RareNoise. Livia Conti INFN Padova RareNoisePrincipal Investigator.

Size: px
Start display at page:

Download "RareNoise. Livia Conti INFN Padova RareNoisePrincipal Investigator."

Transcription

1 RareNoise Livia Conti INFN Padova RareNoisePrincipal Investigator RareNoise is funded by a Starting Independent Researcher Grant of ERC (IDEAS/FP7). Start in: July 2008 Duration: 5 years The research leading to these results has received funding from the European Research Council under the European Community's Seventh Framework Programme (FP7/ )/ ERC grant agreement n The EC is not liable for any use that can be made on the information contained herein.

2 RareNoise: the team Livia Conti, PI experimentalist INFN Padova 1FTE Stefano Longo technologist INFN Padova 1FTE A.Basheed Gounda experimentalist INFN Padova 1FTE Mario Saraceni technologist INFN Padova 1FTE Matteo Pegoraro technologist INFN Padova 0.1FTE Michele Bonaldi experimentalist CNR-IFN Trento 0.5FTE Antonio Borrielli experimentalist CNR-IFN Trento 1FTE Lamberto Rondoni theoretician Politecnico di Torino 0.7FTE Paolo De Gregorio theoretician Politecnico di Torino 1FTE

3 Driving question: What are the spontaneous vibration fluctuations of an elastic body non at the thermodynamic equilibrium? eg subject to a steady-state thermal gradient Answer: small fluctuations: similar to those at the equilibrium large fluctuations: we don t know. Indications suggest they are more frequent than at the equilibrium. Moreover there is not a general rule to predict departure point from gaussian distribution At the thermodynamic equilibrium: the spontaneous vibration fluctuations have normal distribution and are quantified by the Fluctuation-Dissipation Theorem

4 Displacement [m/ Hz] Why this question? Non equilibrium systems are ubiquitous in nature: eg Universe, Earth, atmosphere, oceans. Interest in NonEquilibrium fluctuations so far limited to experimental investigations of behaviour of nanodevices and theoretical studies for motivating the 2 law of thermodynamics. So far only a few, ad-hoc applications of theoretical results to macroscopic systems Novel application: Gravitational Wave detectors They are macroscopic instruments but with displacement sensitivity approaching the quantum limit. 1e-15 LIGO Their noise budget is calculated very accurately; any subtle noise contribution must be taken into account: as both rms and statistics 1e-20 1e1 Frequency [Hz] 1e3 With their high sensitivity and long acquisition times GW detectors might prove the natural application of NonEquilibrium Theories to macroscopic systems

5 AURIGA: stationary gaussian GW detector 13.6 days, Epoch vetoes not needed apart from cryogenic maintenance Duty time 98% Very stationary Gaussian noise Outliers 9 events/day with SNR > 6 Event rate 3700 /day with SNR > 4 L. Conti - CdS Padova, 4 Feb 08 5

6 Non equilibrium in GW interferometers Thermal gradient due to laser power dissipated in the mirror How to compute the spontaneous vibration fluctuations ( thermal noise ) in non-equilibrium instruments? Future Japanese cryogenic interferometer For small fluctuations one could apply the Fluctuation- Dissipation theorem using position-dependent temperature: T=T(x) (local equilibrium). But: what is the probability of the large fluctuations? Indications suggest that they are more frequent than if gaussian Moreover: what happens to the acoustic modes? The modes cannot be defined locally! The concept of local equilibrium does not apply to the acoustic modes. So far the problem is addressed as if thermal equilibrium and normal mode expansion hold. Nota Bene: Cryogenics is being considered for 3 rd generation EU Interferometer (design study supported by FP7: ET) similar NonEquilibrium issue

7 Intricating the thermal budget: thermal compensation Absorbed light power causes mirror thermal deformation need of compensation for recovering optimal mirror geometry Surface towards heater Mirror surface Operating detector GEO600 What is the distribution of the spontaneous vibration fluctuations of such a non-equilibrium body?

8 Application of Fluctuation Theorem Let us monitor the spontaneous length fluctuations of a rod of length L at temperature T 1 T 1 Now apply a steady-state thermal gradient DT between the ends by flowing power W=dQ/dt. The rod expands by DL via thermal expansion: T 1 +DT T 1 pdf L pdf L DL DL?? L Whatever the pdf is (and we don t know!), the Fluctuation Theorem states that in an integration time t this probability ratio is: p( L DL) p( L DL) W exp t k 1 T1 T B 1 1 DT 19 exp 10 Eg, for W=1W, t=1sec, T 1 =300K, DT=10K L

9 What do we foresee? Spontaneous fluctuations distribute differently from the equilibrium normal distribution: findings indicate that : large amplitude fluctuations become more frequent Gaussian component plus long non-gaussian tails Example: Gaussian distribution contaminated by Laplace distribution (with weight a L ) Such a mix of Gaussian and non-gaussian behavior has been seen in the power fluctuations in resistors, the relaxation of glassy systems, turbulent flows, and energy fluctuations in granular media. Population of the large fluctuation tails is a problem for GW detectors: L. Conti - RareNoise - commii increase - dic/08 of the false alarm rate

10 July 2008 RareNoise: mutually reinforcing experimental + theoretical work YEAR 1 YEAR 2 YEAR 3 YEAR 4 YEAR 5 Exp. Setup & calibrations Model of rod vibrating under thermal gradient Measurements at 300K Measurements at 77K Measurements at 4.2K Production of Si oscillators Exp. Setup & calibrations Measur. at 300K Specialization of rod model to experim materials Molecular dynamics tests of Fluctuation Theorems Refinement of the theory of Fluctuations Measur. at 77K Application of theory to GW detectors Experimental work : chamber1, 300K Experimental work: chamber2, in cryostat Experimental work Theoretical work

11 Experimental work Goal: Observe spontaneous vibration fluctuations of elastic bodies, ie mechanical resonators, subject to steady-state thermal gradient Nota Bene: At the equilibrium thermal fluctuations are due to dissipations (Fluctuation Dissipation Theorem). Control of dissipations is mandatory if fluctuations are to be studied. focus on material low intrinsic dissipations, as in high precision experiments investigation of 2 kinds of low mechanical loss materials: a metal (Aluminum) and a semiconductor (Silicon) repeated measurements at different temperatures: 300K, 77K, 4K, ie at different material parameters material equilibrium T [K] Expected losses Phase 1 Al5056, Si 300, Phase 2 Al5056, Si Phase 3 Si 300,

12 Theoretical work Model of rods used in the experiments and subject to steady-state thermal gradients: numerical studies of the NonEquilibrium fluctuations. mathematical and numerical investigations of 1-dimensional chains of oscillators subject to thermal gradient Specialization of the particle interaction potentials to the experimental materials Coupling of several 1dim chains to go beyond 1dim: nonequilibrium molecular dynamics simulations Computation of observables not sensed experimentally: characterization of the nonequilibrium state of the system and of its noise. refinements of the nonequilibrium theory assessment of validity of the normal mode expansion formalism application to interferometric GW detectors

13 Potential impact Impact on GW detectors: if NonEquilibrium effects are important need to reconsider design of future detector and/or adapt data analyses Also impact on experiments with low signal-to-noise ratios Impact on NonEquilibrium theories: new theoretical results availability of large amount of data with different material conditions and regimes, with focus on very low losses and intrinsic loss mechanisms from toy models to realistic models simulations NonEquilibrium theories have impact on micro-nano motors. Assessment of validity of the normal mode expansion in non-equilibrium systems Impact also in many fields

14 The phase 1 oscillator Completed dynamical and structural analysis of the part by FEM Material: Al5056 Pendulum modes: 30Hz, 40 Hz Torsional mode : 80 Hz Flexural modes: 300Hz, 500Hz Longitudinal mode: 1500Hz Flexural modes: 2600Hz, 3600Hz..

15 The Al5056 oscillator prototype with capacitive readout amplifier housing gap = 44mm The prototype oscillator with its readout electronics mounted on top of the prototype suspension: Class. Quant. Grav., in press

16 Mechanical suspension prototype We decided to start experiencing with an already available vacuum chamber, to better design the final (and larger) chamber and suspension for the room T measurements 3 stage, 3-axis mechanical filter to suppress low frequency mechanical noise Expected gain at 1500Hz : -140dB Dynamical and structural analysis by FEM Eg a low frequency mode of 1 stage FEM model Materials: Al7075-T6, Steel

17 oscillator + suspension assembly

18 Prototype: mechanical suspensions Vacuum chamber housing 1 oscillator, for testing The mechanical suspension: 3 stages Performance of the single stage: Estimated attenuation of -180dB along all spatial directions, as planned. This is enough to observe thermal noise of prototype oscillator. Thanks to this successful test, we can design the suspension for the final chamber with more confidence. submitted to Rev. Sci. Instrum.

19 Test of the low noise amplifier coupled to the oscillator home-made amplifier gain: output noise: voltage noise at the amplifier input: 6nV/sqrt(Hz) at 1.5kHz After 1 month since biasing the capacitive sensor, we observed no charge leakage.

20 Equilibrium thermal noise measurements Vbias = 500V gap = 44mm C sens = 370pF C para = 211pF electric field =7, V/m submitted to Rev. Sci. Instrum. 7 ore di dati: ampiezza 2 del picco di risonanza T=(285±6) K T=(320±6) K

21 Thermal control in the prototype chamber Peltier cells with heat sink We control the temperature of the base of the oscillator rod by acting on Peltier cells on top of the vacuum chamber, with a PID loop: the cells are in thermal contact with the rod via radiative and conductive heat transfer. ±50mK prototype vacuum chamber passive thermal insulator With a second PID loop, we control the temperature of the oscillating mass by acting on a IR heater facing the mass.

22 Prototype silicon oscillator We designed a prototype silicon oscillator on the basis of the design of the aluminum oscillator prototype: thanks to the tests on the aluminum oscillator, we have made a few significative improvements to the design. silicon rod, to be glued onto the aluminum body 1 st longitudinal resonance at 1.5kHz capacitor for displacement readout assembly in february 2010; tests in spring 2010

23 Setup for room T campaign Peltier cells for controlling oscillator base temperature copper strips for conductive heat path 4 stages mechanical suspension vacuum chamber 3 oscillators (Al5056, Si) with active control of the temperature of the oscillating mass isolated platform where the experiment will be mounted passive, thermal insulator LNL

24 A case study: AURIGA AURIGA is gravitational wave bar detector located at INFN Legnaro (Padova, Italy) bar: material Al5056 mass 2300kg length 3m 1 st longitud. resonance diameter 600mm thermodynamic temperature ~900Hz 4.2K readout: capacitive transucer (bias 8MV/m) low loss matching transformer (5H/4mH) double stage SQUID amplifier (500hbar) the displacement sensitivity is of order several m/ Hz over a ~100Hz bandwidth overall, a system of 3 coupled resonators: 2 mechanical + 1 electrical

25 Cooling of AURIGA 2 types of cooling employed in AURIGA, with different effects: Thermodynamic cooling to 4.2K of bar+transducer+electronics, via thermal contact with LHe bath. It reduces the thermal noise of mechanics and electronics by lowering both the temperature and (for the bar in Al5056) the losses. The losses of the electromechanical oscillators drop to Feedback cooling to T eff ~ 0.01K of only the 3 electromechanical modes via electronic feedback It improves the electronic stability and eases the data analysis; it does not improve the sensitivity to an external force such as an impinging gravitational wave. The effective losses of the electromechanical oscillators raise to

26 Feedback cooling - cold damping AURIGA modeled as the system of 3 coupled resonators (2 mechanical, 1 electrical): 3 normal modes Model each mode as RLC series electrical mode: T 0 = 4.6K We measure the noisy position of the 3 oscillators and feed back a force proportional to their velocity, equivalent to an additional damping. For each oscillator the resulting Langevin equation does not satisfy the Einstein relation: the additional damping R d calms down the oscillator (cooling to T eff ) BUT the thermal driving force remains the same (due to bath at T 0 >T eff )

27 In AURIGA, to stabilize the readout electronics, we measure the noisy position of an oscillator and feed back a force proportional to its velocity, equivalent to an additional damping. Standard scheme, does not improve sensitivity to GWs (Fsignal). Now considered to reduce the thermal vibration noise and allow the observation of quantum effects.

28 Active cooling: spectrum AURIGA runs continuously with fixed feedback settings. However, we investigated the effect of changing feedback settings. these numbers indicate the equivalent temperature of the mode, in mk units non-equilibrium steady states caused by stochastic driving PRL 101, (2008)

29 Application of 1 st law of Thermodynamics With feedback off, the thermal driving forces the motion of the oscillator. This energy is given back to the bath by the intrinsic damping R. With feedback on, part the energy is extracted as work done on the feedback (additional damping R d ): this results in cooling. t integration time time averaged oscillator s energy difference symmetric as for an equilibrium oscillator time averaged work done by oscillator positive by definition positive mean, independent of t time averaged heat absorbed by oscillator positive mean, independent of t net heat transfer from the bath to the oscillator: the reverse (ie Q t <0) is very rare PRL 103, (2009) RareNoise & Auriga collaborations

30 Power injected by the thermal bath (e t : normalized power) it maintains the dissipative system in a nonequilibrium steady state 3 years Auriga data compared with theoretical model for stochastically driven Langevin system: a transition is expected in the PDF of ε t the Fluctuation Relation for ε t is nonlinear. singularity in the 2 nd derivative of the (large deviation function of the) injected power = predictions for t/t eff testing Fluctuation Relations is a standard tool to characterize nonequilibrium systems: here we test the FR for the power injected by the thermal bath. This feature was never observed before in an harmonic oscillator. PRL 103, (2009) RareNoise & Auriga collaborations

31 Further investigation on oscillators with feedback digital protocol: the feedback feeds back the current I s scaled by a factor G (<1) and time delayed by t d analog protocol: the feedback acts as a low pass filter with cut frequency W and gain A. Auriga implements the analog protocol but is studied as digital protocol: the two descriptions are equivalent in the case of high quality factors and t d =p/2w 0, W<<w 0 (and AW=Gw 0 ).

32 We have computed the power spectral density of the output current in the presence of themal noise and feedback for the 2 protocols and at different Q and feedback parameters Digital protocol, high Q case (Q=10 5 ) predicted a shift of the resonant frequency with increasing feedback gain De Gregorio et al., J. Stat. Mech. (2009) P10016

33 Digital protocol, low Q case (Q=1) equilibrium G=0.75 predicted a discontinuity in the dominant frequency De Gregorio et al., J. Stat. Mech. (2009) P10016

34 Molecular dynamics Development of 1, 2 and 3dimensional models to simulate the behaviour of a solid rod subject to thermal gradient: study of fluctuations in non-equilibrium states in collaboration with dr. Yi Ding - ETH Zürich 1dim models already interesting at equilibrium n. of particles: evaporation problem solvedrisolto il problema della evaporazione several kinds of thermostats successful in reproducing thermal expansion now standard potentials are being considered: late we will specialize to Al5056 and silicon work in progress

35 The ERC funding and the project management Reports to funding agency (ERC): financial reports any 18 months (ie 4 reports); scientific reports any 30 month (ie 2 reports). Personell: only L.Conti is charged to INFN. Others are either hired by the project or permanent staff of partner institutions In February 2010 the presence of the project in INFN will likey be formalized by the opening of a new experiment ( sigla ) in CSNII. This will solve a number of difficulties we encountered with INFN and will ease expansion of the project to interested researchers.

Low probability, large fluctuations of the noise in detectors of gravitational waves

Low probability, large fluctuations of the noise in detectors of gravitational waves European Research Council Low probability, large fluctuations of the noise in detectors of gravitational waves Nickname oftheproject: RareNoise Project Number: 202680 Principal Investigator: Livia Conti

More information

Nonequilibrium issues in macroscopic experiments

Nonequilibrium issues in macroscopic experiments Nonequilibrium issues in macroscopic experiments L. Conti, M. Bonaldi, L. Rondoni www.rarenoise.lnl.infn.it European Research Council Gravitational Wave detector Motivation: GWs will provide new and unique

More information

Modelling nonequilibrium macroscopic oscillators. oscillators of interest to experimentalists.

Modelling nonequilibrium macroscopic oscillators. oscillators of interest to experimentalists. Modelling nonequilibrium macroscopic oscillators of interest to experimentalists. P. De Gregorio RareNoise : L. Conti, M. Bonaldi, L. Rondoni ERC-IDEAS: www.rarenoise.lnl.infn.it Nonequilibrium Processes:

More information

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas

Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas Status and Plans for Future Generations of Ground-based Interferometric Gravitational-Wave Antennas 4 th international LISA Symposium July 22, 2002 @ Penn State University Seiji Kawamura National Astronomical

More information

Low temperature mechanical dissipation measurements of silicon and silicon carbide as candidate material for DUAL detector

Low temperature mechanical dissipation measurements of silicon and silicon carbide as candidate material for DUAL detector Journal of Physics: Conference Series Low temperature mechanical dissipation measurements of silicon and silicon carbide as candidate material for DUAL detector To cite this article: M Bignotto et al 2008

More information

A broad band detector of Gravitational Waves: The dual torus

A broad band detector of Gravitational Waves: The dual torus A broad band detector of Gravitational Waves: The dual torus M.BONALDI 1, M.CERDONIO 2, L.CONTI 2, M.PINARD 3, G.A.PRODI 4, L.TAFFARELLO 5, J.P.ZENDRI 5 1 Istituto di Fotonica e Nanotecnologie, ITC-CNR,

More information

Displacement Noises in Laser Interferometric Gravitational Wave Detectors

Displacement Noises in Laser Interferometric Gravitational Wave Detectors Gravitational Wave Physics @ University of Tokyo Dec 12, 2017 Displacement Noises in Laser Interferometric Gravitational Wave Detectors Yuta Michimura Department of Physics, University of Tokyo Slides

More information

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA.

Interferometric. Gravitational Wav. Detectors. \p World Scientific. Fundamentals of. Peter R. Sawlson. Syracuse University, USA. SINGAPORE HONGKONG Fundamentals of Interferometric Gravitational Wav Detectors Second Edition Peter R. Sawlson Martin A. Pomerantz '37 Professor of Physics Syracuse University, USA \p World Scientific

More information

The Quantum Limit and Beyond in Gravitational Wave Detectors

The Quantum Limit and Beyond in Gravitational Wave Detectors The Quantum Limit and Beyond in Gravitational Wave Detectors Gravitational wave detectors Quantum nature of light Quantum states of mirrors Nergis Mavalvala GW2010, UMinn, October 2010 Outline Quantum

More information

Thermal Noise in Non-Equilibrium Steady State Hannah Marie Fair Department of Physics, University of Tokyo, Tokyo, Japan (August 2014)

Thermal Noise in Non-Equilibrium Steady State Hannah Marie Fair Department of Physics, University of Tokyo, Tokyo, Japan (August 2014) Thermal Noise in Non-Equilibrium Steady State Hannah Marie Fair Department of Physics, University of Tokyo, Tokyo, Japan (August 2014) Abstract Gravitational wave detectors are working to increase their

More information

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo

Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Innovative Technologies for the Gravitational-Wave Detectors LIGO and Virgo Jan Harms INFN, Sezione di Firenze On behalf of LIGO and Virgo 1 Global Network of Detectors LIGO GEO VIRGO KAGRA LIGO 2 Commissioning

More information

Index. Index. More information. in this web service Cambridge University Press

Index. Index. More information.  in this web service Cambridge University Press A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

More information

2 Each satellite will have two test masses, each being the end mirror for an interferometer.

2 Each satellite will have two test masses, each being the end mirror for an interferometer. Ground Testing for LISA Test Masses with a Torsion Pendulum Matthew Schmidt Valdosta State University International REU: University of Trento, Italy Advisor: Dr. Bill Weber Abstract: One of the most important

More information

THE NEW RUN OF EXPLORER AND NAUTILUS

THE NEW RUN OF EXPLORER AND NAUTILUS 5th EDOARDO AMALDI CONFERENCE ON GRAVITATIONAL WAVES July 6-11, 2003 Green Park Resort Tirrenia (Pisa) - Italy THE NEW RUN OF EXPLORER AND NAUTILUS P.Astone, A.Fauth, D.Babusci, M.Bassan, P.Carelli, G.Cavallari,

More information

A wideband and sensitive GW detector for khz frequencies: the dual sphere

A wideband and sensitive GW detector for khz frequencies: the dual sphere INSTITUTE OF PHYSICSPUBLISHING Class. Quantum Grav. 19 (2002) 2013 2019 CLASSICAL ANDQUANTUM GRAVITY PII: S0264-9381(02)29134-0 A wideband and sensitive GW detector for khz frequencies: the dual sphere

More information

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M

Status of LIGO. David Shoemaker LISA Symposium 13 July 2004 LIGO-G M Status of LIGO David Shoemaker LISA Symposium 13 July 2004 Ground-based interferometric gravitational-wave detectors Search for GWs above lower frequency limit imposed by gravity gradients» Might go as

More information

Ir TES electron-phonon thermal conductance and single photon detection

Ir TES electron-phonon thermal conductance and single photon detection Ir TES electron-phonon thermal conductance and single photon detection D. Bagliani, F. Gatti, M. Ribeiro Gomes, L. Parodi, L. Ferrari and R. Valle I.N.F.N. of Genoa, Via Dodecaneso, 33, 16146 Genova, Italy

More information

Optical Techniques for Gravitational-Wave Detection

Optical Techniques for Gravitational-Wave Detection Optical Techniques for Gravitational-Wave Detection M. Tacca Nikhef - Amsterdam Nikhef- 2017 July 14th Born in Novara (Italy) Introducing Myself PostDoc Fellow @ Nikhef (since July 2017) Laurea & PhD @

More information

Gravitational Wave Detection from the Ground Up

Gravitational Wave Detection from the Ground Up Gravitational Wave Detection from the Ground Up Peter Shawhan (University of Maryland) for the LIGO Scientific Collaboration LIGO-G080393-00-Z From Simple Beginnings Joe Weber circa 1969 AIP Emilio Segre

More information

IGEC toolbox for coincidence search

IGEC toolbox for coincidence search IGEC toolbox for coincidence search L. Baggio, M. Cerdonio, I.S. Heng, A. Ortolan, G.A. Prodi, E. Rocco, G. Vedovato and S. Vitale Univ. of Trento and INFN, via Sommarive, 14, 38050, Povo, TN, Italy Univ.

More information

Day 3: Ultracold atoms from a qubit perspective

Day 3: Ultracold atoms from a qubit perspective Cindy Regal Condensed Matter Summer School, 2018 Day 1: Quantum optomechanics Day 2: Quantum transduction Day 3: Ultracold atoms from a qubit perspective Day 1: Quantum optomechanics Day 2: Quantum transduction

More information

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System

Advanced Workshop on Nanomechanics September Quantum Measurement in an Optomechanical System 2445-03 Advanced Workshop on Nanomechanics 9-13 September 2013 Quantum Measurement in an Optomechanical System Tom Purdy JILA - NIST & University of Colorado U.S.A. Tom Purdy, JILA NIST & University it

More information

The activities of micro-force measurement below 10 mn in Center for Measurement Standards

The activities of micro-force measurement below 10 mn in Center for Measurement Standards The activities of micro-force measurement below 10 mn in Center for Measurement Standards Sheng-Jui Chen and Sheau-Shi Pan With contribution from : Ya-Ko Chih, Chung-Lin Wu, Fu-Lung Pan, Chin-Fen Tuan

More information

LIGOʼs first detection of gravitational waves and the development of KAGRA

LIGOʼs first detection of gravitational waves and the development of KAGRA LIGOʼs first detection of gravitational waves and the development of KAGRA KMI2017 Jan. 2017 Tokyo Institute of Technology Kentaro Somiya Self Introduction Applied Physics (U Tokyo) NAOJ 2000-04 Albert-Einstein

More information

GEO 600: Advanced Techniques in Operation

GEO 600: Advanced Techniques in Operation GEO 600: Advanced Techniques in Operation Katherine Dooley for the GEO team DCC# G1400554-v1 LISA Symposium X Gainesville, FL May 21, 2014 GEO600 Electronics shop Corner building Operator's station Offices

More information

1 Elenco delle pubblicazioni su riviste internazionali con peer review e indicizzate da Thomson ISI

1 Elenco delle pubblicazioni su riviste internazionali con peer review e indicizzate da Thomson ISI 1 Elenco delle pubblicazioni su riviste internazionali con peer review e indicizzate da Thomson ISI [1] Serra E, Bonaldi M, Borrielli A, Conti L, Pandraud G, and Sarro P, Low loss single-crystal silicon

More information

Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch

Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch The Association of Loudspeaker Manufacturers & Acoustics International (ALMA) Nonlinear Losses in Electro-acoustical Transducers Wolfgang Klippel, Daniel Knobloch Institute of Acoustics and Speech Communication

More information

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I

Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I 1 Vibration-Free Pulse Tube Cryocooler System for Gravitational Wave Detectors I - Vibration-Reduction Method and Measurement - T. Tomaru A, T. Suzuki A, T. Haruyama A, T. Shintomi A, N. Sato A, A. Yamamoto

More information

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago

Gravitational wave cosmology Lecture 2. Daniel Holz The University of Chicago Gravitational wave cosmology Lecture 2 Daniel Holz The University of Chicago Thunder and lightning Thus far we ve only seen the Universe (and 95% of it is dark: dark matter and dark energy). In the the

More information

Validation Of Data In Operating Resonant Detectors

Validation Of Data In Operating Resonant Detectors Validation Of Data In Operating Resonant Detectors G.A.Prodi, L.Baggio 2, M.Cerdonio 2, V.Crivelli Visconti 2, V.Martinucci, A.Ortolan 3, L.Taffarello 4, G.Vedovato 3, S.Vitale, J.P.Zendri 4 Dipartimento

More information

Development of ground based laser interferometers for the detection of gravitational waves

Development of ground based laser interferometers for the detection of gravitational waves Development of ground based laser interferometers for the detection of gravitational waves Rahul Kumar ICRR, The University of Tokyo, 7 th March 2014 1 Outline 1. Gravitational waves, nature & their sources

More information

The status of VIRGO. To cite this version: HAL Id: in2p

The status of VIRGO. To cite this version: HAL Id: in2p The status of VIRGO E. Tournefier, F. Acernese, P. Amico, M. Al-Shourbagy, S. Aoudia, S. Avino, D. Babusci, G. Ballardin, R. Barillé, F. Barone, et al. To cite this version: E. Tournefier, F. Acernese,

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors

Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors Temperature coefficient of refractive index of sapphire substrate at cryogenic temperature for interferometric gravitational wave detectors T. Tomaru, T. Uchiyama, C. T. Taylor, S. Miyoki, M. Ohashi, K.

More information

TOBA: Torsion-Bar Antenna

TOBA: Torsion-Bar Antenna TOBA: Torsion-Bar Antenna Small-scale TOBA at Tokyo Small-scale TOBA at Kyoto SWIM on SDS-1 satellite Masaki Ando (National Astronomical Observatory) K.Ishidoshiro, A.Shoda, K.Okada, W.Kokuyama, K.Yagi,

More information

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter

Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter Resistance Thermometry based Picowatt-Resolution Heat-Flow Calorimeter S. Sadat 1, E. Meyhofer 1 and P. Reddy 1, 1 Department of Mechanical Engineering, University of Michigan, Ann Arbor, 48109 Department

More information

Ayaka Shoda University of Tokyo. M. Ando A, K. Okada, K. Ishidoshiro B, Y. Aso, K. Tsubono Kyoto University A, KEK B

Ayaka Shoda University of Tokyo. M. Ando A, K. Okada, K. Ishidoshiro B, Y. Aso, K. Tsubono Kyoto University A, KEK B Ayaka Shoda University of Tokyo M. Ando A, K. Okada, K. Ishidoshiro B, Y. Aso, K. Tsubono Kyoto University A, KEK B Table of contents 1. Introduction 2. Torsion-bar Antenna 3. Simultaneous observational

More information

Nonstationary electrical charge distribution on the fused silica bifilar pendulum and its effect on the mechanical Q-factor

Nonstationary electrical charge distribution on the fused silica bifilar pendulum and its effect on the mechanical Q-factor Nonstationary electrical charge distribution on the fused silica bifilar pendulum and its effect on the mechanical Q-factor V.P. Mitrofanov, L.G. Prokhorov, K.V. Tokmakov Moscow State University G050097-00-Z

More information

First results of the RAP experiment (acoustic detection of particles) in the low temperature regime

First results of the RAP experiment (acoustic detection of particles) in the low temperature regime Institute of Physics Publishing Journal of Physics: Conference Series 32 (2006) 393 397 doi:10.1088/1742-6596/32/1/060 Sixth Edoardo Amaldi Conference on Gravitational Waves First results of the RAP experiment

More information

Radiation pressure effects in interferometric measurements

Radiation pressure effects in interferometric measurements Laboratoire Kastler Brossel, Paris Radiation pressure effects in interferometric measurements A. Heidmann M. Pinard J.-M. Courty P.-F. Cohadon T. Briant O. Arcizet T. Caniard C. Molinelli P. Verlot Quantum

More information

The Investigation of Geometric Anti-springs Applied to Euler Spring Vibration Isolators

The Investigation of Geometric Anti-springs Applied to Euler Spring Vibration Isolators The Investigation of Geometric Anti-springs Applied to Euler Spring Vibration Isolators Eu-Jeen Chin Honours 2002 School of Physics Supervisors: Prof. David Blair Dr. Li Ju Dr. John Winterflood The University

More information

New directions for terrestrial detectors

New directions for terrestrial detectors New directions for terrestrial detectors The next ten years Nergis Mavalvala (just a middle child) Rai s party, October 2007 Rai-isms Zacharias s picture This isn t half stupid = brilliant! What do you

More information

A prototype for a tilt-free seismometer

A prototype for a tilt-free seismometer LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Technical Note 2015/10/17 A prototype for a tilt-free seismometer Alessandra

More information

First Virgo Science Run. Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION

First Virgo Science Run. Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION First Virgo Science Run Press Conference - May 22, 2007 Cascina, Pisa, Italy PRESS INFORMATION Introduction On May 18 th, the Virgo interferometer started its first science run. This is a major milestone

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: The Big Bang Problem Set #9 Due in hand-in box by 4;00 PM, Friday, April 19 Early in the

More information

A Guide to Experiments in Quantum Optics

A Guide to Experiments in Quantum Optics Hans-A. Bachor and Timothy C. Ralph A Guide to Experiments in Quantum Optics Second, Revised and Enlarged Edition WILEY- VCH WILEY-VCH Verlag CmbH Co. KGaA Contents Preface 1 Introduction 1.1 Historical

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

Squeezed Light for Gravitational Wave Interferometers

Squeezed Light for Gravitational Wave Interferometers Squeezed Light for Gravitational Wave Interferometers R. Schnabel, S. Chelkowski, H. Vahlbruch, B. Hage, A. Franzen, and K. Danzmann. Institut für Atom- und Molekülphysik, Universität Hannover Max-Planck-Institut

More information

Vacuum Kelvin Force Probe Research Richard Williams August 1st 2008

Vacuum Kelvin Force Probe Research Richard Williams August 1st 2008 Vacuum Kelvin Force Probe Research Richard Williams August 1st 2008 Introduction Kelvin Force Probe Microscopy is an analytical method to measure the contact potential difference between a reference material

More information

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves

How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves How to measure a distance of one thousandth of the proton diameter? The detection of gravitational waves M. Tacca Laboratoire AstroParticule et Cosmologie (APC) - Paris Journée GPhys - 2016 July 6th General

More information

10 Measurement of Acceleration, Vibration and Shock Transducers

10 Measurement of Acceleration, Vibration and Shock Transducers Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts

More information

Terrestrial Detector for Low Frequency GW Based on Full Tensor Measurement

Terrestrial Detector for Low Frequency GW Based on Full Tensor Measurement Terrestrial Detector for Low Frequency GW Based on Full Tensor Measurement Hyung Mok Lee Department of Physics and Astronomy, Seoul National University The Third KAGRA International Workshop May 21-22,

More information

Magnetic Field Measurement System For Cryogenic Permanent Magnet Undulator At SSRF

Magnetic Field Measurement System For Cryogenic Permanent Magnet Undulator At SSRF Magnetic Field Measurement System For Cryogenic Permanent Magnet Undulator At SSRF Hongfei Wang, Jingmin Zhang,Wei Zhang, Qiaogen Zhou Shanghai Institute of Applied Physics, P.O.Box 800-204, Shanghai 201800,

More information

Looking at Cosmic Muons to verify Einstein's Special Relativity

Looking at Cosmic Muons to verify Einstein's Special Relativity Looking at Cosmic Muons to verify Einstein's Special Relativity Kunnawalkam Raghav Cornell College, PHY 312 Prof. Derin Sherman Abstract In this paper we will be building a modified Geiger counter to detect

More information

Quality Factor Thickness (nm) Quality Factor Thickness (nm) Quality Factor 10

Quality Factor Thickness (nm) Quality Factor Thickness (nm) Quality Factor 10 Oxygen-Terminated Fluorine-Terminated Length = 24 mm Length = 2 mm Length = 1 mm Length = 12 mm Length = 8 mm 8 mm Width, K 12 mm Width, K 1 mm Width, K 8 mm Width, K 12 mm Width, K 1 mm Width, K Supplementary

More information

The gravitational wave detector VIRGO

The gravitational wave detector VIRGO The gravitational wave detector VIRGO for the VIRGO collaboration Raffaele Flaminio Laboratoire d Annecy-le-Vieux de Physique des Particules (LAPP) IN2P3 - CNRS Summary I. A bit of gravitational wave physics

More information

arxiv: v1 [physics.ins-det] 16 Nov 2015

arxiv: v1 [physics.ins-det] 16 Nov 2015 Newtorites in bar detectors of gravitational wave arxiv:1511.04882v1 [physics.ins-det] 16 Nov 2015 Francesco Ronga (ROG collaboration) 1 INFN Laboratori Nazionali di Frascati via Fermi, Frascati I 00044,

More information

1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice

1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice 1990. Temperature dependence of soft-doped / hard-doped PZT material properties under large signal excitation and impact on the design choice Charles Mangeot Noliac A/S, Kvistgaard, Denmark E-mail: cm@noliac.com

More information

Hands on CUORE: investigation on the vibrations and temperature control of the cryostat

Hands on CUORE: investigation on the vibrations and temperature control of the cryostat : investigation on the vibrations and temperature control of the cryostat Simone Marcocci Gran Sasso Science Institute, Viale Crispi 7, 670 L Aquila, Italy E-mail: simone.marcocci@gssi.infn.it Physics

More information

2d-Laser Cantilever Anemometer

2d-Laser Cantilever Anemometer 2d-Laser Cantilever Anemometer Introduction Measuring principle Calibration Design Comparative measurement Contact: Jaroslaw Puczylowski University of Oldenburg jaroslaw.puczylowski@forwind.de Introduction

More information

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics

C.W. Gardiner. P. Zoller. Quantum Nois e. A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics C.W. Gardiner P. Zoller Quantum Nois e A Handbook of Markovian and Non-Markovia n Quantum Stochastic Method s with Applications to Quantum Optics 1. A Historical Introduction 1 1.1 Heisenberg's Uncertainty

More information

Ultrasonic resonance of defects for nonlinear acoustic imaging and NDT

Ultrasonic resonance of defects for nonlinear acoustic imaging and NDT 11th European Conference on Non-Destructive Testing (ECNDT 214), October 6-1, 214, Prague, Czech Republic Ultrasonic resonance of defects for nonlinear acoustic imaging and NDT More Info at Open Access

More information

Next Generation Interferometers

Next Generation Interferometers Next Generation Interferometers TeV 06 Madison Rana Adhikari Caltech 1 Advanced LIGO LIGO mission: detect gravitational waves and initiate GW astronomy Next detector» Should have assured detectability

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

Last Name Minotti Given Name Paolo ID Number

Last Name Minotti Given Name Paolo ID Number Last Name Minotti Given Name Paolo ID Number 20180131 Question n. 1 Draw and describe the simplest electrical equivalent model of a 3-port MEMS resonator, and its frequency behavior. Introduce possible

More information

Status Report: Charge Cloud Explosion

Status Report: Charge Cloud Explosion Status Report: Charge Cloud Explosion J. Becker, D. Eckstein, R. Klanner, G. Steinbrück University of Hamburg Detector laboratory 1. Introduction and Motivation. Set-up available for measurement 3. Measurements

More information

SUPPLEMENTARY FIGURES

SUPPLEMENTARY FIGURES 1 SUPPLEMENTARY FIGURES Supplementary Figure 1: Schematic representation of the experimental set up. The PC of the hot line being biased, the temperature raises. The temperature is extracted from noise

More information

Determining thermal noise limiting properties of thin films

Determining thermal noise limiting properties of thin films Determining thermal noise limiting properties of thin films Courtney Linn Institute for Gravitational Research University of Glasgow Summer 2011 Abstract In order to make thermally stable mirrors to be

More information

Nanometrology and its role in the development of nanotechnology

Nanometrology and its role in the development of nanotechnology Nanometrology and its role in the development of nanotechnology Rob Bergmans Nederlands Meetinstituut Van Swinden Laboratorium 1 NMi Van Swinden Laboratorium The Art of Measurement Dutch national metrology

More information

time/s force/n Polesworth High School 1

time/s force/n Polesworth High School 1 1. A toy locomotive of mass 0.50kg is initially at rest on a horizontal track. The locomotive is powered by a twisted rubber band which, as it unwinds, exerts a force which varies with time as shown in

More information

Advanced VIRGO EXPERIMENT

Advanced VIRGO EXPERIMENT Advanced VIRGO EXPERIMENT Advanced VIRGO Interferometer: a second generation detector for Gravitational Waves observation F. Frasconi for the VIRGO Collaboration 16 th Lomonosov Conference Moscow State

More information

RAP-RD Acoustic Detection of Particles at the DAFNE Beam Test Facility (BTF) In collaboration with : Kamerlingh Onnes Laboratory, Leiden Univ.

RAP-RD Acoustic Detection of Particles at the DAFNE Beam Test Facility (BTF) In collaboration with : Kamerlingh Onnes Laboratory, Leiden Univ. RAP-RD Acoustic Detection of Particles at the DAFNE Beam Test Facility (BTF) In collaboration with : Kamerlingh Onnes Laboratory, Leiden Univ. Goal of the experiment : To measure the amplitude X of the

More information

Shot Noise and the Non-Equilibrium FDT

Shot Noise and the Non-Equilibrium FDT Shot Noise and the Non-Equilibrium FDT Rob Schoelkopf Applied Physics Yale University Gurus: Michel Devoret, Steve Girvin, Aash Clerk And many discussions with D. Prober, K. Lehnert, D. Esteve, L. Kouwenhoven,

More information

Electric Rocket Engine System R&D

Electric Rocket Engine System R&D Electric Rocket Engine System R&D In PROITERES, a powered flight by an electric rocket engine is planed; that is, orbital transfer will be carried out with a pulsed plasma thruster (PPT). We introduce

More information

Phase-Referencing and the Atmosphere

Phase-Referencing and the Atmosphere Phase-Referencing and the Atmosphere Francoise Delplancke Outline: Basic principle of phase-referencing Atmospheric / astrophysical limitations Phase-referencing requirements: Practical problems: dispersion

More information

Using a Mercury itc with thermocouples

Using a Mercury itc with thermocouples Technical Note Mercury Support Using a Mercury itc with thermocouples Abstract and content description This technical note describes how to make accurate and reliable temperature measurements using an

More information

Thermal Sensors and Actuators

Thermal Sensors and Actuators Thermal Sensors and Actuators Part I Fundamentals of heat transfer Heat transfer occurs where there is a temperature gradient until an equilibrium is reached. Four major mechanism Thermal conduction Natural

More information

Document Number: SPIRE-UCF-DOC Issue 1.0. November Matt Griffin

Document Number: SPIRE-UCF-DOC Issue 1.0. November Matt Griffin Sensitivity of the SPIRE Detectors to Operating Parameters Document Number: SPIRE-UCF-DOC-9 Issue. November 4 7 Matt Griffin Contents. Introduction.... List of symbols... 3. Principles of semiconductor

More information

Chapter 14: Periodic motion

Chapter 14: Periodic motion Chapter 14: Periodic motion Describing oscillations Simple harmonic motion Energy of simple harmonic motion Applications of simple harmonic motion Simple pendulum & physical pendulum Damped oscillations

More information

Some design ideas for the electro-static drives (ESD) of the AEI-10m prototype

Some design ideas for the electro-static drives (ESD) of the AEI-10m prototype Some design ideas for the electro-static drives (ESD) of the AEI-10m prototype Holger Wittel & Stefan Hild March 26, 2010 1/14 The Problem Motivation for a new ESD design The AEI-10m interferometer will

More information

Search for gravitational radiation with the Allegro and Explorer detectors

Search for gravitational radiation with the Allegro and Explorer detectors Search for gravitational radiation with the Allegro and Explorer detectors P. Astone, 1 M. Bassan, 2 P. Bonifazi, 3,1 P. Carelli, 4 E. Coccia, 2 C. Cosmelli, 5 V. Fafone, 6 S. Frasca, 5 K. Geng, 7 W. O.

More information

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References

File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Supplementary Information Description: Supplementary Figures, Supplementary Notes and Supplementary References File name: Peer Review File Description: Optical frequency (THz) 05. 0 05. 5 05.7

More information

Report from sub-groups Cryogenic Cryogenic payload

Report from sub-groups Cryogenic Cryogenic payload Report from sub-groups Cryogenic Cryogenic payload Kazuhiro Yamamoto Institute for Cosmic Ray Research (ICRR) the University of Tokyo KAGRA(LCGT) face to face meeting Institute for Cosmic Ray Research,

More information

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1

COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1 Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric

More information

Last Name _Di Tredici_ Given Name _Venere_ ID Number

Last Name _Di Tredici_ Given Name _Venere_ ID Number Last Name _Di Tredici_ Given Name _Venere_ ID Number 0180713 Question n. 1 Discuss noise in MEMS accelerometers, indicating the different physical sources and which design parameters you can act on (with

More information

Report on PIAVE G. Bisoffi

Report on PIAVE G. Bisoffi Report on PIAVE G. Bisoffi International Scientific Committee, Legnaro February 10th, 2005 Context: Upgrade of the LNL Nuclear Physics Facility 3. CRYOGENIC SYSTEM UPGRADE 5. ALPI Energy Upgrade 4 3 4.

More information

Metastable states in an RF driven Josephson oscillator

Metastable states in an RF driven Josephson oscillator Metastable states in an RF driven Josephson oscillator R. VIJAYARAGHAVAN Daniel Prober Robert Schoelkopf Steve Girvin Department of Applied Physics Yale University 3-16-2006 APS March Meeting I. Siddiqi

More information

Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES

Silicon Capacitive Accelerometers. Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES Silicon Capacitive Accelerometers Ulf Meriheinä M.Sc. (Eng.) Business Development Manager VTI TECHNOLOGIES 1 Measuring Acceleration The acceleration measurement is based on Newton s 2nd law: Let the acceleration

More information

An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures under Fatigue Loading PI: Mohammad Modarres

An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures under Fatigue Loading PI: Mohammad Modarres An Acoustic Emission Approach to Assess Remaining Useful Life of Aging Structures under Fatigue Loading PI: Mohammad Modarres Outline Objective Motivation, acoustic emission (AE) background, approaches

More information

Quantum Mechanical Noises in Gravitational Wave Detectors

Quantum Mechanical Noises in Gravitational Wave Detectors Quantum Mechanical Noises in Gravitational Wave Detectors Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Germany Introduction Test masses in GW interferometers are Macroscopic

More information

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal Cryogenic Instrumentation I 1. Thermometry 2. anges of Application 3. Constant Volume 4. Thermocouples 5. Time esponse Data 6. 4 Terminal esistance Measurement OUTLINE 8. Pt (pure metal) 9. Typical esistive

More information

Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/ Kip Thorne WEB course

Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/ Kip Thorne WEB course Gravitational Wave Astronomy Suggested readings: Camp and Cornish, Ann Rev Nucl Part Sci 2004 Schutz, gr-qc/0003069 Kip Thorne WEB course http://elmer.caltech.edu/ph237/week1/week1.html L. Bergstrom and

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO

INF5490 RF MEMS. LN03: Modeling, design and analysis. Spring 2008, Oddvar Søråsen Department of Informatics, UoO INF5490 RF MEMS LN03: Modeling, design and analysis Spring 2008, Oddvar Søråsen Department of Informatics, UoO 1 Today s lecture MEMS functional operation Transducer principles Sensor principles Methods

More information

Monolithic Folded Pendulum Accelerometers for Seismic Monitoring and Active Isolation Systems

Monolithic Folded Pendulum Accelerometers for Seismic Monitoring and Active Isolation Systems Monolithic Folded Pendulum Accelerometers for Seismic Monitoring and Active Isolation Systems Alessandro Bertolini, Riccardo DeSalvo, Francesco Fidecaro and Akiteru Takamori Abstract A new class of very

More information

Searching for non-newtonian forces with optically levitated microspheres!

Searching for non-newtonian forces with optically levitated microspheres! Searching for non-newtonian forces with optically levitated microspheres!! David Moore, Alexander Rider, Marie Lu, Giorgio Gratta! Stanford University! Testing Gravity 2015! Introduction! Searches for

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

Quantum-noise reduction techniques in a gravitational-wave detector

Quantum-noise reduction techniques in a gravitational-wave detector Quantum-noise reduction techniques in a gravitational-wave detector AQIS11 satellite session@kias Aug. 2011 Tokyo Inst of Technology Kentaro Somiya Contents Gravitational-wave detector Quantum non-demolition

More information

Future underground gravitational wave observatories. Michele Punturo INFN Perugia

Future underground gravitational wave observatories. Michele Punturo INFN Perugia Future underground gravitational wave observatories Michele Punturo INFN Perugia Terrestrial Detectors Advanced detectors 2015-2025 GEO, Hannover, 600 m aligo Hanford, 4 km 2015 2016 AdV, Cascina, 3 km

More information

Compact Advanced Passive Isolation Stages

Compact Advanced Passive Isolation Stages Compact Advanced Passive Isolation Stages for Third Generation Gravitational Wave Detectors Li Ju, Jean-Charles Dumas, Siddartha S Verma, Chunnong Zhao, David Blair Outline Requirements for 3 rd generation

More information