More on energy plus gravitation. Tutorial homework due Thursday/Friday LA applications due Monday: lacentral.colorado.edu

Size: px
Start display at page:

Download "More on energy plus gravitation. Tutorial homework due Thursday/Friday LA applications due Monday: lacentral.colorado.edu"

Transcription

1 More on energy plus gravitation Tutorial homework due Thursday/Friday LA applications due Monday: lacentral.colorado.edu 1

2 nergy diagram A particle affected just by conservative forces has a constant total energy () while the potential (U) and kinetic energy (K) change. If the conservative force is gravity, the change depends on y. K + U nergy When the potential energy equals the total energy the particle is at its max height. Any higher would require a negative kinetic energy. U K 1 K U g1 y1 y U g y Potential energy depends on the forces. Total energy depends on initial conditions (for example, how high or how hard a ball is thrown).

3 Graphs of potential energy Spring potential energy is given by 1 a parabola equation: U s ( x) k( Δx) The force associated with the potential energy is in the direction which reduces the potential energy. At the minimum the force is zero and the object is in a stable equilibrium position xample is a ball in the bottom of a bowl This is just a way to visualize what is going on; the potential energy graph is for a spring, not gravity! 3

4 Graphs of potential energy Can also have more complicated potential energy curves Any maxima are places where the forces are zero but is, in fact, an unstable equilibrium xample is a ball on top of an inverted bowl Can get potential energy for any position using graph. From K+U can determine K or given the other. 4

5 Clicker question 1 over the stretch of track shown? A. 10 kj B. 15 kj C. 30 kj D. 35 kj. 45 kj Set frequency to BA A cart rolls without friction along a track. The graph of U vs. the x-position is shown. The total mechanical energy is 45 kj. To within kj, what is the maximum kinetic energy U(kJ) x(m) Since K+U, the maximum K is when U is a minimum which is for 10<x<140 where U10 kj so K U 45 kj 10 kj 35 kj Can use nergy Skate Park PhT simulation to explore further. 5

6 Getting force from potential We previously found that the work done by a conservative force is the opposite of the change in potential: Let us consider this equation in one dimension W c ΔU Note that force and potential energy may depend on position So Wc ΔU and therefore If we let F x in 1-D becomes ( x) Δx 0 ΔU( x) Δx then F x F x ( x) Δx ΔU( x) (note this looks like a slope) ( x) du( x) dx 6

7 Force potential energy relationship In one dimension : Check if it works for spring potential: Check if it works for gravity: The slope of the potential energy versus position graph gives the magnitude and position of the force associated with that potential energy du( x) Force acts to reduce F x ( x) dx potential energy 1 U kx F x dx d s so x( ) U mgy F mgy dy d g so y ( 1 kx ) kx ( ) mg 7

8 Clicker question value in the positive x direction? A. 5 m B. 50 m C. 60 m F x (x) du(x) dx D. 80 m. 150 m Set frequency to BA A cart rolls without friction along a track. The graph of U vs. the x-position is shown. The total mechanical energy is 45 kj. At which of the following points does the force have the largest U(kJ) The slope of U vs x is 0 at 5 m and 60 m The slope of U vs x is positive at 50 m and 150 m, leading to a negative force x(m) The slope of U vs x at 80 m is negative, giving a positive force. 8

9 Newton s Law of Gravity Newton and instein are generally thought to be the two greatest physicists ever. Not only did Newton come up with the three laws of motion and invent calculus, he was the first to realize that the force associated with things falling was also responsible for astronomical phenomena. Gm1m Newton s Law of Gravitation can be written as F G r Between any two masses (here m 1 & m ) there is an attractive force proportional to the product of the masses and inversely proportional to the square of the distance between them. Side note: this force manifestly obeys Newton s 3 rd law 9

10 F G Gm1m r Gravitational Force is the force of gravity which is felt by each mass and directed towards the other mass. Newton figured out the 1/r dependence, assuming that the celestial objects and the arth were point particles. By inventing integral calculus he could prove that for a mass m, outside a spherical mass m 1, the force of gravity was as if all of the mass m 1 was at the center of the sphere. Therefore for any two spherically symmetric objects, the distance r that enters into the force of gravity is the distance between the centers of the spheres. 10

11 F G Gm1m r Force rules is the force of gravity with G kg N m / Newton s nd law still works. The net force! on an object determines the object s acceleration: F net m a! Remarkably, the mass in Newton s nd law (called the inertial mass) is the same as the mass in the law of gravitation (called the gravitational mass). instein figured out (30 years later) that this coincidence could be explained by assuming space and time were curved (in the theory of general relativity). Remember, force is still a vector and the law of superposition still works. To find the net gravitational force on an object, determine the magnitude and direction of the force from all other masses and then add these forces together. 11

12 Force of gravity on arth How does F Gm1m g mg correspond to our new force F G? r If we consider mass to be the arth (M ) and r to be the radius of the arth (R ) then we can write GM F G m Using known values we can find that GM R 1 R 11 4 ( N m / kg )( kg) 6 ( m) So, on the surface of the arth, the force of gravity between the arth and an object m 1 is F G mg 9.8 m/s GM F G m1 m g R 1 We can only use if the distance above the surface is very small compared to the radius. 1

CAPA due today. Today will finish up with the hinge problem I started on Wednesday. Will start on Gravity. Universal gravitation

CAPA due today. Today will finish up with the hinge problem I started on Wednesday. Will start on Gravity. Universal gravitation CAPA due today. Today will finish up with the hinge problem I started on Wednesday. Will start on Gravity. Universal gravitation Hinge Problem from Wednesday Hinge Problem cont. F x = 0 = F Nx T cosθ F

More information

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls?

Chapter 7: Energy. Consider dropping a ball. Why does the ball s speed increase as it falls? Chapter 7: Energy Consider dropping a ball. Why does the ball s speed increase as it falls? Viewpoint #1: Force of gravity causes acceleration which causes velocity to change. Viewpoint #2: Force of gravity

More information

Wiley Plus Reminder! Assignment 1

Wiley Plus Reminder! Assignment 1 Wiley Plus Reminder! Assignment 1 6 problems from chapters and 3 Kinematics Due Monday October 5 Before 11 pm! Chapter 4: Forces and Newton s Laws Force, mass and Newton s three laws of motion Newton s

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion.

Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. Chapter 8: Potential Energy and Conservation of Energy Work and kinetic energy are energies of motion. K = K f K i = 1 2 mv 2 f rf = v v F dr Consider a vertical spring oscillating with mass m attached

More information

Physics Exam #1 review

Physics Exam #1 review Physics 1010 Exam #1 review General Test Information 7:30 tonight in this room (G1B20). Closed book. Single 3x5 note card with own notes written on it allowed. Calculators are allowed (no memory usage).

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation e = c/a A note about eccentricity For a circle c = 0 à e = 0 a Orbit Examples Mercury has the highest eccentricity of any planet (a) e Mercury = 0.21 Halley s comet has an orbit

More information

POTENTIAL ENERGY AND ENERGY CONSERVATION

POTENTIAL ENERGY AND ENERGY CONSERVATION 7 POTENTIAL ENERGY AND ENERGY CONSERVATION 7.. IDENTIFY: U grav = mgy so ΔU grav = mg( y y ) SET UP: + y is upward. EXECUTE: (a) ΔU = (75 kg)(9.8 m/s )(4 m 5 m) = +6.6 5 J (b) ΔU = (75 kg)(9.8 m/s )(35

More information

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night.

Work and kinetic energy. LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. Work and kinetic energy LA info session today at 5pm in UMC235 CAPA homework due tomorrow night. 1 Work I apply a force of 2N in the x direction to an object that moves 5m in x. How much work have I done

More information

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8.

Potential Energy, Conservation of Energy, and Energy Diagrams. Announcements. Review: Conservative Forces. (path independent) 8. Potential Energy, Conservation of Energy, and Energy Diagrams 8.01 W06D Today s Reading ssignment: Chapter 14 Potential Energy and Conservation of Energy, Sections 14.1-14.7 nnouncements Problem Set 5

More information

Chapter 7: Potential energy and energy conservation

Chapter 7: Potential energy and energy conservation Chapter 7: Potential energy and energy conservation Two types of Potential energy gravitational and elastic potential energy Conservation of total mechanical energy When What: Kinetic energy+potential

More information

Seminary 3 and 4 Work, energy, momentum and conservation laws

Seminary 3 and 4 Work, energy, momentum and conservation laws Seminary 3 and 4 Work, energy, momentum and conservation laws SEMINARY 3 The unsolved problems are given as homework. 1/ Work, Kinetic, Potential, Total Energy. Conservation laws DISCUSSION: Briefly remember

More information

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan

Mechanics and Heat. Chapter 5: Work and Energy. Dr. Rashid Hamdan Mechanics and Heat Chapter 5: Work and Energy Dr. Rashid Hamdan 5.1 Work Done by a Constant Force Work Done by a Constant Force A force is said to do work if, when acting on a body, there is a displacement

More information

Conservation of Energy

Conservation of Energy Lecture 3 Chapter 8 Physics I 03.0.04 Conservation of Energy Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov03/physicsspring.html

More information

0.1 Work. W net = T = T f T i,

0.1 Work. W net = T = T f T i, .1 Work Contrary to everyday usage, the term work has a very specific meaning in physics. In physics, work is related to the transfer of energy by forces. There are essentially two complementary ways to

More information

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero

P = dw dt. P = F net. = W Δt. Conservative Force: P ave. Net work done by a conservative force on an object moving around every closed path is zero Power Forces Conservative Force: P ave = W Δt P = dw dt P = F net v Net work done by a conservative force on an object moving around every closed path is zero Non-conservative Force: Net work done by a

More information

Energy Problem Solving Techniques.

Energy Problem Solving Techniques. 1 Energy Problem Solving Techniques www.njctl.org 2 Table of Contents Introduction Gravitational Potential Energy Problem Solving GPE, KE and EPE Problem Solving Conservation of Energy Problem Solving

More information

Power: Sources of Energy

Power: Sources of Energy Chapter 7: Energy Power: Sources of Energy Tidal Power SF Bay Tidal Power Project Main Ideas (Encyclopedia of Physics) Energy is an abstract quantity that an object is said to possess. It is not something

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

In-Class Problems 20-21: Work and Kinetic Energy Solutions

In-Class Problems 20-21: Work and Kinetic Energy Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01T Fall Term 2004 In-Class Problems 20-21: Work and Kinetic Energy Solutions In-Class-Problem 20 Calculating Work Integrals a) Work

More information

Chapter 6: Work and Kinetic Energy

Chapter 6: Work and Kinetic Energy Chapter 6: Work and Kinetic Energy Suppose you want to find the final velocity of an object being acted on by a variable force. Newton s 2 nd law gives the differential equation (for 1D motion) dv dt =

More information

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves).

Lecture 1 Notes: 06 / 27. The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). Lecture 1 Notes: 06 / 27 The first part of this class will primarily cover oscillating systems (harmonic oscillators and waves). These systems are very common in nature - a system displaced from equilibrium

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass: Section 5.1

More information

Exam solutions are posted on the class website: Expect to return graded exams Friday.

Exam solutions are posted on the class website:   Expect to return graded exams Friday. Exam solutions are posted on the class website: http://faculty.washington.edu/storm/11c/ Expect to return graded exams Friday. Homework assignment lighter than usual. Was posted Monday afternoon on Tycho.

More information

Physics 110 Homework Solutions Week #5

Physics 110 Homework Solutions Week #5 Physics 110 Homework Solutions Week #5 Wednesday, October 7, 009 Chapter 5 5.1 C 5. A 5.8 B 5.34. A crate on a ramp a) x F N 15 F 30 o mg Along the x-axis we that F net = ma = Fcos15 mgsin30 = 500 cos15

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 84 Slide 2 / 84 P Physics C - Mechanics Energy Problem Solving Techniques 2015-12-03 www.njctl.org Table of Contents Slide 3 / 84 Introduction Gravitational Potential Energy Problem Solving GPE,

More information

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary Newton s Laws Test 8.PS2.3) Create a demonstration of an object in motion and describe the position, force, and direction of the object. 8.PS2.4) Plan and conduct an investigation to provide evidence that

More information

A. B. C. D. E. v x. ΣF x

A. B. C. D. E. v x. ΣF x Q4.3 The graph to the right shows the velocity of an object as a function of time. Which of the graphs below best shows the net force versus time for this object? 0 v x t ΣF x ΣF x ΣF x ΣF x ΣF x 0 t 0

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

This homework is extra credit!

This homework is extra credit! This homework is extra credit! 1 Translate (10 pts) 1. You are told that speed is defined by the relationship s = d /t, where s represents speed, d represents distance, and t represents time. State this

More information

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular,

Lecture 6.1 Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Lecture 6. Work and Energy During previous lectures we have considered many examples, which can be solved using Newtonian approach, in particular, Newton's second law. However, this is not always the most

More information

Work and Kinetic Energy

Work and Kinetic Energy Chapter 6 Work and Kinetic Energy PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Copyright 2008 Pearson Education Inc., publishing

More information

Oscillations. Oscillations and Simple Harmonic Motion

Oscillations. Oscillations and Simple Harmonic Motion Oscillations AP Physics C Oscillations and Simple Harmonic Motion 1 Equilibrium and Oscillations A marble that is free to roll inside a spherical bowl has an equilibrium position at the bottom of the bowl

More information

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

Recall: Gravitational Potential Energy

Recall: Gravitational Potential Energy Welcome back to Physics 15 Today s agenda: Work Power Physics 15 Spring 017 Lecture 10-1 1 Recall: Gravitational Potential Energy For an object of mass m near the surface of the earth: U g = mgh h is height

More information

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes

Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Physics 1 Name Lesson 7. Homework Work and Energy Problem Solving Outcomes Date 1. Define work. 2. Define energy. 3. Determine the work done by a constant force. Period 4. Determine the work done by a

More information

Chapter 7 Potential Energy and Energy Conservation

Chapter 7 Potential Energy and Energy Conservation Chapter 7 Potential Energy and Energy Conservation We saw in the previous chapter the relationship between work and kinetic energy. We also saw that the relationship was the same whether the net external

More information

Announcements 2 Oct 2014

Announcements 2 Oct 2014 Announcements 2 Oct 2014 1. Prayer 2. Exam 1 starts today! a. Thursday Oct 2 Tuesday Oct 7 (2 pm) in the Testing Center, late fee after Oct 6, 2 pm b. Covers through today's lecture (unless we don't quite

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY ANSWERS TO FOCUS ON CONCEPTS QUESTIONS (e) When the force is perpendicular to the displacement, as in C, there is no work When the force points in the same direction as the displacement,

More information

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy

Chapter 5: Energy. Energy is one of the most important concepts in the world of science. Common forms of Energy Chapter 5: Energy Energy is one of the most important concepts in the world of science. Common forms of Energy Mechanical Chemical Thermal Electromagnetic Nuclear One form of energy can be converted to

More information

PSI AP Physics B Dynamics

PSI AP Physics B Dynamics PSI AP Physics B Dynamics Multiple-Choice questions 1. After firing a cannon ball, the cannon moves in the opposite direction from the ball. This an example of: A. Newton s First Law B. Newton s Second

More information

Chapter 8. Potential Energy & Conservation of Energy

Chapter 8. Potential Energy & Conservation of Energy Chapter 8 Potential Energy & Conservation of Energy 8.1 Potential Energy Technically, potential energy is energy that can be associated with the configuration (arrangement) of a system of objects that

More information

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions

PSI AP Physics C Work and Energy. (With Calculus) Multiple Choice Questions PSI AP Physics C Work and Energy (With Calculus) Multiple Choice Questions 1. An object moves according to the function x = t 7/2 where x is the distance traveled and t is the time. Its kinetic energy

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow

Summary of Chapters 1-3. Equations of motion for a uniformly accelerating object. Quiz to follow Summary of Chapters 1-3 Equations of motion for a uniformly accelerating object Quiz to follow An unbalanced force acting on an object results in its acceleration Accelerated motion in time, t, described

More information

Quick Review: Work Done by Friction A non-conservative Force = KE + U. Friction takes Energy out of the system treat it like thermal energy

Quick Review: Work Done by Friction A non-conservative Force = KE + U. Friction takes Energy out of the system treat it like thermal energy Quick Review: Work Done by Friction A non-conservative Force Mechanical energy: Conservative System E mech = KE + U Friction takes Energy out of the system treat it like thermal energy ΔE mech 0 Lose Mechanical

More information

Gravitational Potential Energy and Motional Kinetic Energy Forms of energy Forms of energy include radiant energy from the sun, chemical energy from the food you eat, and electrical energy from the outlets

More information

Orbiting Satellites and Free-Fall Elevators

Orbiting Satellites and Free-Fall Elevators Orbiting Satellites and Free-Fall Elevators Paul Robinson San Mateo High School pablo@laserpablo.com www.laserpablo.com Dig deep... Suppose you could bore a tunnel through the center of the earth. Further

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued Quiz 3 4.7 The Gravitational Force Newton s Law of Universal Gravitation Every particle in the universe exerts an attractive force on every other

More information

The net force on a moving object is suddenly reduced to zero. As a consequence, the object

The net force on a moving object is suddenly reduced to zero. As a consequence, the object The net force on a moving object is suddenly reduced to zero. As a consequence, the object (A) stops abruptly (B) stops during a short time interval (C) changes direction (D) continues at a constant velocity

More information

Note: Referred equations are from your textbook.

Note: Referred equations are from your textbook. Note: Referred equations are from your textbook 70 DENTFY: Use energy methods There are changes in both elastic and gravitational potential energy SET UP: K + U + W K U other + Points and in the motion

More information

Chapter 8. Potential Energy and Energy Conservation

Chapter 8. Potential Energy and Energy Conservation Chapter 8 Potential Energy and Energy Conservation P. Lam 7_18_2018 Learning Goals for Chapter 8 Learn the following concepts: conservative forces, potential energy, and conservation of mechanical energy.

More information

Dynamics: Forces and Newton s Laws of Motion

Dynamics: Forces and Newton s Laws of Motion Lecture 7 Chapter 5 Physics I Dynamics: Forces and Newton s Laws of Motion Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Today we are going to discuss: Chapter 5: Force, Mass:

More information

Chapter 13. Simple Harmonic Motion

Chapter 13. Simple Harmonic Motion Chapter 13 Simple Harmonic Motion Hooke s Law F s = - k x F s is the spring force k is the spring constant It is a measure of the stiffness of the spring A large k indicates a stiff spring and a small

More information

Lectures 11-13: From Work to Energy Energy Conservation

Lectures 11-13: From Work to Energy Energy Conservation Physics 218: sect.513-517 Lectures 11-13: From Work to Energy Energy Conservation Prof. Ricardo Eusebi for Igor Roshchin 1 Physics 218: sect.513-517 Energy and Work-Energy relationship Prof. Ricardo Eusebi

More information

PHYSICS. Chapter 10 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 10 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 10 Lecture RANDALL D. KNIGHT Chapter 10 Interactions and Potential Energy IN THIS CHAPTER, you will develop a better understanding

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

Potential energy and conservation of energy

Potential energy and conservation of energy Chapter 8 Potential energy and conservation of energy Copyright 8.1_2 Potential Energy and Work Potential energy U is energy that can be associated with the configuration (arrangement) of a system of objects

More information

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics

Work done by multiple forces. WEST VIRGINIA UNIVERSITY Physics Work done by multiple forces Work done by multiple forces no normal work tractor work friction work total work = W T +W f = +10 kj no weight work Work-Energy: Finding the Speed total work = W T +W f =

More information

Unit 2 Forces. Fundamental Forces

Unit 2 Forces. Fundamental Forces Lesson14.notebook July 10, 2013 Unit 2 Forces Fundamental Forces Today's goal: I can identify/name applied forces and draw appropriate free body diagrams (FBD's). There are 4 fundamental forces Gravity

More information

5. Forces and Free-Body Diagrams

5. Forces and Free-Body Diagrams 5. Forces and Free-Body Diagrams A) Overview We will begin by introducing the bulk of the new forces we will use in this course. We will start with the weight of an object, the gravitational force near

More information

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011

PHYSICS 221, FALL 2011 EXAM #2 SOLUTIONS WEDNESDAY, NOVEMBER 2, 2011 PHYSICS 1, FALL 011 EXAM SOLUTIONS WEDNESDAY, NOVEMBER, 011 Note: The unit vectors in the +x, +y, and +z directions of a right-handed Cartesian coordinate system are î, ĵ, and ˆk, respectively. In this

More information

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones

Physics General Physics. Lecture 3 Newtonian Mechanics. Fall 2016 Semester. Prof. Matthew Jones Physics 22000 General Physics Lecture 3 Newtonian Mechanics Fall 2016 Semester Prof. Matthew Jones 1 Review of Lectures 1 and 2 In the previous lectures we learned how to describe some special types of

More information

Physics H7A, Fall 2011 Homework 6 Solutions

Physics H7A, Fall 2011 Homework 6 Solutions Physics H7A, Fall 2011 Homework 6 Solutions 1. (Hooke s law) (a) What are the dimensions (in terms of M, L, and T ) of the spring constant k in Hooke s law? (b) If it takes 4.00 J of work to stretch a

More information

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4

Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum. 3-2 Section 3.4 Martha Casquete Newton s Third Law of Motion Newton s Law of Gravitation Buoyancy Momentum 3-2 Section 3.4 Net force/balance and unbalance forces Newton s First Law of Motion/Law of Inertia Newton s Second

More information

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide!

Welcome to: Physics I. I m Dr Alex Pettitt, and I ll be your guide! Welcome to: Physics I I m Dr Alex Pettitt, and I ll be your guide! Physics I: E Conservation of energy Lecture 7: 20-10-2017 Last lecture: review Work: W = F r F = F r cos = F x r x + F y r y + F z r z

More information

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam.

If you have a conflict, you should have already requested and received permission from Prof. Shapiro to take the make-up exam. Reminder: Exam this Sunday Nov. 9. Chapters 5. 5.4, 3.4,.0, 6, 7. Time: 6:0 7:30 PM Look up locations online. Bring calculator and formula sheet. If you have a conflict, you should have already requested

More information

Unit 1: Mechanical Equilibrium

Unit 1: Mechanical Equilibrium Unit 1: Mechanical Equilibrium Chapter: Two Mechanical Equilibrium Big Idea / Key Concepts Student Outcomes 2.1: Force 2.2: Mechanical Equilibrium 2.3: Support Force 2.4: Equilibrium for Moving Objects

More information

AP PHYSICS 1 Learning Objectives Arranged Topically

AP PHYSICS 1 Learning Objectives Arranged Topically AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters

More information

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy PHYS 1411 Introduction to Astronomy Basic Physics Chapter 5 Topics Newton s Laws Mass and Weight Work, Energy and Conservation of Energy Rotation, Angular velocity and acceleration Centripetal Force Angular

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

Static Equilibrium Gravitation

Static Equilibrium Gravitation Static Equilibrium Gravitation Lana Sheridan De Anza College Dec 6, 2017 Overview One more static equilibrium example Newton s Law of Universal Gravitation gravitational potential energy little g Example

More information

Chapter 5. Work and Energy. continued

Chapter 5. Work and Energy. continued Chapter 5 Work and Energy continued 5.2 Work on a Spring & Work by a Spring HOOKE S LAW Force Required to Distort an Ideal Spring The force applied to an ideal spring is proportional to the displacement

More information

Chapter 7. Work and Kinetic Energy

Chapter 7. Work and Kinetic Energy Chapter 7 Work and Kinetic Energy P. Lam 7_16_2018 Learning Goals for Chapter 7 To understand the concept of kinetic energy (energy of motion) To understand the meaning of work done by a force. To apply

More information

Other Examples of Energy Transfer

Other Examples of Energy Transfer Chapter 7 Work and Energy Overview energy. Study work as defined in physics. Relate work to kinetic energy. Consider work done by a variable force. Study potential energy. Understand energy conservation.

More information

Forces. Prof. Yury Kolomensky Feb 9/12, 2007

Forces. Prof. Yury Kolomensky Feb 9/12, 2007 Forces Prof. Yury Kolomensky Feb 9/12, 2007 - Hooke s law - String tension - Gravity and Weight - Normal force - Friction - Drag -Review of Newton s laws Today s Plan Catalog common forces around us What

More information

Version 001 circular and gravitation holland (2383) 1

Version 001 circular and gravitation holland (2383) 1 Version 00 circular and gravitation holland (383) This print-out should have 9 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. AP B 993 MC

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

5. Universal Laws of Motion

5. Universal Laws of Motion 5. Universal Laws of Motion If I have seen farther than others, it is because I have stood on the shoulders of giants. Sir Isaac Newton (164 177) Physicist Image courtesy of NASA/JPL Sir Isaac Newton (164-177)

More information

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc.

Chapter 6 Work, Energy, and Power. Copyright 2010 Pearson Education, Inc. Chapter 6 Work, Energy, and Power What Is Physics All About? Matter Energy Force Work Done by a Constant Force The definition of work, when the force is parallel to the displacement: W = Fs SI unit: newton-meter

More information

GRAVITATIONAL FORCE AND FIELD

GRAVITATIONAL FORCE AND FIELD POINT AND FORCES A. POINT AND FORCES A FACT: Every particle of matter in the universe attracts every other particle with a force which is directly proportional to the product of their masses and inversely

More information

Chapter 4 Dynamics: Newton s Laws of Motion

Chapter 4 Dynamics: Newton s Laws of Motion Chapter 4 Dynamics: Newton s Laws of Motion Force Newton s First Law of Motion Mass Newton s Second Law of Motion Newton s Third Law of Motion Weight the Force of Gravity; and the Normal Force Applications

More information

Newton s Laws of Motion and Gravitation

Newton s Laws of Motion and Gravitation Newton s Laws of Motion and Gravitation Introduction: In Newton s first law we have discussed the equilibrium condition for a particle and seen that when the resultant force acting on the particle is zero,

More information

Lab 8. Work and Energy

Lab 8. Work and Energy Lab 8. Work and Energy Goals To apply the concept of work to each of the forces acting on an object pulled up an incline at constant speed. To compare the total work on an object to the change in its kinetic

More information

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh.

AP1 WEP. Answer: E. The final velocities of the balls are given by v = 2gh. 1. Bowling Ball A is dropped from a point halfway up a cliff. A second identical bowling ball, B, is dropped simultaneously from the top of the cliff. Comparing the bowling balls at the instant they reach

More information

Chapter 14 Potential Energy and Conservation of Energy

Chapter 14 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy Chapter 4 Potential Energy and Conservation of Energy... 2 4. Conservation of Energy... 2 4.2 Conservative and Non-Conservative Forces... 3 4.3 Changes

More information

PY1008 / PY1009 Physics Gravity I

PY1008 / PY1009 Physics Gravity I PY1008 / PY1009 Physics Gravity I M.P. Vaughan Learning Objectives The concept of the centre of mass Fundamental forces Newton s Law of Gravitation Coulomb s Law (electrostatic force) Examples of Newton

More information

Chapter 5 Circular Motion; Gravitation

Chapter 5 Circular Motion; Gravitation Chapter 5 Circular Motion; Gravitation Kinematics of Uniform Circular Motion Dynamics of Uniform Circular Motion Highway Curves, Banked and Unbanked Non-uniform Circular Motion Centrifugation Will be covered

More information

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5

Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. A B = A x B x + A y B y + A z B z = ( 1) + ( 1) ( 4) = 5 AP Physics C Fall, 2016 Work-Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (62 points) Answer the following questions. SHOW ALL OF YOUR WORK. (12 pts ) 1. Consider the vectors A = 2 î + 3

More information

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Exam #2, Chapters 5-7 PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam #2, Chapters 5-7 Name PHYS 101-4M MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) The quantity 1/2 mv2 is A) the potential energy of the object.

More information

Lecture: October 1, 2010

Lecture: October 1, 2010 Lecture: October 1, 2010 How long would it take to walk to Alpha Centauri? Announcements: Next Observatory Opportunity: Wednesday October 6 Phases of Matter the phases solid liquid gas plasma depend on

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Potential Energy and Conservation

Potential Energy and Conservation PH 1-3A Fall 009 Potential Energy and Conservation of Energy Lecture 1-13 Chapter 8 (Halliday/Resnick/Walker, Fundamentals of Physics 8 th edition) Chapter 8 Potential Energy and Conservation of Energy

More information

Potential energy functions used in Chapter 7

Potential energy functions used in Chapter 7 Potential energy functions used in Chapter 7 CHAPTER 7 CONSERVATION OF ENERGY Conservation of mechanical energy Conservation of total energy of a system Examples Origin of friction Gravitational potential

More information

Physics 218 Lecture 13

Physics 218 Lecture 13 Physics 218 Lecture 13 Dr. David Toback Physics 218, Lecture XIII 1 Checklist for Today Things due for Last Thursday: Read Chapters 7, 8 & 9 Things that were due Last Monday: Chap 5&6 turned in on WebCT

More information

Momentum & Energy Review Checklist

Momentum & Energy Review Checklist Momentum & Energy Review Checklist Impulse and Momentum 3.1.1 Use equations to calculate impulse; momentum; initial speed; final speed; force; or time. An object with a mass of 5 kilograms is moving at

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

July 19 - Work and Energy 1. Name Date Partners

July 19 - Work and Energy 1. Name Date Partners July 19 - Work and Energy 1 Name Date Partners WORK AND ENERGY Energy is the only life and is from the Body; and Reason is the bound or outward circumference of energy. Energy is eternal delight. William

More information