Why are you all so obsessed with this form-drag business? Quick-and-dirty response. I ve-been-thinking-about-this-for-a-really-long-time response

Size: px
Start display at page:

Download "Why are you all so obsessed with this form-drag business? Quick-and-dirty response. I ve-been-thinking-about-this-for-a-really-long-time response"

Transcription

1 Why are you all so obsessed with this form-drag business? Comments on On the Obscurantist Physics of Form Drag in Theorizing about the Circumpolar Current C. W. HUGHES Proudman Oceanographic Laboratory, Birkenhead, Merseyside, United Kingdom 29 April 1996 Quick-and-dirty response Comments on On the Obscurantist Physics of Form Drag in Theorizing about the Circumpolar Current* DIRK OLBERS Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany 16 January 1997 and 14 October 1997 I ve-been-thinking-about-this-for-a-really-long-time response

2 So what are these Obscurantist physics anyway? Time-averaged zonal momentum equation Integrate vertically over the whole water column Integrate along a streamline around the ACC ~X StressWind T z Wind stress = Topographic form stress 1 x Ap:~ fr d~ b X 0 I Ap V= ~ Oo f Ax Warren et al. treat this as a statement of mass conservation Pz oe... H... ~:- ~^ V ~t D adapted from Johnson & Bryden (1989)

3 The language obscures the more conventional physics Time-averaged zonal momentum equation Integrate vertically down to H Warren et al. treat this as a statement of mass conservation Integrate from H to D ~X StressWind T z 1 x Ap:~ fr d~ b X 0 I Ap V= ~ Oo f Ax z H Pz oe... H... ~:- ~^ V ~t D y adapted from Johnson & Bryden (1989)

4 Upwelling and buoyancy Upwelling region Johnson & Bryden claim that because there is buoyancy loss over the southern ocean, there cannot be upwelling. z H Warren et al. argue that this isn t true. This gives a surface heat loss of 1.4 x W or buoyancy loss of -0.9 x 10-7 kg m -2 s. y However, there is a large freshwater flux with buoyancy flux 2.6 x 10-7 kg m -2 s. So buoyancy is actually gained. Is this still the modern view?

5 Sverdrup dynamics set the strength of the flow Warren et al. suggest that Sverdrup dynamics dictate the strength of the ACC, with southward flow in most of the ACC and northward flow just east of Drake Passage V = r Baker (1982) found that Sverdrup balance predicts a good-ish transport of the ACC (173Sv) ACC = 1 Z C r dx Where C is a circle of constant latitude just south of Cape Horn

6 To recap Warren et al. Warren et al. have not assimilated the view that the overturning circulation is along isopycnals (a fairly recent idea at the time), so they assume diabatic flow Warren et al. assert the following The wind stress forces Ekman transport in the surface layer and the mass is returned below the topography: this process is not coupled to the transport of the ACC. The wind stress is balanced by the Coriolis force in the Ekman layer. You can predict the transport of the ACC based on Sverdrup balance alone.

7 Hughes (1996) response: Sverdrup dynamics do not provide enough constraints In a closed basin In an open channel u =0 Southward transport is returned by geostrophic flow due to slope in sea-surface height i.e. we can find u using v = fw z u x + v y + w z =0 u =0 i.e. we can add any zonally-uniform u without changing v At latitudes with no boundary, an arbitrary function of latitude can be added to the Sverdrup solution.

8 Hughes (1996) response: we can t assume that ACC transport is independent of topography Isopycnals Streamfunction (follows isopycnals) For return of the Meridional Overturning Circulation, the sloping isopycnals must reach below the topography Therefore the ACC must reach below the topography. Döös and Webb (1994)

9 Hughes (1996) response: the topography sets the strength of the eastward current Some flow appears to be returned at shallower depths than would be permitted at Drake Passage This could happen at the Kerguelen plateau But in order for this to happen you need a strong eastward current Y1 Kerguelen plateau Y2 Y4 Y3 drake passage Figure 3 Source and sink flows in a zonal channel with occluding island. Webb (1994)

10 Olbers (1998) response: here s what form drag is all about Time-averaged zonal momentum equation ]p ]t 2 f y 52 1 ]x ]z Integrate in the x and z directions E0 2 f y dz 5^t 0& 2E 2 f E2E y dz 5 0 2H 2 f E2H ]D y dz 5 pd 2 t D ]x 2D(x), Using mass conservation ^ & :5 dx, RC p D (x) 5 p(x, z 52D(x)) E0 2D(x) 7 8 y dz 5 0, ]D t 0 2 t D 1 pd 5 0, ]x 7 8

11 How does the momentum get from the surface to the bottom? Imagine two surfaces below the Ekman layer but above the level of topography b 1 b 2 Assume no diabatic transport I Z z1 I 1 Z z1 f z 2 vdzdx=0= z 2 p x dz dx

12 How does the momentum get from the surface to the bottom? ]D t 0 2 t D 1 pd 5 0, ]x 7 8 Interfacial form stress Exr 2h 1(x) ]pe ]x x 2h (x) l 2 dz dx E 2h (x) ) E [ 1 xr xr ]h 1 5 p dz 1 p(x, 2h 1(x)) ]x 2h 2(x) xl xl ]h 2 2 p(x, 2h (x)) dx. ]x 2 < 0 p < > 0 p > 0 This term is zero in a re-entrant channel

13 What is the interfacial form stress? Conservation of mass & temperature perature about a izon J 5 (J (x), J (y) ) J (z) Are heat fluxes J 5 uu 1 I J (z) 5 w u 1 I (z). Integrate over area ]w = u ]z E ]z A(z) ] ^y& 1 w da 5 0. tegral of w, which appears her Therefore [ ] ] dq 21 (y) ^y& 5 (Q ) 1 z ^yu 1 I &1 2, ]z dz ]J (z) = J 1 1 wqz 5 0. ]z zea(z) dq (y) 2Q w da 5^J &1, dz E (z) Q(z) 5 J da EA(z) (z) Is the average temperature state Is the perturbation to this state Is the diabatic heat flux Zonal momentum balance ]F 78 ]t 7 ] 8 O 2 f ^y &5 5 2 uy 1 dp, ]z ]z ]y ridges Compare with Johnson & Bryden F(f = 0) = 0 dq 21 (y) F 52f (Q ) 1 z ^yu 1 I &1 2. dz v't' P0f 0z = z~" F

14 What happens in each layer? Ekman layer 78 ]F ]t 2 f ^y &5. ]z ]z E0 2 f ^y & dz 52F (z 52E) ^t 0& 2E Intermediate layer F 2^t 0 &. Deep layer ]F O 2 f ^y &5 dp, ]z ridges E2H ]D 2 f ^y & dz 5 F (z 52H) 2 p D. 2D max 7 8 ]x

15 Why is the wind stress curl not enough? The vorticity balance y ]c 2 eπ c 1 b 5 J(p D, D) 1 curlt 0, ]x Includes the pressure at depth p D (x) 5 p(x, z 52D(x)) x = 1 = 2 The momentum equation is a boundary condition on the vorticity equation eu 1 f k 3 U 52h=p D 2 =E 1 t 0. E depends on the windstress, not the wind stress curl: RL ds =E R 5 ds [2eU2 f k 3 U 2 h=pd 1 t 0] L R 5 ds [t02 t D 1 p D=h] 5 0. L

16 Conclusions You cannot predict the transport of the ACC based on Sverdrup balance alone The momentum imparted to the ocean by the wind is transferred downwards by interfacial form stress and removed from the water column by topographic form stress. WLR never mention interfacial stress, and to some extent this s their downfall. 2F (z 52E) ^t & 0

Why Western Boundary Currents in Realistic Oceans are Inviscid: A Link between Form Stress and Bottom Pressure Torques

Why Western Boundary Currents in Realistic Oceans are Inviscid: A Link between Form Stress and Bottom Pressure Torques 2871 Why Western Boundary Currents in Realistic Oceans are Inviscid: A Link between Form Stress and Bottom Pressure Torques CHRIS W. HUGHES Proudman Oceanographic Laboratory, Bidston Observatory, Prenton,

More information

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport

Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport Lecture 14. Equations of Motion Currents With Friction Sverdrup, Stommel, and Munk Solutions Remember that Ekman's solution for wind-induced transport is which can also be written as (14.1) i.e., #Q x,y

More information

Topographic Control of Basin and Channel Flows: The Role of Bottom Pressure Torques and Friction

Topographic Control of Basin and Channel Flows: The Role of Bottom Pressure Torques and Friction 1786 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36 Topographic Control of Basin and Channel Flows: The Role of Bottom Pressure Torques and Friction LAURA JACKSON* Department of Earth

More information

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2

Module Contact: Dr Xiaoming Zhai, ENV Copyright of the University of East Anglia Version 2 UNIVERSITY OF EAST ANGLIA School of Environmental Sciences Main Series UG Examination 2017-2018 OCEAN CIRCULATION ENV-5016A Time allowed: 2 hours Answer THREE questions Write each answer in a SEPARATE

More information

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY

MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY MERIDIONAL OVERTURNING CIRCULATION: SOME BASICS AND ITS MULTI-DECADAL VARIABILITY Gokhan Danabasoglu National Center for Atmospheric Research OUTLINE: - Describe thermohaline and meridional overturning

More information

Modeling a turbulence effect in formation of the Antarctic Circumpolar Current

Modeling a turbulence effect in formation of the Antarctic Circumpolar Current European Geosciences Union 2006 Annales Geophysicae Modeling a turbulence effect in formation of the Antarctic Circumpolar Current J. Heinloo and A. Toompuu Marine Systems Institute, Tallinn University

More information

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P.

isopycnal outcrop w < 0 (downwelling), v < 0 L.I. V. P. Ocean 423 Vertical circulation 1 When we are thinking about how the density, temperature and salinity structure is set in the ocean, there are different processes at work depending on where in the water

More information

A Simple Model of the Effect of the Kerguelen Plateau on the Strength of the Antarctic Circumpolar Current.

A Simple Model of the Effect of the Kerguelen Plateau on the Strength of the Antarctic Circumpolar Current. DRAT M/S. Webb 1992 A A Simple Model of the Effect of the Kerguelen Plateau on the Strength of the Antarctic Circumpolar Current. David J. Webb Institute of Oceanographic Sciences Deacon Laboratory, Wormley,

More information

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk

Lecture 8. Lecture 1. Wind-driven gyres. Ekman transport and Ekman pumping in a typical ocean basin. VEk Lecture 8 Lecture 1 Wind-driven gyres Ekman transport and Ekman pumping in a typical ocean basin. VEk wek > 0 VEk wek < 0 VEk 1 8.1 Vorticity and circulation The vorticity of a parcel is a measure of its

More information

Upper Ocean Circulation

Upper Ocean Circulation Upper Ocean Circulation C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 MAR555 Lecture 4: The Upper Oceanic Circulation The Oceanic Circulation

More information

Constructing the Residual Circulation of the ACC from Observations

Constructing the Residual Circulation of the ACC from Observations DECEMBER 2002 KARSTEN AND MARSHALL 3315 Constructing the Residual Circulation of the ACC from Observations RICHARD H. KARSTEN Department of Mathematics and Statistics, Acadia University, Wolfville, Nova

More information

ACC transport sensitivity to air-sea fluxes. Matt Mazloff SIO-UCSD

ACC transport sensitivity to air-sea fluxes. Matt Mazloff SIO-UCSD ACC transport sensitivity to air-sea fluxes Matt Mazloff SIO-UCSD Southern Ocean State estimate (SOSE): Adjoint, (4d-var) method optimization non-sequential no nudging J = (obs model) 2-2 solve for IC

More information

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise)

Note that Rossby waves are tranverse waves, that is the particles move perpendicular to the direction of propagation. f up, down (clockwise) Ocean 423 Rossby waves 1 Rossby waves: Restoring force is the north-south gradient of background potential vorticity (f/h). That gradient can be due to either the variation in f with latitude, or to a

More information

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz.

Wind Gyres. curl[τ s τ b ]. (1) We choose the simple, linear bottom stress law derived by linear Ekman theory with constant κ v, viz. Wind Gyres Here we derive the simplest (and oldest; Stommel, 1948) theory to explain western boundary currents like the Gulf Stream, and then discuss the relation of the theory to more realistic gyres.

More information

Fig. 1. Bottom water temperature in the world oceans.

Fig. 1. Bottom water temperature in the world oceans. Lecture. Dynamics of the Antarctic Circumpolar Current // : PM. The unique nature of ACC. ACC is the only current that flows around the whole world without being interrupted by continents. (Arctic Ocean

More information

Size matters: another reason why the Atlantic is saltier than the Pacific C.S. Jones and Paola Cessi

Size matters: another reason why the Atlantic is saltier than the Pacific C.S. Jones and Paola Cessi Size matters: another reason why the Atlantic is saltier than the Pacific C.S. Jones and Paola Cessi Scripps Institution of Oceanography University of California, San Diego Proposed reasons for Atlantic

More information

Answer the following questions using letters A through H :

Answer the following questions using letters A through H : SIO 210 Problem Set 3 November 10, 2014 Due Nov. 24, 2014 Answer key 1. 10 total 6 points (a) The following kinds of wave motion were mentioned in class A. light 3 x 10 9 m/sec B. sound in air (340 m/sec)

More information

A Kinetic Energy Budget and Internal Instabilities in the Fine Resolution Antarctic Model

A Kinetic Energy Budget and Internal Instabilities in the Fine Resolution Antarctic Model VOLUME 27 JOURNAL OF PHYSICAL OCEANOGRAPHY JANUARY 1997 A Kinetic Energy Budget and Internal Instabilities in the Fine Resolution Antarctic Model V. O. IVCHENKO Department of Oceanography, University of

More information

Chapter 6. Antarctic oceanography

Chapter 6. Antarctic oceanography Chapter 6 Antarctic oceanography The region of the world ocean bordering on Antarctica is unique in many respects. First of all, it is the only region where the flow of water can continue all around the

More information

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B

Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Atmosphere, Ocean, Climate Dynamics: the Ocean Circulation EESS 146B/246B Instructor: Leif Thomas TA: Gonçalo Zo Zo Gil http://pangea.stanford.edu/courses/eess146bweb/ Course Objectives Identify and characterize

More information

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be

General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be General Comment on Lab Reports: v. good + corresponds to a lab report that: has structure (Intro., Method, Results, Discussion, an Abstract would be a bonus) is well written (take your time to edit) shows

More information

Antarctic Circumpolar Current:

Antarctic Circumpolar Current: Taking the Circumpolar out of the Antarctic Circumpolar Current: The ACC and the OC University of Washington, Program on Climate Change 2016 Summer Institute @ Friday Harbor Marine Lab Andrew Thompson,

More information

2 Adiabatic Equilibrium of a Wind-Driven Zonal Jet

2 Adiabatic Equilibrium of a Wind-Driven Zonal Jet Chapter 4 ANTARCTIC CIRCUMPOLAR CURRENT 1 Phenomenology The Antarctic Circumpolar Current (ACC) is unique because of the combination of westerly wind stress at the surface and the absence of continental

More information

Atmosphere, Ocean and Climate Dynamics Fall 2008

Atmosphere, Ocean and Climate Dynamics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 12.003 Atmosphere, Ocean and Climate Dynamics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Problem

More information

Regional Oceanography: an Introduction

Regional Oceanography: an Introduction 64 Regional Oceanography: an Introduction 2500 m depth, or 10-30% of the speeds observed at the 500 m level. It is therefore easy to see why the Circumpolar Current has the largest mass transport of all

More information

Wind-Driven Transport Fluctuations through Drake Passage: A Southern Mode

Wind-Driven Transport Fluctuations through Drake Passage: A Southern Mode AUGUST 1999 HUGHES ET AL. 1971 Wind-Driven Transport Fluctuations through Drake Passage: A Southern Mode CHRIS W. HUGHES Proudman Oceanographic Laboratory, Bidston Observatory, Birkenhead, Merseyside,

More information

Ocean dynamics: the wind-driven circulation

Ocean dynamics: the wind-driven circulation Ocean dynamics: the wind-driven circulation Weston Anderson March 13, 2017 Contents 1 Introduction 1 2 The wind driven circulation (Ekman Transport) 3 3 Sverdrup flow 5 4 Western boundary currents (western

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation.

Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. John Marshall and Timour Radko Massachusetts Institute of Technology December 11, 2002 Abstract

More information

Accepted Manuscript. Gill s model of the Antarctic Circumpolar Current, revisited: the role of latitudinal variations in wind stress

Accepted Manuscript. Gill s model of the Antarctic Circumpolar Current, revisited: the role of latitudinal variations in wind stress Accepted Manuscript Gill s model of the Antarctic Circumpolar Current, revisited: the role of latitudinal variations in wind stress David P. Marshall, David R. Munday, Lesley C. Allison, Russell J. Hay,

More information

North Atlantic circulation in three simulations of 1/12, 1/25, and 1/50

North Atlantic circulation in three simulations of 1/12, 1/25, and 1/50 North Atlantic circulation in three simulations of 1/12, 1/2, and 1/ Xiaobiao Xu and Eric Chassignet Center for ocean-atmospheric prediction studies Florida State University Motivation Numerical models

More information

Three-Dimensional Pathways of the Northern Deep Waters to the Southern Ocean Surface

Three-Dimensional Pathways of the Northern Deep Waters to the Southern Ocean Surface Three-Dimensional Pathways of the Northern Deep Waters to the Southern Ocean Surface Lynne Talley Scripps Institution of Oceanography Workshop: Southern Ocean Dynamics and Biogeochemistry Caltech Linde

More information

Why Potential Vorticity Is Not Conserved along Mean Streamlines in a Numerical Southern Ocean

Why Potential Vorticity Is Not Conserved along Mean Streamlines in a Numerical Southern Ocean 1286 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 27 Why Potential Vorticity Is Not Conserved along Mean Streamlines in a Numerical Southern Ocean SARAH T. GILLE Physical Oceanography Research Division, Scripps

More information

Overturning cells in the Southern Ocean and subtropical gyres

Overturning cells in the Southern Ocean and subtropical gyres Author(s) 2007. This work is licensed under a Creative Commons License. Ocean Science Overturning cells in the Southern Ocean and subtropical gyres J. A. Polton and D. P. Marshall Department of Meteorology,

More information

NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey. (Manuscript received 8 October 2004, in final form 4 April 2006) ABSTRACT

NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey. (Manuscript received 8 October 2004, in final form 4 April 2006) ABSTRACT 2232 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36 The Role of Eddies in Determining the Structure and Response of the Wind-Driven Southern Hemisphere Overturning: Results from the

More information

SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, PM Name:

SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, PM Name: SIO 210 Final examination Answer Key for all questions except Daisyworld. Wednesday, December 10, 2008 3-6 PM Name: This is a closed book exam. You may use a calculator. There are two parts: Talley (weighted

More information

PAPER 333 FLUID DYNAMICS OF CLIMATE

PAPER 333 FLUID DYNAMICS OF CLIMATE MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 1:30 pm to 4:30 pm Draft 21 June, 2016 PAPER 333 FLUID DYNAMICS OF CLIMATE Attempt no more than THREE questions. There are FOUR questions in total.

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 10 by Jan Zika This section follows on from Andy s Internal boundary layers in the ocean circulation. 1 Equations of motion in the equatorial region

More information

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter.

1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. SIO 210 Problem Set 3 November 16, 2015 1. The figure shows sea surface height (SSH) anomaly at 24 S (southern hemisphere), from a satellite altimeter. (a) What is the name of this type of data display?_hovmöller

More information

Eddy saturation and frictional control of the Antarctic Circumpolar Current

Eddy saturation and frictional control of the Antarctic Circumpolar Current Eddy saturation and frictional control of the Antarctic Circumpolar Current Article Published Version Creative Commons: Attribution 4.0 (CC BY) Open Access Marshall, D. P., Ambaum, M. H. P., Maddison,

More information

Comparing Idealized and Complex Topographies in Quasigeostrophic Simulations of an Antarctic Circumpolar Current

Comparing Idealized and Complex Topographies in Quasigeostrophic Simulations of an Antarctic Circumpolar Current AUGUST 2013 N A D E A U E T A L. 1821 Comparing Idealized and Complex Topographies in Quasigeostrophic Simulations of an Antarctic Circumpolar Current LOUIS-PHILIPPE NADEAU Courant Institute of Mathematical

More information

SOUTHERN OCEAN-ANTARCTIC CIRCUMPOLAR CURRENT

SOUTHERN OCEAN-ANTARCTIC CIRCUMPOLAR CURRENT SOUTHERN OCEAN-ANTARCTIC CIRCUMPOLAR CURRENT SOUTHERN OCEAN-ANTARCTIC CIRCUMPOLAR CURRENT 000 000 000 John Klinck, Old Dominion University, Center for Coastal Physical Oceanography, Crittenton Hall, Norfolk,

More information

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves

ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves ESCI 343 Atmospheric Dynamics II Lesson 11 - Rossby Waves Reference: An Introduction to Dynamic Meteorology (4 rd edition), J.R. Holton Atmosphere-Ocean Dynamics, A.E. Gill Fundamentals of Atmospheric

More information

The Antarctic Circumpolar Current in Three Dimensions

The Antarctic Circumpolar Current in Three Dimensions APRIL 2006 R A D K O A N D M A R S H A L L 651 The Antarctic Circumpolar Current in Three Dimensions TIMOUR RADKO Department of Oceanography, Naval Postgraduate School, Monterey, California JOHN MARSHALL

More information

On the Sensitivity of the Drake Passage Transport to Air Sea Momentum Flux

On the Sensitivity of the Drake Passage Transport to Air Sea Momentum Flux 1APRIL 2012 M A Z L O F F 2279 On the Sensitivity of the Drake Passage Transport to Air Sea Momentum Flux MATTHEW R. MAZLOFF Scripps Institution of Oceanography, La Jolla, California (Manuscript received

More information

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction Chapter 2. Quasi-Geostrophic Theory: Formulation (review) 2.1 Introduction For most of the course we will be concerned with instabilities that an be analyzed by the quasi-geostrophic equations. These are

More information

Ocean Mixing and Climate Change

Ocean Mixing and Climate Change Ocean Mixing and Climate Change Factors inducing seawater mixing Different densities Wind stirring Internal waves breaking Tidal Bottom topography Biogenic Mixing (??) In general, any motion favoring turbulent

More information

The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current

The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current By Andrew F. Thompson Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences University of

More information

Chapter 6. Antarctic oceanography

Chapter 6. Antarctic oceanography Chapter 6 Antarctic oceanography The region of the world ocean bordering on Antarctica is unique in many respects. First of all, it is the only region where the flow of water can continue all around the

More information

Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint

Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint OCTOBER 2005 F E R R E I R A E T A L. 1891 Estimating Eddy Stresses by Fitting Dynamics to Observations Using a Residual-Mean Ocean Circulation Model and Its Adjoint DAVID FERREIRA, JOHN MARSHALL, AND

More information

The relation of meridional pressure gradients to North Atlantic Deep Water volume transport in an Ocean General Circulation Model

The relation of meridional pressure gradients to North Atlantic Deep Water volume transport in an Ocean General Circulation Model The relation of meridional pressure gradients to North Atlantic Deep Water volume transport in an Ocean General Circulation Model Alexa Griesel 1 and Miguel Angel Morales Maqueda 2 1 Potsdam Institute

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION In the format provided by the authors and unedited. SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO3053 1 2 Contribution of topographically-generated submesoscale turbulence to Southern Ocean overturning 3

More information

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name:

SIO 210 Final examination Wednesday, December 12, :30-2:30 Eckart 227 Name: SIO 210 Final examination Wednesday, December 12, 2018 11:30-2:30 Eckart 227 Name: Please put your initials or name on each page, especially if you pull pages apart. Turn off all phones, ipods, etc. and

More information

Reduced models of large-scale ocean circulation

Reduced models of large-scale ocean circulation Reduced models of large-scale ocean circulation R. M. Samelson College of Oceanic and Atmospheric Sciences Oregon State University rsamelson@coas.oregonstate.edu NCAR, 11 February 2010 Sea-surface Temperature

More information

Water characteristics and transport of the Antarctic circumpolar current in the Indian Ocean

Water characteristics and transport of the Antarctic circumpolar current in the Indian Ocean Proc. Indian Acad. Sci. (Earth Planet. Sci.), Vol. 97, No. 2, December 1988, pp. 183-191. ~) Printed in India. Water characteristics and transport of the Antarctic circumpolar current in the Indian Ocean

More information

2 Transport of heat, momentum and potential vorticity

2 Transport of heat, momentum and potential vorticity Transport of heat, momentum and potential vorticity. Conventional mean momentum equation We ll write the inviscid equation of onal motion (we ll here be using log-pressure coordinates with = H ln p=p,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION DOI: 10.1038/NGEO1189 Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica Jianjun Yin 1*, Jonathan T. Overpeck 1, Stephen M. Griffies 2,

More information

The Two-layer Skirted Island. Joseph Pedlosky 1.2. Roberto Iacono 3. Ernesto Napolitano 3. and. Michael A. Spall 1.

The Two-layer Skirted Island. Joseph Pedlosky 1.2. Roberto Iacono 3. Ernesto Napolitano 3. and. Michael A. Spall 1. The Two-layer Skirted Island by Joseph Pedlosky 1. Roberto Iacono 3 Ernesto Napolitano 3 and Michael A. Spall 1 February 8, 011 1. Woods Hole Oceanographic Institution Woods Hole, MA 0543, USA. Corresponding

More information

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5.

Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI Dr. Katrin Meissner Week 5. Physical Oceanography, MSCI 3001 Oceanographic Processes, MSCI 5004 Dr. Katrin Meissner k.meissner@unsw.e.au Week 5 Ocean Dynamics Transport of Volume, Heat & Salt Flux: Amount of heat, salt or volume

More information

SIO 210 Problem Set 3 November 15, 2013 Due Nov. 22, 2013 Answerkey

SIO 210 Problem Set 3 November 15, 2013 Due Nov. 22, 2013 Answerkey SIO 210 Problem Set 3 November 15, 2013 Due Nov. 22, 2013 Answerkey 1. Dynamics: rotation (a) Draw the direction of an inertial current in (i) the northern hemisphere and (ii) the southern hemisphere and

More information

The Force Balance of the Southern Ocean Meridional Overturning Circulation

The Force Balance of the Southern Ocean Meridional Overturning Circulation The Force Balance of the Southern Ocean Meridional Overturning Circulation The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC):

Introduction to Physical Oceanography Homework 3 - Solutions. 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): Laure Zanna 10/17/05 Introduction to Physical Oceanography Homework 3 - Solutions 1. Volume transport in the Gulf Stream and Antarctic Circumpolar current (ACC): (a) Looking on the web you can find a lot

More information

NOTES AND CORRESPONDENCE. Effect of Sea Surface Temperature Wind Stress Coupling on Baroclinic Instability in the Ocean

NOTES AND CORRESPONDENCE. Effect of Sea Surface Temperature Wind Stress Coupling on Baroclinic Instability in the Ocean 1092 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 37 NOTES AND CORRESPONDENCE Effect of Sea Surface Temperature Wind Stress Coupling on Baroclinic Instability in the Ocean MICHAEL A.

More information

The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current

The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current The atmospheric ocean: eddies and jets in the Antarctic Circumpolar Current By Andrew F. Thompson Department of Applied Mathematics and Theoretical Physics Centre for Mathematical Sciences, University

More information

GFD-2 Spring 2007 P.B. Rhines Lecture notes: MOCs (meridional overturning circulations), part I. 15v2007

GFD-2 Spring 2007 P.B. Rhines Lecture notes: MOCs (meridional overturning circulations), part I. 15v2007 1 GFD-2 Spring 2007 P.B. Rhines Lecture notes: MOCs (meridional overturning circulations), part I. 15v2007 Introduction. These are informal notes on the overturning circulations. We think of oceans and

More information

SIO 210 Final Exam Dec Name:

SIO 210 Final Exam Dec Name: SIO 210 Final Exam Dec 8 2006 Name: Turn off all phones, pagers, etc... You may use a calculator. This exam is 9 pages with 19 questions. Please mark initials or name on each page. Check which you prefer

More information

Deep flow and mixing in the Indian Ocean

Deep flow and mixing in the Indian Ocean Deep flow and mixing in the Indian Ocean MacKinnon Pinkel Johnston Deep Mixing: Southwest Indian Ocean Evidence of elevated turbulence above the Southwest Indian Ridge Kunze et al 06 (+ correction Dec

More information

Thermohaline Circulation

Thermohaline Circulation OCEAN CIRCULATION / Thermohaline Circulation 1549 distinctly nonsteady character of the ocean circulation. Ocean currents are remarkably variable. Variability on much shorter time scales of weeks and months,

More information

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017

Control Volume. Dynamics and Kinematics. Basic Conservation Laws. Lecture 1: Introduction and Review 1/24/2017 Lecture 1: Introduction and Review Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. Dynamics: On the other hand, dynamics

More information

Lecture 1: Introduction and Review

Lecture 1: Introduction and Review Lecture 1: Introduction and Review Review of fundamental mathematical tools Fundamental and apparent forces Dynamics and Kinematics Kinematics: The term kinematics means motion. Kinematics is the study

More information

Where Does Dense Water Sink? A Subpolar Gyre Example*

Where Does Dense Water Sink? A Subpolar Gyre Example* 810 JOURNAL OF PHYSICAL OCEANOGRAPHY Where Does Dense Water Sink? A Subpolar Gyre Example* MICHAEL A. SPALL AND ROBERT S. PICKART Department of Physical Oceanography, Woods Hole Oceanographic Institution,

More information

Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration

Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration JPO, 44 (8), 2107-2126, 2014 by Ryan Abernathey Paola Cessi as told by Navid CASPO theory seminar, 28 May 2016 section 2 what s the

More information

Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S

Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S Estimates of Diapycnal Mixing Using LADCP and CTD data from I8S Kurt L. Polzin, Woods Hole Oceanographic Institute, Woods Hole, MA 02543 and Eric Firing, School of Ocean and Earth Sciences and Technology,

More information

The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current

The Role of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current JANUAY KASTEN ET AL. 39 The ole of Eddy Transfer in Setting the Stratification and Transport of a Circumpolar Current ICHAD KASTEN,* HELEN JONES, AND JOHN MASHALL Department of Earth, Atmospheric, and

More information

SIO 210: Dynamics VI: Potential vorticity

SIO 210: Dynamics VI: Potential vorticity SIO 210: Dynamics VI: Potential vorticity Variation of Coriolis with latitude: β Vorticity Potential vorticity Rossby waves READING: Review Section 7.2.3 Section 7.7.1 through 7.7.4 or Supplement S7.7

More information

Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the

Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the Figure 1: Two schematic views of the global overturning circulation. The Southern Ocean plays two key roles in the global overturning: (1) the Antarctic Circumpolar Current connects the ocean basins, establishing

More information

arxiv: v1 [physics.ao-ph] 6 Nov 2012

arxiv: v1 [physics.ao-ph] 6 Nov 2012 Meridional overturning circulation: stability and ocean feedbacks in a box model. Andrea A. Cimatoribus and Sybren S. Drijfhout Royal Netherlands Meteorological Institute, De Bilt, The Netherlands Henk

More information

On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models

On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116,, doi:10.1029/2010jc006757, 2011 On the response of the Antarctic Circumpolar Current transport to climate change in coupled climate models Z. Wang, 1 T. Kuhlbrodt,

More information

Sensitivity of Global Circulation Response to a Southern Ocean Zonal Wind Stress Perturbation

Sensitivity of Global Circulation Response to a Southern Ocean Zonal Wind Stress Perturbation Sensitivity of Global Circulation Response to a Southern Ocean Zonal Wind Stress Perturbation Carlos Cruz a and Barry A. Klinger a,b a Department of Atmospheric, Oceanic, and Earth Sciences, George Mason

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of

Lecture 17 ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY. Learning objectives: understand the concepts & physics of ATOC 5051 INTRODUCTION TO PHYSICAL OCEANOGRAPHY Lecture 17 Learning objectives: understand the concepts & physics of 1. Ekman layer 2. Ekman transport 3. Ekman pumping 1. The Ekman Layer Scale analyses

More information

Large-Scale Circulation with Locally Enhanced Vertical Mixing*

Large-Scale Circulation with Locally Enhanced Vertical Mixing* 712 JOURNAL OF PHYSICAL OCEANOGRAPHY Large-Scale Circulation with Locally Enhanced Vertical Mixing* R. M. SAMELSON Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 15

More information

Large-Scale Circulations Forced by Localized Mixing over a Sloping Bottom*

Large-Scale Circulations Forced by Localized Mixing over a Sloping Bottom* AUGUST 001 SPALL 369 Large-Scale Circulations Forced by Localized Miing over a Sloping Bottom* MICHAEL A. SPALL Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

More information

Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing

Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl048031, 2011 Sensitivity of the Southern Ocean overturning circulation to surface buoyancy forcing Adele K. Morrison, 1 Andrew M. Hogg, 1 and Marshall

More information

Buoyancy-forced circulations in shallow marginal seas

Buoyancy-forced circulations in shallow marginal seas Journal of Marine Research, 63, 729 752, 2005 Buoyancy-forced circulations in shallow marginal seas by Michael A. Spall 1 ABSTRACT The properties of water mass transformation and the thermohaline circulation

More information

The General Circulation of the Oceans

The General Circulation of the Oceans The General Circulation of the Oceans In previous classes we discussed local balances (Inertial otion, Ekman Transport, Geostrophic Flows, etc.), but can we eplain the large-scale general circulation of

More information

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8

Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 Atmosphere, Ocean and Climate Dynamics Answers to Chapter 8 1. Consider a zonally symmetric circulation (i.e., one with no longitudinal variations) in the atmosphere. In the inviscid upper troposphere,

More information

Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget

Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget 530 JOURNAL OF PHYSICAL OCEANOGRAPHY Shallow, Intermediate, and Deep Overturning Components of the Global Heat Budget LYNNE D. TALLEY Scripps Institution of Oceanography, University of California, San

More information

On the world-wide circulation of the deep water from the North Atlantic Ocean

On the world-wide circulation of the deep water from the North Atlantic Ocean Journal of Marine Research, 63, 187 201, 2005 On the world-wide circulation of the deep water from the North Atlantic Ocean by Joseph L. Reid 1 ABSTRACT Above the deeper waters of the North Atlantic that

More information

NOTES AND CORRESPONDENCE. Human-Induced Change in the Antarctic Circumpolar Current

NOTES AND CORRESPONDENCE. Human-Induced Change in the Antarctic Circumpolar Current 3068 JOURNAL OF CLIMATE VOLUME 18 NOTES AND CORRESPONDENCE Human-Induced Change in the Antarctic Circumpolar Current JOHN C. FYFE AND OLEG A. SAENKO Canadian Centre for Climate Modelling and Analysis,

More information

Islands in locally-forced basin circulations

Islands in locally-forced basin circulations Islands in locally-forced basin circulations Sam Potter 1 Abstract The circulation response of a square basin with an island and localized surface stress curl is discussed. Attempts in a laboratory were

More information

Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports

Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports Closure of the global overturning circulation through the Indian, Pacific and Southern Oceans: schematics and transports Lynne D. Talley Scripps Institution of Oceanography, UCSD La Jolla, CA 92093-0230

More information

Nonlinear vorticity balance of the Antarctic Circumpolar Current

Nonlinear vorticity balance of the Antarctic Circumpolar Current JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110,, doi:10.1029/2004jc002753, 2005 Nonlinear vorticity balance of the Antarctic Circumpolar Current Chris W. Hughes Proudman Oceanographic Laboratory, Liverpool,

More information

Lecture 1. Amplitude of the seasonal cycle in temperature

Lecture 1. Amplitude of the seasonal cycle in temperature Lecture 6 Lecture 1 Ocean circulation Forcing and large-scale features Amplitude of the seasonal cycle in temperature 1 Atmosphere and ocean heat transport Trenberth and Caron (2001) False-colour satellite

More information

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface

Steady Flow: rad conv. where. E c T gz L q 2. p v 2 V. Integrate from surface to top of atmosphere: rad TOA rad conv surface The Three-Dimensional Circulation 1 Steady Flow: F k ˆ F k ˆ VE 0, rad conv where 1 E c T gz L q 2 p v 2 V Integrate from surface to top of atmosphere: VE F FF F 0 rad TOA rad conv surface 2 What causes

More information

Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow

Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow FEBRUARY 2005 K U O E T A L. 175 Transformed Eulerian-Mean Theory. Part II: Potential Vorticity Homogenization and the Equilibrium of a Wind- and Buoyancy-Driven Zonal Flow ALLEN KUO, R. ALAN PLUMB, AND

More information

Pathways in the ocean

Pathways in the ocean Pathways Pathways in the in the ocean by Sybren Drijfhout Introduction The properties of water masses in the ocean are set by air-sea interactions at the surface and convective overturning. As direct transfer

More information

Wind- and buoyancy-forced upper ocean circulation in two-strait marginal seas with application to the Japan/East Sea

Wind- and buoyancy-forced upper ocean circulation in two-strait marginal seas with application to the Japan/East Sea JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. C1, 3006, 10.1029/2001JC000966, 2002 Wind- and buoyancy-forced upper ocean circulation in two-strait marginal seas with application to the Japan/East Sea

More information

The Influence of the Agulhas leakage on the overturning circulation from momentum balances

The Influence of the Agulhas leakage on the overturning circulation from momentum balances UNIVERSITY OF READING Department of Mathematics, Meteorology & Physics The Influence of the Agulhas leakage on the overturning circulation from momentum balances Amandeep Virdi August 2010 - - - - - -

More information