The Quantum Hall Effect - Landau Levels

Size: px
Start display at page:

Download "The Quantum Hall Effect - Landau Levels"

Transcription

1 The Quantum Hall Effect - Landau Levels FIG. 1: Harmonic oscillator wave functions and energies. The quantization of electron orbits in a magnetic field results in equally-spaced energy levels Landau levels. The spacing of these levels is proportional to the classical cyclotron frequency ω = eb m. Quantum Mechanics of Electrons in a Magnetic Field The quantum treatment of a planar electron in a transverse magnetic field B comes from replacing the x and y components of the momentum vector p = (p x, p y ) as follows: 1

2 p x i x p y i y ebx (Here we are using the magnetic vector potential A = B(0, x, 0), called the Landau gauge.) The resulting Schrödinger equation is: 1 2m [( i x )2 + ( i y ebx)2 ]ψ(x, y) = Eψ(x, y) (1) Since there is no explicit dependence on y anywhere in the above equation, we look for solutions of the form ψ(x, y) = f(x)e ikyy. This leads to the following equation for f(x): 2 d 2 f 2m dx m (ebx k y) 2 = Ef(x) (2) This equation is identical to the Schrödinger equation for a one-dimensional harmonic oscillator, whose eigenfunctions and eigenvalues are: ψ(x, y) = φ n (x k y eb ) eikyy ; E n = ω c (n + 1/2) (3) where ω c equals the cyclotron frequency eb, and where the functions φ m n are harmonic-oscillator wave functions labeled by the same quantum number n that labels the discrete energy levels. Here n = 1, 2, 3,... These quantized energy levels are known as Landau levels, and the corresponding wave functions as Landau states, after the Russian physicist Lev Landau, who pioneered the quantum-mechanical study of electrons in magnetic fields. New Length & Energy Scale & Degeneracy of Landau Levels The Landau wave functions are products of Gaussian functions (bell-shaped curves) and certain polynomials called Hermite polynomials. These wave functions describe waves that spread out over a characteristic distance known as the magnetic length l B : 2

3 l B = eb (4) The existence of both a natural length scale l B and a natural energy scale ω in this physical situation is a purely quantum phenomenon (as can be seen from the presence of in the formulas for both of these natural units). In the classical situation, there was no such natural unit of length. Note that the new length scale is nonetheless closely related to the classical cyclotron frequency of an electron in a magnetic field, eb. m Associated with the natural quantum-mechanical magnetic length l B quantum-mechanical unit of area: is a natural 2πl 2 B = h/e B (5) This formula reveals a natural physical interpretation for the magnetic length, which is that the area that it determines namely, 2πlB 2 intercepts exactly one quantum of magnetic flux, Φ 0 = h. We can thus write: e 2πl 2 B = Φ 0 B (6) Note that the eigenvalues of this system, unlike its eigenfunctions, are independent of k y. This results in degenerate levels whose degree of degeneracy is equal to ν = BA/φ 0 (A being the area of the sample) ( See Below).Each Landau level is highly degenerate, with the degeneracy factor ν being given by the total number of flux quanta penetrating the sample of area A, ν = BA Φ 0, Φ 0 = h e (7) 3

4 The model we have just discussed allows one to understand the quantization of Hall conductivity, as is shown below. The crux of the matter is that if a Landau level (with ν quantum states) is completely filled, the Hall conductance is quantized. Furthermore, the quantum number associated with Hall conductivity is determined by the number N of filled Landau levels. Thus if the Fermi energy lies in the N th gap, then the transverse or Hall conductivity is: σ xy = N e2 h (8) See below for the derivation. Since the Fermi energy resides in a gap between bands, quantum Hall systems are insulators, and yet, strangely enough, they exhibit Hall conductivity. How is it possible for a system that, in the bulk, is an insulator, to conduct current? This mystery will be resolved by the intuitive semiclassical arguments namely the skipping orbits. Quantization of the Hall Conductivity We start with the expression for σ xy, the classical Hall conductance [? ]. Here, Q is the total electrical charge of the system, and A is its area. σ xy = Q BA (9) To obtain a quantum expression for Hall conductivity [? ], we consider a system with N filled Landau levels. (This means there is no longitudinal current, so the longitudinal conductance σ xx is equal to zero.) As each Landau level is ν-fold degenerate, Q = Nνe = NBAe 2 /h. (Here we have used equation (??), which gives ν = BA/Φ 0 = BAe/h.) This gives us the desired result: σ xy = N e2 h (10) The validity of this expression has been proven more rigorously, even in the presence of impurities. However, although this explains quantization, it does not give a topological basis for it. To establish topological basis for this quantization, we need to consider a crystal in a magnetic field. 4

5 I. TWO-DIMENSIONAL CRYSTAL IN A MAGNETIC FIELD Swiss physicist Felix Bloch, in 1928, discovered that electrons inside a crystal (in the absence of a magnetic field) have energy values that lie in Bloch bands that is, their energies range across a continuous swath of possible values, without any gaps. Bloch also found that such electrons have quantum-mechanical states (now called Bloch states, of course) that can be described as standing waves inside the lattice. Such waves of course oscillated periodically, with a period depending on their energy. FIG. 2: This schematized diagram shows a pure atomic energy level splitting into two when two identical atoms are brought together, and into three when three identical atoms are brought together. (The splitting is due to the Pauli exclusion principle, which forbids electrons to occupy the same state.) When huge numbers of atoms (10 24 of them, say) come together to form a periodic crystal lattice, then what was originally a single energy level splits into a cluster of enormously many energies, which are so close to each other that they essentially constitute a continuum. This continuum of energies is called a Bloch band. Thus inside a Bloch band there are no energy gaps, but between Landau levels there are gaps. A fascinating question was therefore this: What would happen when these two contrasting situations one with a continuous spectrum and an energy-dependent period, the other with a discrete spectrum and an energy-independent period were physically combined? More concretely, what would happen to electrons in a crystal when a magnetic field was turned on? 5

6 E Fermi Energy Single Atom FIG. 3: A schematic depiction of the difference between the energy levels belonging to a single atom, to a metal, and to an insulator. The discrete energy levels belonging to an isolated atom evolve into energy bands belonging to a crystal, as each atom s structure is modified by the close approach of other atoms. Inside the bands, the allowed energies take on a continuum of values. Two neighboring bands are separated by a band gap or simply a gap a region of forbidden electron energies. The shaded regions in the figure represent levels that are occupied. In a metal, the Fermi energy lies inside a partially filled band. In an insulator, the Fermi energy lies inside the energy gap. Would the band to which they belonged somehow split into a set of mini-bands perhaps narrow Bloch bands, perhaps thick Landau levels separated by mini-gaps? And how many such narrow bands or thick levels would there be? And how would they be spaced? And would the electron s behavior be periodic, and if so, with what period? How, in short, would nature manage to reconcile these profoundly opposing situations? None of this was at all obvious, and solving the Schrödinger equation for such a hybrid situation was, to say the least, mathematically very challenging. 6

7 II. THE MARVELOUS PURE NUMBER φ We also saw earlier that Russian physicist Lev Landau, just two years later, in 1930, discovered that electrons immersed in a magnetic field (in vacuum, not in a crystal) have very sharp energy values Landau levels that are evenly spaced, like the rungs of a ladder, with wide energy gaps separating them. Landau also found that such electrons have quantum-mechanical states that correspond to classical circular orbits of various radii, yet all these different states share the same period of oscillation (the reciprocal of the cyclotron frequency, which was the classical frequency of electrons making circular orbits in a magnetic field). In other words, this quantum-mechanical period is independent of the energy the Landau electron possesses. There is one extremely important new physical quantity that arises when the two situations are combined, and that is the pure number φ ( pure in the sense that it has no units attached to it), which measures the magnetic field s strength in an extremely natural fashion. How can a pure number, with no units at all, tell how strong a magnetic field is? The answer is not too subtle and very revelatory; in fact, this all-important quantity φ can be thought of in (at least) three conceptually different but mathematically equivalent ways, described below. It all hinges on the fact that there is a fundamental amount of magnetic flux the flux quantum, equal to hc/e that emerges intrinsically out of quantum mechanics. This minuscule quantity is an inherent fact about our universe, just as are the speed of light and the charge on the electron. Given that this tiny amount of flux is the natural chunk of flux, it is as if nature had handed us a measuring stick on a silver platter! This beautiful and generous favor on nature s part must not be ignored. A first way of thinking about the variable φ, then, is as how many flux quanta pass through a unit cell of the lattice. After all, the flux passing through a unit cell is proportional to the magnetic field B (it equals a 2 B in the case of a square lattice, which is what we are focusing on for the moment), and the flux quantum hc/e is the natural unit the unit par excellence with which to measure that flux. And indeed, counting the number of flux quanta passing through a unit cell gives a dimensionless answer a pure number, a flux divided by another flux namely, a2 Be hc. In truth, nothing could be more natural than this dimensionless way of measuring the strength of a magnetic field in a crystal. (By the way, this trick won t work to measure a magnetic field in a vacuum, because the trick involves flux, which involves area, and in a vacuum, unlike in a crystal, there is no scale defining a natural chunk of area.) 7

8 A second way to compute exactly the same number, yet conceptually quite different, vividly reflects the fact that φ is the fruit of the marriage of two unrelated parents the isolated crystal and the isolated magnetic field. How can one find a pure number that combines the unrelated genes coming from each of φ s parents? Well, the idea is to compute the ratio of two natural geometrical areas, one coming from each of the two parents. These geometrical areas can be thought of as the genes to exploit. In particular, the salient area having to do with the crystal alone is the area of a lattice cell (a 2 ). The salient area having to do with the magnetic field alone is the area of a circle (a Landau orbit) that intercepts exactly one flux quantum (this is hc eb ). Now take the ratio of these two natural areas, and voilà! You get a pure number, and a very simple calculation shows that it is equal to the previous number. A third way to compute the same number reflects, once again, φ s dual origins. This time we again take a dimensionless ratio, but this new ratio involves two different genes namely, the ratio of two natural time intervals, one coming from each of the two parents. The salient time interval having to do with the crystal alone is the time taken by an electron with momentum h/a to cross a unit cell (h/a is the canonical momentum for a crystal electron, and the associated velocity is h a, with m being the mass of the electron); this time is therefore am = a2 m (h/am) h. The salient time interval having to do with the magnetic field alone is the cyclotron period (the reciprocal of the cyclotron frequency eb, which, as was mentioned before, is independent of the size of the Landau mc orbit). As before, take the ratio of these two quantities, and voilà once again! The units cancel, you get a pure number, and another very simple calculation shows that it is equal to the previous two numbers. Seeing φ as a ratio of two independent entities of the same sort (whether they are areas or time intervals), one coming from each parent, is a fundamental and insight-giving way to look at what φ means. Also, seeing φ as the number of flux quanta threading a lattice cell is another deep way to look at what φ means, equally fundamental and insight-giving. Whichever may be your favorite way of conceiving of what φ means, in any case it is a pure number that naturally measures the magnetic-field strength in the hybrid situation. Indeed, φ is the key parameter at the very heart of the situation. [1] < press.html> 8

9 [2] Klaus von Klitzing, 25 Years of Quantum Hall Effect, A Personal View on the Discovery, Physics and Applications of this Quantum Effect, Vol. II, Séminaire Poincaré, (2004), page 1. [3] Topology and Quantum Hall Effect, Chapter 9 in Field Theories of Condensed Matter Systems by Eduardo Fradkin, Addison-Wesley. 9

Les états de bord d un. isolant de Hall atomique

Les états de bord d un. isolant de Hall atomique Les états de bord d un isolant de Hall atomique séminaire Atomes Froids 2/9/22 Nathan Goldman (ULB), Jérôme Beugnon and Fabrice Gerbier Outline Quantum Hall effect : bulk Landau levels and edge states

More information

Berry s phase in Hall Effects and Topological Insulators

Berry s phase in Hall Effects and Topological Insulators Lecture 6 Berry s phase in Hall Effects and Topological Insulators Given the analogs between Berry s phase and vector potentials, it is not surprising that Berry s phase can be important in the Hall effect.

More information

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1

Electromagnetism II. Instructor: Andrei Sirenko Spring 2013 Thursdays 1 pm 4 pm. Spring 2013, NJIT 1 Electromagnetism II Instructor: Andrei Sirenko sirenko@njit.edu Spring 013 Thursdays 1 pm 4 pm Spring 013, NJIT 1 PROBLEMS for CH. 6 http://web.njit.edu/~sirenko/phys433/phys433eandm013.htm Can obtain

More information

Welcome to the Solid State

Welcome to the Solid State Max Planck Institut für Mathematik Bonn 19 October 2015 The What 1700s 1900s Since 2005 Electrical forms of matter: conductors & insulators superconductors (& semimetals & semiconductors) topological insulators...

More information

The Quantum Hall Effects

The Quantum Hall Effects The Quantum Hall Effects Integer and Fractional Michael Adler July 1, 2010 1 / 20 Outline 1 Introduction Experiment Prerequisites 2 Integer Quantum Hall Effect Quantization of Conductance Edge States 3

More information

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics.

Chapter 7. Bound Systems are perhaps the most interesting cases for us to consider. We see much of the interesting features of quantum mechanics. Chapter 7 In chapter 6 we learned about a set of rules for quantum mechanics. Now we want to apply them to various cases and see what they predict for the behavior of quanta under different conditions.

More information

Quantum Hall Effect. Jessica Geisenhoff. December 6, 2017

Quantum Hall Effect. Jessica Geisenhoff. December 6, 2017 Quantum Hall Effect Jessica Geisenhoff December 6, 2017 Introduction In 1879 Edwin Hall discovered the classical Hall effect, and a hundred years after that came the quantum Hall effect. First, the integer

More information

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h.

Quantum Hall effect. Quantization of Hall resistance is incredibly precise: good to 1 part in I believe. WHY?? G xy = N e2 h. Quantum Hall effect V1 V2 R L I I x = N e2 h V y V x =0 G xy = N e2 h n.b. h/e 2 = 25 kohms Quantization of Hall resistance is incredibly precise: good to 1 part in 10 10 I believe. WHY?? Robustness Why

More information

The Quantum Hall Effect

The Quantum Hall Effect The Quantum Hall Effect David Tong (And why these three guys won last week s Nobel prize) Trinity Mathematical Society, October 2016 Electron in a Magnetic Field B mẍ = eẋ B x = v cos!t! y = v sin!t!!

More information

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013

arxiv: v1 [cond-mat.mes-hall] 26 Sep 2013 Berry phase and the unconventional quantum Hall effect in graphene Jiamin Xue Microelectronic Research Center, The University arxiv:1309.6714v1 [cond-mat.mes-hall] 26 Sep 2013 of Texas at Austin, Austin,

More information

Solution to Problem Set No. 6: Time Independent Perturbation Theory

Solution to Problem Set No. 6: Time Independent Perturbation Theory Solution to Problem Set No. 6: Time Independent Perturbation Theory Simon Lin December, 17 1 The Anharmonic Oscillator 1.1 As a first step we invert the definitions of creation and annihilation operators

More information

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19

Page 404. Lecture 22: Simple Harmonic Oscillator: Energy Basis Date Given: 2008/11/19 Date Revised: 2008/11/19 Page 404 Lecture : Simple Harmonic Oscillator: Energy Basis Date Given: 008/11/19 Date Revised: 008/11/19 Coordinate Basis Section 6. The One-Dimensional Simple Harmonic Oscillator: Coordinate Basis Page

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

P3317 HW from Lecture and Recitation 10

P3317 HW from Lecture and Recitation 10 P3317 HW from Lecture 18+19 and Recitation 10 Due Nov 6, 2018 Problem 1. Equipartition Note: This is a problem from classical statistical mechanics. We will need the answer for the next few problems, and

More information

Symmetry, Topology and Phases of Matter

Symmetry, Topology and Phases of Matter Symmetry, Topology and Phases of Matter E E k=λ a k=λ b k=λ a k=λ b Topological Phases of Matter Many examples of topological band phenomena States adiabatically connected to independent electrons: - Quantum

More information

Topology and Fractionalization in 2D Electron Systems

Topology and Fractionalization in 2D Electron Systems Lectures on Mesoscopic Physics and Quantum Transport, June 1, 018 Topology and Fractionalization in D Electron Systems Xin Wan Zhejiang University xinwan@zju.edu.cn Outline Two-dimensional Electron Systems

More information

Topological insulator part I: Phenomena

Topological insulator part I: Phenomena Phys60.nb 5 Topological insulator part I: Phenomena (Part II and Part III discusses how to understand a topological insluator based band-structure theory and gauge theory) (Part IV discusses more complicated

More information

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline:

ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: ECE 487 Lecture 6 : Time-Dependent Quantum Mechanics I Class Outline: Time-Dependent Schrödinger Equation Solutions to thetime-dependent Schrödinger Equation Expansion of Energy Eigenstates Things you

More information

Spin Superfluidity and Graphene in a Strong Magnetic Field

Spin Superfluidity and Graphene in a Strong Magnetic Field Spin Superfluidity and Graphene in a Strong Magnetic Field by B. I. Halperin Nano-QT 2016 Kyiv October 11, 2016 Based on work with So Takei (CUNY), Yaroslav Tserkovnyak (UCLA), and Amir Yacoby (Harvard)

More information

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal.

But what happens when free (i.e. unbound) charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Lecture 5: continued But what happens when free (i.e. unbound charged particles experience a magnetic field which influences orbital motion? e.g. electrons in a metal. Ĥ = 1 2m (ˆp qa(x, t2 + qϕ(x, t,

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras (Refer Slide Time: 00:22) Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture 25 Pauli paramagnetism and Landau diamagnetism So far, in our

More information

Integer Quantum Hall Effect

Integer Quantum Hall Effect Integer Quantum Hall Effect Severin Meng Proseminar in Theoretical Physics, Departement Physik ETH Zürich May 28, 2018 Contents 1 The basics of the Integer Quantum Hall Effect 2 1.1 Introduction...................................

More information

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1

Lecture #1. Review. Postulates of quantum mechanics (1-3) Postulate 1 L1.P1 Lecture #1 Review Postulates of quantum mechanics (1-3) Postulate 1 The state of a system at any instant of time may be represented by a wave function which is continuous and differentiable. Specifically,

More information

Brief review of Quantum Mechanics (QM)

Brief review of Quantum Mechanics (QM) Brief review of Quantum Mechanics (QM) Note: This is a collection of several formulae and facts that we will use throughout the course. It is by no means a complete discussion of QM, nor will I attempt

More information

5 Topological insulator with time-reversal symmetry

5 Topological insulator with time-reversal symmetry Phys62.nb 63 5 Topological insulator with time-reversal symmetry It is impossible to have quantum Hall effect without breaking the time-reversal symmetry. xy xy. If we want xy to be invariant under, xy

More information

Mat E 272 Lecture 25: Electrical properties of materials

Mat E 272 Lecture 25: Electrical properties of materials Mat E 272 Lecture 25: Electrical properties of materials December 6, 2001 Introduction: Calcium and copper are both metals; Ca has a valence of +2 (2 electrons per atom) while Cu has a valence of +1 (1

More information

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney

Solid State Physics. Lecture 10 Band Theory. Professor Stephen Sweeney Solid State Physics Lecture 10 Band Theory Professor Stephen Sweeney Advanced Technology Institute and Department of Physics University of Surrey, Guildford, GU2 7XH, UK s.sweeney@surrey.ac.uk Recap from

More information

Lecture 4 (19/10/2012)

Lecture 4 (19/10/2012) 4B5: Nanotechnology & Quantum Phenomena Michaelmas term 2012 Dr C Durkan cd229@eng.cam.ac.uk www.eng.cam.ac.uk/~cd229/ Lecture 4 (19/10/2012) Boundary-value problems in Quantum Mechanics - 2 Bound states

More information

Section 10 Metals: Electron Dynamics and Fermi Surfaces

Section 10 Metals: Electron Dynamics and Fermi Surfaces Electron dynamics Section 10 Metals: Electron Dynamics and Fermi Surfaces The next important subject we address is electron dynamics in metals. Our consideration will be based on a semiclassical model.

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION doi:1.138/nature12186 S1. WANNIER DIAGRAM B 1 1 a φ/φ O 1/2 1/3 1/4 1/5 1 E φ/φ O n/n O 1 FIG. S1: Left is a cartoon image of an electron subjected to both a magnetic field, and a square periodic lattice.

More information

Topological insulator part II: Berry Phase and Topological index

Topological insulator part II: Berry Phase and Topological index Phys60.nb 11 3 Topological insulator part II: Berry Phase and Topological index 3.1. Last chapter Topological insulator: an insulator in the bulk and a metal near the boundary (surface or edge) Quantum

More information

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23)

Vibrational motion. Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion. Parabolic ( 拋物線 ) (8.21) d 2 (8.23) Vibrational motion Harmonic oscillator ( 諧諧諧 ) - A particle undergoes harmonic motion F == dv where k Parabolic V = 1 f k / dx = is Schrodinge h m d dx ψ f k f x the force constant x r + ( 拋物線 ) 1 equation

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension

Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension Physics 221A Fall 1996 Notes 16 Bloch s Theorem and Band Structure in One Dimension In these notes we examine Bloch s theorem and band structure in problems with periodic potentials, as a part of our survey

More information

Electrons in a weak periodic potential

Electrons in a weak periodic potential Electrons in a weak periodic potential Assumptions: 1. Static defect-free lattice perfectly periodic potential. 2. Weak potential perturbative effect on the free electron states. Perfect periodicity of

More information

Nearly Free Electron Gas model - II

Nearly Free Electron Gas model - II Nearly Free Electron Gas model - II Contents 1 Lattice scattering 1 1.1 Bloch waves............................ 2 1.2 Band gap formation........................ 3 1.3 Electron group velocity and effective

More information

Topological insulator with time-reversal symmetry

Topological insulator with time-reversal symmetry Phys620.nb 101 7 Topological insulator with time-reversal symmetry Q: Can we get a topological insulator that preserves the time-reversal symmetry? A: Yes, with the help of the spin degree of freedom.

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

Lecture 14 The Free Electron Gas: Density of States

Lecture 14 The Free Electron Gas: Density of States Lecture 4 The Free Electron Gas: Density of States Today:. Spin.. Fermionic nature of electrons. 3. Understanding the properties of metals: the free electron model and the role of Pauli s exclusion principle.

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets!

Qualifying Exam. Aug Part II. Please use blank paper for your work do not write on problems sheets! Qualifying Exam Aug. 2015 Part II Please use blank paper for your work do not write on problems sheets! Solve only one problem from each of the four sections Mechanics, Quantum Mechanics, Statistical Physics

More information

Electrons in a periodic potential

Electrons in a periodic potential Chapter 3 Electrons in a periodic potential 3.1 Bloch s theorem. We consider in this chapter electrons under the influence of a static, periodic potential V (x), i.e. such that it fulfills V (x) = V (x

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

Quantum Physics III (8.06) Spring 2005 Assignment 5

Quantum Physics III (8.06) Spring 2005 Assignment 5 Quantum Physics III (8.06) Spring 2005 Assignment 5 Tuesday March 1, 2005 Due Tuesday March 8, 2005 Readings The reading assignment for this problem set and part of the next one is: Griffiths all of Chapter

More information

Quantum Mechanics: Vibration and Rotation of Molecules

Quantum Mechanics: Vibration and Rotation of Molecules Quantum Mechanics: Vibration and Rotation of Molecules 8th April 2008 I. 1-Dimensional Classical Harmonic Oscillator The classical picture for motion under a harmonic potential (mass attached to spring

More information

Incompatibility Paradoxes

Incompatibility Paradoxes Chapter 22 Incompatibility Paradoxes 22.1 Simultaneous Values There is never any difficulty in supposing that a classical mechanical system possesses, at a particular instant of time, precise values of

More information

PY 351 Modern Physics - Lecture notes, 3

PY 351 Modern Physics - Lecture notes, 3 PY 351 Modern Physics - Lecture notes, 3 Copyright by Claudio Rebbi, Boston University, October 2016. These notes cannot be duplicated and distributed without explicit permission of the author. Time dependence

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

POEM: Physics of Emergent Materials

POEM: Physics of Emergent Materials POEM: Physics of Emergent Materials Nandini Trivedi L1: Spin Orbit Coupling L2: Topology and Topological Insulators Tutorials: May 24, 25 (2017) Scope of Lectures and Anchor Points: 1.Spin-Orbit Interaction

More information

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r

The Hydrogen Atom. Dr. Sabry El-Taher 1. e 4. U U r The Hydrogen Atom Atom is a 3D object, and the electron motion is three-dimensional. We ll start with the simplest case - The hydrogen atom. An electron and a proton (nucleus) are bound by the central-symmetric

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

Quantized Resistance. Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A

Quantized Resistance. Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A Quantized Resistance Zhifan He, Huimin Yang Fudan University (China) April 9, Physics 141A Outline General Resistance Hall Resistance Experiment of Quantum Hall Effect Theory of QHE Other Hall Effect General

More information

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017

Fractional quantum Hall effect and duality. Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Fractional quantum Hall effect and duality Dam T. Son (University of Chicago) Canterbury Tales of hot QFTs, Oxford July 11, 2017 Plan Plan General prologue: Fractional Quantum Hall Effect (FQHE) Plan General

More information

3. Quantum Mechanics in 3D

3. Quantum Mechanics in 3D 3. Quantum Mechanics in 3D 3.1 Introduction Last time, we derived the time dependent Schrödinger equation, starting from three basic postulates: 1) The time evolution of a state can be expressed as a unitary

More information

Lecture 19: Building Atoms and Molecules

Lecture 19: Building Atoms and Molecules Lecture 19: Building Atoms and Molecules +e r n = 3 n = 2 n = 1 +e +e r y even Lecture 19, p 1 Today Nuclear Magnetic Resonance Using RF photons to drive transitions between nuclear spin orientations in

More information

Simple one-dimensional potentials

Simple one-dimensional potentials Simple one-dimensional potentials Sourendu Gupta TIFR, Mumbai, India Quantum Mechanics 1 Ninth lecture Outline 1 Outline 2 Energy bands in periodic potentials 3 The harmonic oscillator 4 A charged particle

More information

Advanced Practical Course F1. Experiment K1. Quantum Hall Effect

Advanced Practical Course F1. Experiment K1. Quantum Hall Effect Advanced Practical Course F1 Experiment K1 Quantum Hall Effect Contents 1 Classical treatment of electrons in electric and magnetic fields (Drude model) 3 1.1 The classical Hall-effect for low magnetic

More information

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom

(n, l, m l ) 3/2/2016. Quantum Numbers (QN) Plots of Energy Level. Roadmap for Exploring Hydrogen Atom PHYS 34 Modern Physics Atom III: Angular Momentum and Spin Roadmap for Exploring Hydrogen Atom Today Contents: a) Orbital Angular Momentum and Magnetic Dipole Moment b) Electric Dipole Moment c) Stern

More information

Electric Dipole Paradox: Question, Answer, and Interpretation

Electric Dipole Paradox: Question, Answer, and Interpretation Electric Dipole Paradox: Question, Answer, and Interpretation Frank Wilczek January 16, 2014 Abstract Non-vanishing electric dipole moments for the electron, neutron, or other entities are classic signals

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

A. Time dependence from separation of timescales

A. Time dependence from separation of timescales Lecture 4 Adiabatic Theorem So far we have considered time independent semiclassical problems. What makes these semiclassical is that the gradient term (which is multiplied by 2 ) was small. In other words,

More information

Organizing Principles for Understanding Matter

Organizing Principles for Understanding Matter Organizing Principles for Understanding Matter Symmetry Conceptual simplification Conservation laws Distinguish phases of matter by pattern of broken symmetries Topology Properties insensitive to smooth

More information

Non-Hermitian boundary contributions to fundamental relations and theorems of Quantum Mechanics and their physical significance

Non-Hermitian boundary contributions to fundamental relations and theorems of Quantum Mechanics and their physical significance Non-Hermitian boundary contributions to fundamental relations and theorems of Quantum Mechanics and their physical significance K. Moulopoulos Department of Physics, University of Cyprus, 75 Kallipoleos

More information

Welcome back to PHY 3305

Welcome back to PHY 3305 Welcome back to PHY 3305 Today s Lecture: Hydrogen Atom Part I John von Neumann 1903-1957 One-Dimensional Atom To analyze the hydrogen atom, we must solve the Schrodinger equation for the Coulomb potential

More information

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together.

Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. Bonding in solids The interaction of electrons in neighboring atoms of a solid serves the very important function of holding the crystal together. For example Nacl In the Nacl lattice, each Na atom is

More information

Total Angular Momentum for Hydrogen

Total Angular Momentum for Hydrogen Physics 4 Lecture 7 Total Angular Momentum for Hydrogen Lecture 7 Physics 4 Quantum Mechanics I Friday, April th, 008 We have the Hydrogen Hamiltonian for central potential φ(r), we can write: H r = p

More information

Atomic Structure and Processes

Atomic Structure and Processes Chapter 5 Atomic Structure and Processes 5.1 Elementary atomic structure Bohr Orbits correspond to principal quantum number n. Hydrogen atom energy levels where the Rydberg energy is R y = m e ( e E n

More information

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13

The Dirac Equation. Topic 3 Spinors, Fermion Fields, Dirac Fields Lecture 13 The Dirac Equation Dirac s discovery of a relativistic wave equation for the electron was published in 1928 soon after the concept of intrisic spin angular momentum was proposed by Goudsmit and Uhlenbeck

More information

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory

Chapter 4: Bonding in Solids and Electronic Properties. Free electron theory Chapter 4: Bonding in Solids and Electronic Properties Free electron theory Consider free electrons in a metal an electron gas. regards a metal as a box in which electrons are free to move. assumes nuclei

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Harmonic Oscillator I

Harmonic Oscillator I Physics 34 Lecture 7 Harmonic Oscillator I Lecture 7 Physics 34 Quantum Mechanics I Monday, February th, 008 We can manipulate operators, to a certain extent, as we would algebraic expressions. By considering

More information

Welcome back to PHYS 3305

Welcome back to PHYS 3305 Welcome back to PHYS 3305 Otto Stern 1888-1969 Walther Gerlach 1889-1979 Today s Lecture: Angular Momentum Quantization Stern-Gerlach Experiment Review: Orbital Dipole Moments The magnetic moment for an

More information

arxiv:cond-mat/ v1 22 Aug 1994

arxiv:cond-mat/ v1 22 Aug 1994 Submitted to Phys. Rev. B Bound on the Group Velocity of an Electron in a One-Dimensional Periodic Potential arxiv:cond-mat/9408067v 22 Aug 994 Michael R. Geller and Giovanni Vignale Institute for Theoretical

More information

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor

Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor Lecture 5: Harmonic oscillator, Morse Oscillator, 1D Rigid Rotor It turns out that the boundary condition of the wavefunction going to zero at infinity is sufficient to quantize the value of energy that

More information

5.61 Physical Chemistry Lecture #36 Page

5.61 Physical Chemistry Lecture #36 Page 5.61 Physical Chemistry Lecture #36 Page 1 NUCLEAR MAGNETIC RESONANCE Just as IR spectroscopy is the simplest example of transitions being induced by light s oscillating electric field, so NMR is the simplest

More information

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields? Advance Organizer: Chapter 1: Introduction to single magnetic moments: Magnetic dipoles Spin and orbital angular momenta Spin-orbit coupling Magnetic susceptibility, Magnetic dipoles in a magnetic field:

More information

Lecture notes for FYS610 Many particle Quantum Mechanics

Lecture notes for FYS610 Many particle Quantum Mechanics UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Lecture notes for FYS610 Many particle Quantum Mechanics Note 20, 19.4 2017 Additions and comments to Quantum Field Theory and the Standard

More information

Experiment 10. Zeeman Effect. Introduction. Zeeman Effect Physics 244

Experiment 10. Zeeman Effect. Introduction. Zeeman Effect Physics 244 Experiment 10 Zeeman Effect Introduction You are familiar with Atomic Spectra, especially the H-atom energy spectrum. Atoms emit or absorb energies in packets, or quanta which are photons. The orbital

More information

Quantum Oscillations in Graphene in the Presence of Disorder

Quantum Oscillations in Graphene in the Presence of Disorder WDS'9 Proceedings of Contributed Papers, Part III, 97, 9. ISBN 978-8-778-- MATFYZPRESS Quantum Oscillations in Graphene in the Presence of Disorder D. Iablonskyi Taras Shevchenko National University of

More information

Lecture notes on topological insulators

Lecture notes on topological insulators Lecture notes on topological insulators Ming-Che Chang Department of Physics, National Taiwan Normal University, Taipei, Taiwan Dated: May 8, 07 I. D p-wave SUPERCONDUCTOR Here we study p-wave SC in D

More information

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m

Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall Duration: 2h 30m Final Exam Tuesday, May 8, 2012 Starting at 8:30 a.m., Hoyt Hall. ------------------- Duration: 2h 30m Chapter 39 Quantum Mechanics of Atoms Units of Chapter 39 39-1 Quantum-Mechanical View of Atoms 39-2

More information

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes

Lecture 20: Semiconductor Structures Kittel Ch 17, p , extra material in the class notes Lecture 20: Semiconductor Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure Layer Structure metal Oxide insulator Semiconductor Semiconductor Large-gap Semiconductor

More information

Chapter 3 Properties of Nanostructures

Chapter 3 Properties of Nanostructures Chapter 3 Properties of Nanostructures In Chapter 2, the reduction of the extent of a solid in one or more dimensions was shown to lead to a dramatic alteration of the overall behavior of the solids. Generally,

More information

Creation and Destruction Operators and Coherent States

Creation and Destruction Operators and Coherent States Creation and Destruction Operators and Coherent States WKB Method for Ground State Wave Function state harmonic oscillator wave function, We first rewrite the ground < x 0 >= ( π h )1/4 exp( x2 a 2 h )

More information

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9)

For a complex order parameter the Landau expansion of the free energy for small would be. hc A. (9) Physics 17c: Statistical Mechanics Superconductivity: Ginzburg-Landau Theory Some of the key ideas for the Landau mean field description of phase transitions were developed in the context of superconductivity.

More information

Fatih Balli Department of Physics, University of South Carolina 11/6/2015. Fatih Balli, Department of Physics UofSC

Fatih Balli Department of Physics, University of South Carolina 11/6/2015. Fatih Balli, Department of Physics UofSC Fatih Balli Department of Physics, University of South Carolina 11/6/2015 1 Timeline and Motivation Hall Effect Landau Problem on Planar System Quantum Hall Effect Incompressibility and Multiparticle Wavefunction

More information

Minimal Update of Solid State Physics

Minimal Update of Solid State Physics Minimal Update of Solid State Physics It is expected that participants are acquainted with basics of solid state physics. Therefore here we will refresh only those aspects, which are absolutely necessary

More information

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case

The Postulates of Quantum Mechanics Common operators in QM: Potential Energy. Often depends on position operator: Kinetic Energy 1-D case: 3-D case The Postulates of Quantum Mechanics Common operators in QM: Potential Energy Often depends on position operator: Kinetic Energy 1-D case: 3-D case Time Total energy = Hamiltonian To find out about the

More information

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras

Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Condensed Matter Physics Prof. G. Rangarajan Department of Physics Indian Institute of Technology, Madras Lecture - 10 The Free Electron Theory of Metals - Electrical Conductivity (Refer Slide Time: 00:20)

More information

Beyond the Quantum Hall Effect

Beyond the Quantum Hall Effect Beyond the Quantum Hall Effect Jim Eisenstein California Institute of Technology School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January February 2008 Outline of the Lectures

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Lecture 2: simple QM problems

Lecture 2: simple QM problems Reminder: http://www.star.le.ac.uk/nrt3/qm/ Lecture : simple QM problems Quantum mechanics describes physical particles as waves of probability. We shall see how this works in some simple applications,

More information

1.1 Most problems in physics cannot be solved exactly.

1.1 Most problems in physics cannot be solved exactly. 1 Introduction 1.1 Most problems in physics cannot be solved exactly. The few that that can be are solved by exploiting symmetries. The original example is the Kepler problem of a planet moving around

More information

26 Group Theory Basics

26 Group Theory Basics 26 Group Theory Basics 1. Reference: Group Theory and Quantum Mechanics by Michael Tinkham. 2. We said earlier that we will go looking for the set of operators that commute with the molecular Hamiltonian.

More information

Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime

Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime Tunneling Spectroscopy of Disordered Two-Dimensional Electron Gas in the Quantum Hall Regime The Harvard community has made this article openly available. Please share how this access benefits you. Your

More information

Introduction to topological insulators. Jennifer Cano

Introduction to topological insulators. Jennifer Cano Introduction to topological insulators Jennifer Cano Adapted from Charlie Kane s Windsor Lectures: http://www.physics.upenn.edu/~kane/ Review article: Hasan & Kane Rev. Mod. Phys. 2010 What is an insulator?

More information

Is the composite fermion a Dirac particle?

Is the composite fermion a Dirac particle? Is the composite fermion a Dirac particle? Dam T. Son GGI conference Gauge/gravity duality 2015 Ref.: 1502.03446 Plan Plan Fractional quantum Hall effect Plan Fractional quantum Hall effect Composite fermion

More information

Probability and Normalization

Probability and Normalization Probability and Normalization Although we don t know exactly where the particle might be inside the box, we know that it has to be in the box. This means that, ψ ( x) dx = 1 (normalization condition) L

More information

Lecture 20 - Semiconductor Structures

Lecture 20 - Semiconductor Structures Lecture 0: Structures Kittel Ch 17, p 494-503, 507-511 + extra material in the class notes MOS Structure metal Layer Structure Physics 460 F 006 Lect 0 1 Outline What is a semiconductor Structure? Created

More information