesson plan for grades K- 3 By: Laura Sanders, Environmental Science Institute, March 2011 Length of lesson: two 30- minute class periods SOURCES AND RESOURCES: Atmospheric

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

/ Past and Present Climate

/ Past and Present Climate MIT OpenCourseWare http://ocw.mit.edu 12.842 / 12.301 Past and Present Climate Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Long-Term Climate

More information

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm

Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm The Cryosphere Glaciers form wherever snow and ice can accumulate High latitudes High mountains at low latitudes Ice temperatures vary among glaciers Warm (temperate) glaciers: at pressure melting point,

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Climate Roles of Land Surface

Climate Roles of Land Surface Lecture 5: Land Surface and Cryosphere (Outline) Climate Roles Surface Energy Balance Surface Water Balance Sea Ice Land Ice (from Our Changing Planet) Surface Albedo Climate Roles of Land Surface greenhouse

More information

Mathematics of Our Ice Dependent World

Mathematics of Our Ice Dependent World http://www.mathclimate.org Mathematics of Our Ice Dependent World http://mpe2013.org Ivan Sudakov http://www.math.utah.edu/~sudakov Predictions from the Bulgarian prophet Baba Vanga 2033 - all of the polar

More information

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow ATOC 1060-002 OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow cover, permafrost, river and lake ice, ; [3]Glaciers and

More information

Chapter 12: Long-Term Climate Regulation. Carl Sagan and George Mullen posed the Faint Young Sun Paradox in 1972.

Chapter 12: Long-Term Climate Regulation. Carl Sagan and George Mullen posed the Faint Young Sun Paradox in 1972. Chapter 12: Long-Term Climate Regulation Carl Sagan and George Mullen posed the Faint Young Sun Paradox in 1972. What about the details? Faint young Sun paradox Solution: A greenhouse gas or a lower albedo

More information

2006 UAH REGIONAL SCIENCE OLYMPIAD DYNAMIC PLANET EXAM

2006 UAH REGIONAL SCIENCE OLYMPIAD DYNAMIC PLANET EXAM 2006 UAH REGIONAL SCIENCE OLYMPIAD DYNAMIC PLANET EXAM INSTRUCTIONS WRITE YOUR GROUP NUMBER ON THE ANSWER SHEET NOW!!! Do not open the test until we tell you. Write your answers ONLY on the answer sheet.

More information

The ocean s overall role in climate

The ocean s overall role in climate The ocean s overall role in climate - moderates climate in time (diurnally, annually) - redistributes heat spatially in the largescale ocean circulation - lower albedo (sea ice higher albedo) - dry atmosphere

More information

Global Paleogeography

Global Paleogeography Global Paleogeography Overview of Global Paleogeography Paleogeography is the study of how the Earth s geography has changed during the course of history. Using geological data, scientists reconstruct

More information

Website Lecture 3 The Physical Environment Part 1

Website   Lecture 3 The Physical Environment Part 1 Website http://websites.rcc.edu/halama Lecture 3 The Physical Environment Part 1 1 Lectures 3 & 4 1. Biogeochemical Cycling 2. Solar Radiation 3. The Atmosphere 4. The Global Ocean 5. Weather and Climate

More information

Haines ACC science Midterm study guide

Haines ACC science Midterm study guide Haines ACC science Midterm study guide Which state of matter is the most common state of matter visible in the universe? a. Solid b. Liquid c. Gas d. plasma Molecules flow freely and take the shape of

More information

NATS 101 Section 13: Lecture 32. Paleoclimate

NATS 101 Section 13: Lecture 32. Paleoclimate NATS 101 Section 13: Lecture 32 Paleoclimate Natural changes in the Earth s climate also occur at much longer timescales The study of prehistoric climates and their variability is called paleoclimate.

More information

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

Day 1 of Global Warming. Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Day 1 of Global Warming Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The Atmosphere Atmosphere = the thin layer (1/100 th of Earth s diameter) of gases that surrounds

More information

Investigating Planets Name: Block: E1:R6

Investigating Planets Name: Block: E1:R6 FYI: Planetary Temperatures and Atmospheres Read FYI: A Planet s Temperature, The Importance of an Atmosphere, and The Greenhouse Effect As you read answer the following questions about the readings: Word/Term

More information

Midterm Study Guide: Haines, Manzanares & Soto

Midterm Study Guide: Haines, Manzanares & Soto Midterm Study Guide: Haines, Manzanares & Soto 1. High level pushes air masses to new regions. (Wind) Easy 2. How is the atmosphere like a greenhouse? ( Greenhouse gasses trap heat like the walls of a

More information

Section 4 Professor Donald McFarlane

Section 4 Professor Donald McFarlane Carbon cycle Present in atmosphere in low concentrations Autotrophs incorporate it into organic matter via photosynthesis Section 4 Professor Donald McFarlane Lecture 23 and Climate Carbon Cycle Respiration

More information

Climate Change Lecture Notes

Climate Change Lecture Notes Climate Change Lecture Notes (Topic 12A) page 1 Climate Change Lecture Notes Learning Outcomes for the Climate Change Unit 1. Students can list observations which suggest that the world is warming, and

More information

GEOGRAPHY AND HISTORY

GEOGRAPHY AND HISTORY GEOGRAPHY AND HISTORY YEAR 1, PART 1 www.vicensvives.es Contents 01 Our planet Earth 02 The representation of the Earth: maps 03 The Earth s relief 04 Rivers and seas 05 Weather and climate 06 Climates

More information

Outline 24: The Holocene Record

Outline 24: The Holocene Record Outline 24: The Holocene Record Climate Change in the Late Cenozoic New York Harbor in an ice-free world (= Eocene sea level) Kenneth Miller, Rutgers University An Ice-Free World: eastern U.S. shoreline

More information

Homework. Oceanography and Climate Review due Friday Feb 12 th (test day!!)

Homework. Oceanography and Climate Review due Friday Feb 12 th (test day!!) Homework Oceanography and Climate Review due Friday Feb 12 th (test day!!) Learning Targets I can define the term climate and explain the factors that influence the climate of an area. I can identify the

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 21 Climate 21.1 Factors That Affect Climate Factors That Affect Climate Latitude As latitude increases, the intensity of solar energy decreases. The

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds. What is an atmosphere? Earth s Atmosphere. Atmospheric Pressure Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds

Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds Chapter 10 Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric

More information

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College

ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES. Physical Geography (Geog. 300) Prof. Hugh Howard American River College ATMOSPHERIC ENERGY and GLOBAL TEMPERATURES Physical Geography (Geog. 300) Prof. Hugh Howard American River College RADIATION FROM the SUN SOLAR RADIATION Primarily shortwave (UV-SIR) Insolation Incoming

More information

Lecture 2: Light And Air

Lecture 2: Light And Air Lecture 2: Light And Air Earth s Climate System Earth, Mars, and Venus Compared Solar Radiation Greenhouse Effect Thermal Structure of the Atmosphere Atmosphere Ocean Solid Earth Solar forcing Land Energy,

More information

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times?

4 Changes in Climate. TAKE A LOOK 2. Explain Why is more land exposed during glacial periods than at other times? Name Class CHAPTER 3 Date Climate 4 Changes in Climate SECTION National Science Education Standards BEFORE YOU READ After you read this section, you should be able to answer these questions: ES 1k, 2a

More information

Math 5490 October 8, 2014

Math 5490 October 8, 2014 Math 5490 October 8, 204 Topics in Applied Mathematics: Introduction to the Mathematics of Climate Mondays and Wednesdays 2:30 3:45 http://www.math.umn.edu/~mcgehee/teaching/math5490-204-2fall/ Streaming

More information

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc.

Planetary Atmospheres: Earth and the Other Terrestrial Worlds Pearson Education, Inc. Planetary Atmospheres: Earth and the Other Terrestrial Worlds 10.1 Atmospheric Basics Our goals for learning: What is an atmosphere? How does the greenhouse effect warm a planet? Why do atmospheric properties

More information

What is a system? What do the arrows in this diagram represent? What do the boxes represent? Why is it useful to study and understand systems?

What is a system? What do the arrows in this diagram represent? What do the boxes represent? Why is it useful to study and understand systems? Systems What is a system? What do the arrows in this diagram represent? What do the boxes represent? Why is it useful to study and understand systems? evaporation River & Lake water rain Atmosphere Water

More information

2/18/2013 Estimating Climate Sensitivity From Past Climates Outline

2/18/2013 Estimating Climate Sensitivity From Past Climates Outline Estimating Climate Sensitivity From Past Climates Outline Zero-dimensional model of climate system Climate sensitivity Climate feedbacks Forcings vs. feedbacks Paleocalibration vs. paleoclimate modeling

More information

The Proterozoic Eon (2500 ma to 540 ma)

The Proterozoic Eon (2500 ma to 540 ma) The Proterozoic Eon (2500 ma to 540 ma) December November October September August July June May April March February January 0 Ma Phanerozoic C M P 540 Ma oldest shelly fossils Proterozoic 2500 Ma first

More information

Introduction to Climate Change

Introduction to Climate Change Ch 19 Climate Change Introduction to Climate Change Throughout time, the earth's climate has always been changing produced ice ages Hence, climate variations have been noted in the past what physical processes

More information