Stability of selfgravitating systems

Size: px
Start display at page:

Download "Stability of selfgravitating systems"

Transcription

1 Stability of selfgravitating systems E.V.Polyachenko Institute of Astronomy RAS, Moscow October 23, 2013

2 Contents Homogeneous medium uid: Jeans instability stars: Jeans instability, Landau damping, inverse LD Disks (razor-thin) uid uniformly rotating sheet uid and stellar dierentially rotating disks (WKB) Instabilities for grand-design structures bar-mode instability swing amplication matrix methods bar-mode instability as a manifestation of inverse LD buckling instability Spheres stability of isotropic systems f (H) radial orbit instability in anisotropic systems f (H, L) gravitational loss cone instability

3 Introductory remarks What? Why? Build appropriate models Helps in understanding observations Discover obscured matter Understand the origin of spiral structure, bars, bulges, etc. Restrictions Linear theory Fluid (gas): no dissipation (Euler eq.), barotropic eq. of state Starts: CBE no collisions, t < t relax continuous DF f (x, v, t)

4 Homogenious systems Innite homogeneous media

5 Homogenious systems Innite uid medium Qualitative explanation R J vs 2 (1) Gρ 0 Approaches: modal and initial value problem A normal mode of an oscillating system is a pattern of motion in which all parts of the system move sinusoidally with the same frequency and with a xed phase relation. Fluid: Jeans instability HD eq-s (continuity, Euler, barotropic) Poissoin eq. Jeans swindle ω 2 = v 2 s (k 2 k 2 J ), k2 J 4πGρ 0 v 2 s, λ J = πv 2 s Gρ 0 (2)

6 Homogenious systems Innite stellar medium Vlasov DR (1938, 1945) Landau DR (1946), Landau contour, Landau damping

7 Homogenious systems Innite stellar medium Vlasov DR (1938, 1945) Landau DR (1946), Landau contour, Landau damping

8 Homogenious systems Innite stellar medium Vlasov DR (1938, 1945) Landau DR (1946), Landau contour, Landau damping initial conditions

9 Homogenious systems Innite stellar medium Vlasov DR (1938, 1945) Landau DR (1946), Landau contour, Landau damping initial conditions Van Kampen modes (1955)

10 Homogenious systems Innite stellar medium K.M. Case (1959). Conclusion:... while the operator occurring in the linearized equation for... oscillations is not bounded and self-adjoint it does share many of the properties of such operators. In particular the eigenfunctions satisfy analogous completeness and orthogonality relations. The dierence is manifested in that the eigenfunctions must be understood in the sense of the theory of distributions (which is physically reasonable in this case) and that some of the eigenvalues can be complex.

11 Homogenious systems Innite stellar medium Linear Landau damping t γ 1, ( Φ 1 ) 1/2 γ /k (3)

12 Homogenious systems Innite stellar medium Linear Landau damping t γ 1, ( Φ 1 ) 1/2 γ /k (3) Non-Jeans Instability: inverse Landau damping (ILD) γ f 0 > 0 (4) u u=ω/k

13 Homogenious systems Innite stellar medium Linear Landau damping t γ 1, ( Φ 1 ) 1/2 γ /k (3) Non-Jeans Instability: inverse Landau damping (ILD) γ f 0 > 0 (4) u u=ω/k ILD is dierent from Jeans instability

14 Disks Disks

15 Disks Innite uid uniformly rotating sheet Rotating frame Ω HD eq-s for motion in a plane, `plane' pressure Jeans swindle perturbations exp(ikx i ωt) ω 2 = 4Ω 2 2πGΣ 0 k + k 2 v 2 s (5) Ωv s GΣ 0 > π 2 (6) Ωv s GΣ 0 > 1.06 (thick uid sheet) (7) Exact DR Instability: Jeans inst. suppressed on large scales by rotation

16 Disks Fluid and stellar dierentially rotating disks (WKB) Dierential rotation Ω = Ω(R) Gravitational coupling A.Kalnajs, C.C.Lin, A.Toomre : locally tightly wound spiral arms are plane waves decoupling Pitch angles for spiral galaxies of dierent Hubble types (Ma 2002)

17 Disks Fluid and stellar dierentially rotating disks (WKB) WKB appoximation: kr 1, d dr 1 R (8) Lindblad resonances Re ω m Ω p = Ω(R) ± 1 κ(r) m (9) WKB dispersion relation for uid disk (ω mω(r 0 )) 2 = κ 2 2πGΣ 0 k + v 2 s k2 (10) Lin-Shu-Kalnajs DR for stellar disk (ω mω(r 0 )) 2 = κ 2 2πGΣ 0 k F (11)

18 Disks Local stability of the disks Radial perturbations m = 0, WKB, local stability: uid: Q = κv s >1 πgσ 0 κσ stars: Q = >1 3.36GΣ 0 Nonradial perturbations m > 0, no WKB, local stability: uid: Q > 1.7 stars: Q > 3.15 (V.Polyachenko, EP, Strelnikov 1997):

19 Disks Bar-mode instability N-body simulation of bar-mode instability Start movie

20 Disks Swing amplication Swing amplication Spiral & bar formation CR region spirals high amplication bars low amplication bars lumpy structure (superposition of tightly wound leading and trailing spirals) Feedback through the center

21 Disks Bar as a normal mode of stellar disk Kuzmin-Toomre SG disk with retrograde orbits Q 1.5 Usual PM planar scheme Gravity softening r 1 (r 2 + ε 2 ) 1/2 Quiet start Athanassoula, Sellwood 1986 Visually, one can distinguish three stages Axisymmetric, t < 120 Bar formation, 120 < t < 150 Non-linear bar, t > 150

22 Disks Bar as a normal mode of stellar disk Fourier analysis and expansion in logarithmic spirals A m (p, t) = R max 2π Σ(r, ϕ, t) exp( i[mϕ + p ln r])r dr dϕ (12) 0 0 Pitch angle α = arctg(m/p), p is spirality (trailing p > 0, bars p = 0). Bisymmetric perturbations: m = 2. Jalali, Hunter, 2005 (JH05)

23 Disks Bar as a normal mode of stellar disk Exponential growth of the amplitude in the linear regime Γ(t) = max ln A 2 (p, t) p

24 Disks Bar as a normal mode of stellar disk Constant pattern speed in the linear regime Ω ε p = 1 m dφ dt

25 Disks Bar as a normal mode of stellar disk Extrapolation to ε 0 and comparison with JH05 ε JH1 JH2 Ω p γ

26 Disks Bar as a normal mode of stellar disk Thus, the detected mode is the most unstable mode found by JH05, i.e. the mode with the largest growth rate

27 Disks Bar as a normal mode of stellar disk Power spectrum spiralitypattern speed P s t (p, Ω p ) = 1 2π t+s Power spectrum radiuspattern speed R s t(r, Ω p ) = 1 2π t t+s t A 2 (p, t ) exp Γ(t ) eimω pt s H Ã 2 (R, t ) exp Γ(t ) eimω pt s H t (t )dt t (t )dt 2 2

28 Disks Bar as a normal mode of stellar disk Time evolution of spiralitypattern speed spectrum Start movie

29 Disks Matrix methods Kalnajs matrix method (1971, 1977) Linear matrix method (EP 2004, 2005) Petrov-Galerkin formulation (M.A.Jalali 2007)

30 Disks Bar-mode instability as a manifestation of inverse LD L m m n (1) f n (J) 2 dj f (n) 0 (J) Lynden-Bell & Kalnajs, 1972 = 0, f (n) 0 (J) n f 0 J 1 + m f 0 J 2

31 Disks Buckling instability Karlsrud et al. (1971) ω 2 = ν 2 + 2πGΣ k σ 2 k 2 ω 2 = κ 2 2πGΣ k + σ 2 k 2 (Bending) (WKB) Polyachenko & Shukhman (1977) ν = 0 3 α 2 < kh 1 α α σ σ z α c = 2.7 kh = 0.3 2h = R 10

32 Disks Buckling instability NGC 1381, NIR + isophotos Solar neighbourhood: α = σ/σ z 1.7 stability (Merritt & Sellwood 1994) bars thickening in thin disks thickening of thin dynamically hot stellar systems (elliptical galaxies)

33 Spheres Spheres

34 Spheres Stability of isotropic systems Antonov-Lebovitz th. All non-radial modes Y m (θ, ϕ), l > 0 of a l uid barotropic sphere with dp dρ > 0 are stable. Antonov 1-st law A stellar system having an ergodic DF f 0 (H 0 ) with f 0 (H 0) < 0 is stable if the uid barotropic sphere with the same equilibrium density distribution is stable. Antonov 2-nd law All non-radial modes of a stellar system having an ergodic equilibrium DF f 0 (H 0 ) with f 0 (H 0) < 0 are stable. Doremus-Feix-Baumann th. All radial modes of a stellar system with an ergodic DF f 0 (H 0 ) and f 0 (H 0) < 0 are stable.

35 Spheres Anisotropic systems Doremus-Feix-Baumann ext. All radial modes of a spherical stellar system with a DF f 0 (H 0, L) and f 0 / H 0 < 0 are stable. Non-radial perturbations: radial orbit instability (ROI) gravitational loss cone instability (glci)

36 Spheres Radial orbit instability Polyachenko & Shukhman (1972): anisotropic Jeans instability Zeldovich, Polyachenko, Fridman & Shukhman (1972) Antonov (1973): purely radial orbits Lynden-Bell (1979): precessing orbits, coalescence and capture Polyachenko & Shukhman (1981): Kalnajs m.m. for spheres, Russian stability criterium χ = 2T r T = 1.7 ± 0.25 Barnes (1985), Merritt & Aguilar (1985)... Perez et al. (1996), Maréchal & Perez (2009)

37 Spheres Radial orbit instability Kalnajs matrix method for spheres Numerical calculations

38 Spheres Radial orbit instability Kalnajs matrix method for spheres Numerical calculations

39 Spheres Radial orbit instability Kalnajs matrix method for spheres Numerical calculations Stability of Idlis models The rst determination of stability boundary, ζ = 2T r T

40 Spheres Radial orbit instability Precession of orbits and the moment of inertia φ = π+p(e)l+... p(e) <> 0 Ω pr = dφ dt = φ π T r (E) = p(e) T r (E) L d 2 φ dt 2 = p(e) T r (E) N I = T r(e) p(e) Ω pr > 0 growth of the perturbations (instability) Ω pr < 0 weakening of the perturbations (?)

41 Spheres Gravitational loss cone instability Plasma physics analogy SMBH Mirror trap Loss cone Type of the DF (nearly isotropic, strongly anisotropic) Geometry

42 Spheres Gravitational loss cone instability Disks are usually unstable Tremaine 2005 Spheres, monotonic DF stable Spheres, anisotropic DF with a loss cone unstable, l 3 EP, V.Polyachenko, Shukhman

G. Bertin Dipartimento di Fisica Universita degli Studi di Milano Bertinoro, May 7-12, 2006

G. Bertin Dipartimento di Fisica Universita degli Studi di Milano Bertinoro, May 7-12, 2006 DYNAMICS OF SPIRAL GALAXIES G. Bertin Dipartimento di Fisica Universita degli Studi di Milano Bertinoro, May 7-12, 2006 OUTLINE PART I Some interesting topics in the dynamics of spiral galaxies ; morphology

More information

Galactic Dynamics. James Binney and Scott Tremaine SECOND EDITION PRINCETON UNIVERSITY,PRESS PRINCETON AND OXFORD

Galactic Dynamics. James Binney and Scott Tremaine SECOND EDITION PRINCETON UNIVERSITY,PRESS PRINCETON AND OXFORD Galactic Dynamics SECOND EDITION James Binney and Scott Tremaine PRINCETON UNIVERSITY,PRESS PRINCETON AND OXFORD Preface 1 Introduction - 1 1.1 An overview of the observations 5 Stars 5 The Galaxy 11 Other

More information

Spiral Structure and the. Stability of Stellar Disks y. Rutgers University, Department of Physics and Astronomy, PO Box 849, Piscataway, NJ 08855, USA

Spiral Structure and the. Stability of Stellar Disks y. Rutgers University, Department of Physics and Astronomy, PO Box 849, Piscataway, NJ 08855, USA 1 Spiral Structure and the Stability of Stellar Disks y J A Sellwood Rutgers University, Department of Physics and Astronomy, PO Box 849, Piscataway, NJ 08855, USA Rutgers Astrophysics Preprint no 182

More information

The formation of spiral arms and rings in barred galaxies from the dynamical systems point of view.

The formation of spiral arms and rings in barred galaxies from the dynamical systems point of view. The formation of spiral arms and rings in barred galaxies from the dynamical systems point of view. Mercè Romero-Gómez WSIMS 2008 Barcelona 1-5 December 2008 collaborators: J.J. Masdemont, E. Athanassoula

More information

1.12 Stability: Jeans mass and spiral structure

1.12 Stability: Jeans mass and spiral structure 40 CHAPTER 1. GALAXIES: DYNAMICS, POTENTIAL THEORY, AND EQUILIBRIA 1.12 Stability: Jeans mass and spiral structure Until this point we have been concerned primarily with building equilibrium systems. We

More information

Epicycles the short form.

Epicycles the short form. Homework Set 3 Due Sept 9 CO 4.15 just part (a). (see CO pg. 908) CO 4.1 CO 4.36 (a),(b) CO 5.14 (assume that Sun currently has its max. u velocity.) CO 5.16 (Keplerian orbit = orbit around a point mass)

More information

Density Waves and Chaos in Spiral Galaxies. Frank Shu NTHU Physics Department 7 December 2005

Density Waves and Chaos in Spiral Galaxies. Frank Shu NTHU Physics Department 7 December 2005 Density Waves and Chaos in Spiral Galaxies Frank Shu NTHU Physics Department 7 December 2005 Outline of Talk Elements of Spiral Density-Wave Theory Theory of Spiral Substructure: Feather Formation by Gravitational

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies Gerry Gilmore H47 email: gil@ast.cam.ac.uk Lectures: Monday 12:10-13:00 Wednesday 11:15-12:05 Friday 12:10-13:00 Books: Binney & Tremaine Galactic Dynamics Princeton

More information

Α Dispersion Relation for Open Spiral Galaxies

Α Dispersion Relation for Open Spiral Galaxies J. Astrophys. Astr. (1980) 1, 79 95 Α Dispersion Relation for Open Spiral Galaxies G. Contopoulos Astronomy Department, University of Athens, Athens, Greece Received 1980 March 20; accepted 1980 April

More information

Physics of Gravitating Systems. Equilibrium and Stability

Physics of Gravitating Systems. Equilibrium and Stability Physics of Gravitating Systems I Equilibrium and Stability A. M. Fridman V. L. Polyachenko Physics of Gravitating Systems I Equilibrium and Stability Translated by A. B. Aries and Igor N. Poliakoff With

More information

DYNAMICS OF GALAXIES

DYNAMICS OF GALAXIES DYNAMICS OF GALAXIES 3. Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands Winter 2008/9 Contents Differential rotation Epicycle orbits Vertical motion Resonances

More information

Dynamics of Galaxies: Practice. Frontiers in Numerical Gravitational Astrophysics July 3, 2008

Dynamics of Galaxies: Practice. Frontiers in Numerical Gravitational Astrophysics July 3, 2008 Dynamics of Galaxies: Practice Frontiers in Numerical Gravitational Astrophysics July 3, 2008 http://xkcd.com/323/ Outline 1. Initial Conditions a) Jeans Theorem b) Exact solutions for spheres c) Approximations

More information

astro-ph/ Nov 94

astro-ph/ Nov 94 A NEW CRITERION FOR BAR{FORMING INSTABILITY IN RAPIDLY ROTATING GASEOUS AND STELLAR SYSTEMS. I. AXISYMMETRIC FORM Dimitris M. Christodoulou 1, Isaac Shlosman 2;3, and Joel E. Tohline 4 November 7, 1994

More information

simulations - 1 J A Sellwood

simulations - 1 J A Sellwood simulations - 1 J A Sellwood Collisionless stellar systems Manifest a number of complicated collective phenomena spiral arms, bar instabilities, collapses, mergers, etc. too complicated to be calculated

More information

arxiv: v2 [astro-ph.ga] 30 Nov 2010

arxiv: v2 [astro-ph.ga] 30 Nov 2010 Radial orbit instability : review and perspectives arxiv:0910.5177v2 [astro-ph.ga] 30 Nov 2010 Abstract L. Maréchal, J. Perez Laboratoire de Mathématiques Appliquées, École Nationale Supérieure de Techniques

More information

Dynamical Imprint of Interstellar Gas on persistence of spiral structure in galaxies

Dynamical Imprint of Interstellar Gas on persistence of spiral structure in galaxies Dynamical Imprint of Interstellar Gas on persistence of spiral structure in galaxies By Soumavo Ghosh (IISc, India) In collaboration with Chanda J. Jog The Role of Gas in Galaxy Dynamics Valletta, Malta

More information

by considering a galactic disk as consisting of a collection of concentric spinning rings, able to tilt with respect to each other, and moving in the

by considering a galactic disk as consisting of a collection of concentric spinning rings, able to tilt with respect to each other, and moving in the Interactions between massive dark halos and warped disks Konrad Kuijken Kapteyn Institute, PO Box 800, 9700 AV Groningen, The Netherlands Abstract. The normal mode theory for warping of galaxy disks, in

More information

Non-linear coupling of spiral waves in disk galaxies: a numerical study

Non-linear coupling of spiral waves in disk galaxies: a numerical study Astron. Astrophys. 322, 442 454 (1997) ASTRONOMY AND ASTROPHYSICS Non-linear coupling of spiral waves in disk galaxies: a numerical study F. Masset 1,2 and M. Tagger 1 1 DSM/DAPNIA/Service d Astrophysique

More information

Collisional dynamics of the Milky Way

Collisional dynamics of the Milky Way Astron. Astrophys. 38, 531 543 (1997 ASTRONOMY AND ASTROPHYSICS Collisional dynamics of the Milky Way Evgeny Griv 1,, Michael Gedalin 1, and Chi Yuan 1 Department of Physics, Ben-Gurion University of the

More information

Barred Galaxies. Morphology Gas in barred galaxies Dynamics: pattern speed Theory: secular evolution, resonances

Barred Galaxies. Morphology Gas in barred galaxies Dynamics: pattern speed Theory: secular evolution, resonances Barred Galaxies Morphology Gas in barred galaxies Dynamics: pattern speed Theory: secular evolution, resonances NGC1300: SB(s) fig.6 NGC1512: SB(r) fig.3 NGC2523: SB(r) fig.2 Dust lanes NGC 1300 Star formation

More information

Collisionless Boltzmann Eq (Vlasov eq)" S+G sec 3.4! Collisionless Boltzmann Eq S&G 3.4!

Collisionless Boltzmann Eq (Vlasov eq) S+G sec 3.4! Collisionless Boltzmann Eq S&G 3.4! Collisionless Boltzmann Eq (Vlasov eq)" S+G sec 3.4 When considering the structure of galaxies cannot follow each individual star (10 11 of them), Consider instead stellar density and velocity distributions.

More information

Potential-Density pair: Worked Problem In a spherical galaxy, the density of matter varies with radius as. a r 2 (r+a) 2, ρ(r) = M 4π

Potential-Density pair: Worked Problem In a spherical galaxy, the density of matter varies with radius as. a r 2 (r+a) 2, ρ(r) = M 4π 15 Potential-Density pair: Worked Problem In a spherical galaxy, the density of matter varies with radius as where M and a are constants. ρ(r) = M 4π a r 2 (r+a) 2, (a) Verify that the total mass of the

More information

Hamiltonian chaos and dark matter

Hamiltonian chaos and dark matter Hamiltonian chaos and dark matter Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu July 15, 2013 Monterey 07/15/13 slide 1 Goals Goals Bars Post-modern dynamics galactic dynamics Progress report

More information

Exciting Waves/Modes in Black-Hole Accretion Disks

Exciting Waves/Modes in Black-Hole Accretion Disks Exciting Waves/Modes in Black-Hole Accretion Disks Dong Lai Cornell University L Observatoire de Paris Meudon, Dec.1, 2008 Edwin E. Salpeter 1924-2008.11 Autobiography: Annual Review Astro & Astrophys.

More information

Overview spherical accretion

Overview spherical accretion Spherical accretion - AGN generates energy by accretion, i.e., capture of ambient matter in gravitational potential of black hole -Potential energy can be released as radiation, and (some of) this can

More information

arxiv: v1 [astro-ph.ga] 18 Jul 2014

arxiv: v1 [astro-ph.ga] 18 Jul 2014 Publications of the Astronomical Society of Australia (PASA) c Astronomical Society of Australia 2014; published by Cambridge University Press. doi: 10.1017/pas.2014.xxx. Dawes Review 4: Spiral Structures

More information

M104. Simon Hanmer : OAWS Understanding di the Universe #5, February 2017 NASA

M104. Simon Hanmer : OAWS Understanding di the Universe #5, February 2017 NASA M104 Simon Hanmer : OAWS Understanding di the Universe #5, February 2017 NASA What is a Galaxy? 10^11 stars Gas & dust or not! Disks or spheres 2/62 Giants and dwarfs Arms (70%) or not! * Symmetrical or

More information

Galaxies and Cosmology

Galaxies and Cosmology F. Combes P. Boisse A. Mazure A. Blanchard Galaxies and Cosmology Translated by M. Seymour With 192 Figures Springer Contents General Introduction 1 1 The Classification and Morphology of Galaxies 5 1.1

More information

formation of the cosmic large-scale structure

formation of the cosmic large-scale structure formation of the cosmic large-scale structure Heraeus summer school on cosmology, Heidelberg 2013 Centre for Astronomy Fakultät für Physik und Astronomie, Universität Heidelberg August 23, 2013 outline

More information

The Morphology of Collisionless Galactic Rings Exterior to Evolving Bars

The Morphology of Collisionless Galactic Rings Exterior to Evolving Bars Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 13 August 2008 (MN LATEX style file v2.2) The Morphology of Collisionless Galactic Rings Exterior to Evolving Bars Micaela Bagley, Ivan Minchev, &

More information

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München

Structure formation. Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München Structure formation Yvonne Y. Y. Wong Max-Planck-Institut für Physik, München Structure formation... Random density fluctuations, grow via gravitational instability galaxies, clusters, etc. Initial perturbations

More information

Spiral Structure in Galaxies

Spiral Structure in Galaxies Department of Physics Seminar - 4 th year Spiral Structure in Galaxies Author: Maruška Žerjal Adviser: prof. dr. Tomaž Zwitter Ljubljana, April 2010 Abstract The most numerous among bright galaxies and

More information

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies

AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies AY202a Galaxies & Dynamics Lecture 7: Jeans Law, Virial Theorem Structure of E Galaxies Jean s Law Star/Galaxy Formation is most simply defined as the process of going from hydrostatic equilibrium to gravitational

More information

Star Formation and Protostars

Star Formation and Protostars Stellar Objects: Star Formation and Protostars 1 Star Formation and Protostars 1 Preliminaries Objects on the way to become stars, but extract energy primarily from gravitational contraction are called

More information

arxiv: v3 [gr-qc] 30 Mar 2009

arxiv: v3 [gr-qc] 30 Mar 2009 THE JEANS MECHANISM AND BULK-VISCOSITY EFFECTS Nakia Carlevaro a, b and Giovanni Montani b, c, d, e a Department of Physics, Polo Scientifico Università degli Studi di Firenze, INFN Section of Florence,

More information

A numerical study of spiral galaxies and dynamical effects of spiral arms

A numerical study of spiral galaxies and dynamical effects of spiral arms A numerical study of spiral galaxies and dynamical effects of spiral arms Robert John James Grand Thesis submitted for the degree of Doctorate of Philosophy (PhD) of University College London Mullard Space

More information

Equations of linear stellar oscillations

Equations of linear stellar oscillations Chapter 4 Equations of linear stellar oscillations In the present chapter the equations governing small oscillations around a spherical equilibrium state are derived. The general equations were presented

More information

arxiv:astro-ph/ v1 12 Mar 1996

arxiv:astro-ph/ v1 12 Mar 1996 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 11.05.2; 11.07.1; 11.09.4; 11.11.1; 11.19.2; 11.19.6 ASTRONOMY AND ASTROPHYSICS 1.2.2008 M=1 and 2 Gravitational Instabilities

More information

Direct comparisons between VERA, VLBA and EVN astrometry results and an analytic gas dynamics model

Direct comparisons between VERA, VLBA and EVN astrometry results and an analytic gas dynamics model Direct comparisons between VERA, VLBA and EVN astrometry results and an analytic gas dynamics model 1 1 Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 E-mail:

More information

The Physics of Fluids and Plasmas

The Physics of Fluids and Plasmas The Physics of Fluids and Plasmas An Introduction for Astrophysicists ARNAB RAI CHOUDHURI CAMBRIDGE UNIVERSITY PRESS Preface Acknowledgements xiii xvii Introduction 1 1. 3 1.1 Fluids and plasmas in the

More information

Inhomogeneous Universe: Linear Perturbation Theory

Inhomogeneous Universe: Linear Perturbation Theory Inhomogeneous Universe: Linear Perturbation Theory We have so far discussed the evolution of a homogeneous universe. The universe we see toy is, however, highly inhomogeneous. We see structures on a wide

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Spiral Structure Formed in a Pair of Interacting Galaxies

Spiral Structure Formed in a Pair of Interacting Galaxies J. Astrophys. Astr. (1993) 14, 19 35 Spiral Structure Formed in a Pair of Interacting Galaxies Ch. L. Vozikis & Ν. D.Caranicolas Department of Physics, Section of Astrophysics, Astronomy and Mechanics,

More information

Poisson Equation. The potential-energy tensor. Potential energy: work done against gravitational forces to assemble a distribution of mass ρ(x)

Poisson Equation. The potential-energy tensor. Potential energy: work done against gravitational forces to assemble a distribution of mass ρ(x) Poisson Equation 1 2 Potential energy: work done against gravitational forces to assemble a distribution of mass ρ(x) The potential-energy tensor Assuming a distribution of mass is already in place, and

More information

arxiv: v1 [astro-ph.ga] 31 Oct 2018

arxiv: v1 [astro-ph.ga] 31 Oct 2018 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 2 November 2018 (MN LATEX style file v2.2) Dark Matter Bars in Spinning Halos Angela Collier 1, Isaac Shlosman 1,2, Clayton Heller 3 1 Department of

More information

Astrophysical Gas Disks - Formation, Characteristics, and Nonlinearity

Astrophysical Gas Disks - Formation, Characteristics, and Nonlinearity Astrophysical Gas Disks - Formation, Characteristics, and Nonlinearity Introduction Giant gas clouds that formed after the Big Bang are the building blocks of the universe. The only way to understand the

More information

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities:

CHAPTER 19. Fluid Instabilities. In this Chapter we discuss the following instabilities: CHAPTER 19 Fluid Instabilities In this Chapter we discuss the following instabilities: convective instability (Schwarzschild criterion) interface instabilities (Rayleight Taylor & Kelvin-Helmholtz) gravitational

More information

N-body model for M51 ± II. Inner structure

N-body model for M51 ± II. Inner structure Mon. Not. R. Astron. Soc. 319, 393±413 (2000) N-body model for M51 ± II. Inner structure Heikki Salo w and Eija Laurikainen Division of Astronomy, Department of Physical Sciences, University of Oulu, PO

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information

arxiv: v1 [astro-ph.ga] 27 Nov 2015

arxiv: v1 [astro-ph.ga] 27 Nov 2015 MNRAS, 1 1 (9) Preprint 1 December 15 Compiled using MNRAS LATEX style file v3. Spiral eigenmodes triggered by grooves in the phase space of disc galaxies S. De Rijcke 1, I. Voulis 1 1 Ghent University,

More information

Linear stability of MHD configurations

Linear stability of MHD configurations Linear stability of MHD configurations Rony Keppens Centre for mathematical Plasma Astrophysics KU Leuven Rony Keppens (KU Leuven) Linear MHD stability CHARM@ROB 2017 1 / 18 Ideal MHD configurations Interested

More information

Global magnetorotational instability with inflow The non-linear regime

Global magnetorotational instability with inflow The non-linear regime Global magnetorotational instability with inflow The non-linear regime Evy Kersalé PPARC Postdoctoral Research Associate Dept. of Appl. Math. University of Leeds Collaboration: D. Hughes & S. Tobias (Dept.

More information

ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations

ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations ASTR 610 Theory of Galaxy Formation Lecture 4: Newtonian Perturbation Theory I. Linearized Fluid Equations Frank van den Bosch Yale University, spring 2017 Structure Formation: The Linear Regime Thus far

More information

Spiral Structure Based Limits on the Disk Mass of the Low Surface Brightness Galaxies UGC 6614 and F568-6

Spiral Structure Based Limits on the Disk Mass of the Low Surface Brightness Galaxies UGC 6614 and F568-6 Spiral Structure Based Limits on the Disk Mass of the Low Surface Brightness Galaxies UGC 66 and F568-6 A. C. Quillen, &T.E.Pickering, ABSTRACT The spiral structure of the low surface brightness galaxies

More information

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability

Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability Transition From Single Fluid To Pure Electron MHD Regime Of Tearing Instability V.V.Mirnov, C.C.Hegna, S.C.Prager APS DPP Meeting, October 27-31, 2003, Albuquerque NM Abstract In the most general case,

More information

The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance

The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance The Local Spiral Arm of the Galaxy explained by trapping of stars in the corotation resonance Jacques R.D. Lépine,Tatiana A. Michtchenko,Douglas A. Barros, Ronaldo S.S. Vieira University of São Paulo Lund

More information

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems

APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems APPLIED PARTIM DIFFERENTIAL EQUATIONS with Fourier Series and Boundary Value Problems Fourth Edition Richard Haberman Department of Mathematics Southern Methodist University PEARSON Prentice Hall PEARSON

More information

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3

Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 Convection When the radial flux of energy is carried by radiation, we derived an expression for the temperature gradient: dt dr = - 3 4ac kr L T 3 4pr 2 Large luminosity and / or a large opacity k implies

More information

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8

Sound. References: L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol. 2, Gas Dynamics, Chapter 8 References: Sound L.D. Landau & E.M. Lifshitz: Fluid Mechanics, Chapter VIII F. Shu: The Physics of Astrophysics, Vol., Gas Dynamics, Chapter 8 1 Speed of sound The phenomenon of sound waves is one that

More information

Exponential Profile Formation in Simple Models of Scattering Processes

Exponential Profile Formation in Simple Models of Scattering Processes Exponential Profile Formation in Simple Models of Scattering Processes Curtis Struck Iowa State Univ. Work in collab. with B. G. Elmegreen, D. Hunter, H. Salo Lowell Workshop, Oct. 2014 Exponential profiles

More information

The motions of stars in the Galaxy

The motions of stars in the Galaxy The motions of stars in the Galaxy The stars in the Galaxy define various components, that do not only differ in their spatial distribution but also in their kinematics. The dominant motion of stars (and

More information

The Distribution Function

The Distribution Function The Distribution Function As we have seen before the distribution function (or phase-space density) f( x, v, t) d 3 x d 3 v gives a full description of the state of any collisionless system. Here f( x,

More information

How do Black Holes Get Their Gas?

How do Black Holes Get Their Gas? How do Black Holes Get Their Gas? Philip Hopkins Eliot Quataert, Lars Hernquist, T. J. Cox, Kevin Bundy, Jackson DeBuhr, Volker Springel, Dusan Keres, Gordon Richards, Josh Younger, Desika Narayanan, Paul

More information

3 Hydrostatic Equilibrium

3 Hydrostatic Equilibrium 3 Hydrostatic Equilibrium Reading: Shu, ch 5, ch 8 31 Timescales and Quasi-Hydrostatic Equilibrium Consider a gas obeying the Euler equations: Dρ Dt = ρ u, D u Dt = g 1 ρ P, Dɛ Dt = P ρ u + Γ Λ ρ Suppose

More information

arxiv:astro-ph/ v1 16 Apr 1999

arxiv:astro-ph/ v1 16 Apr 1999 Scaling Laws in Self-Gravitating Disks Daniel Huber & Daniel Pfenniger Geneva Observatory, Ch. des Maillettes 51, CH-129 Sauverny, Switzerland Received / Accepted arxiv:astro-ph/99429v1 16 Apr 1999 Abstract.

More information

arxiv:astro-ph/ v1 27 Apr 2000

arxiv:astro-ph/ v1 27 Apr 2000 Global Spiral Modes in NGC 1566: Observations and Theory V. Korchagin 1 Institute of Physics, Stachki 194, Rostov-on-Don, Russia Email: vik@rsuss1.rnd.runnet.ru arxiv:astro-ph/0004369v1 27 Apr 2000 N.

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS

PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS MATHEMATICAL TRIPOS Part III Monday, 9 June, 2014 1:30 pm to 3:30 pm PAPER 57 DYNAMICS OF ASTROPHYSICAL DISCS Attempt no more than TWO questions. There are THREE questions in total. The questions carry

More information

Vortices in planetary migration

Vortices in planetary migration Vortices in planetary migration Min-Kai Lin John Papaloizou DAMTP University of Cambridge October 20, 2009 Outline Introduction: planet migration types Numerical methods, first results and motivation Type

More information

Small Scale Structure in the Galaxy. Alice Quillen (University of Rochester)

Small Scale Structure in the Galaxy. Alice Quillen (University of Rochester) Small Scale Structure in the Galaxy Alice Quillen (University of Rochester) Morphology of the Milky Way Distances uncertain. Projection is difficult. Cartoons favor 2 or 4 armed symmetrical structures

More information

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk

distribution of mass! The rotation curve of the Galaxy ! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk Today in Astronomy 142:! The local standard of rest the Milky Way, continued! Rotation curves and the! Stellar relaxation time! Virial theorem! Differential rotation of the stars in the disk distribution

More information

NMR, the vector model and the relaxation

NMR, the vector model and the relaxation NMR, the vector model and the relaxation Reading/Books: One and two dimensional NMR spectroscopy, VCH, Friebolin Spin Dynamics, Basics of NMR, Wiley, Levitt Molecular Quantum Mechanics, Oxford Univ. Press,

More information

Radial Orbit Instability

Radial Orbit Instability Radial Orbit Instability Analysis of geometry in unperturbed and perturbed systems Bachelor thesis at the Faculty of Physics Ludwig-Maximilians-University Munich Submitted by Ludwig Maximilian Böss Supervised

More information

PAPER 331 HYDRODYNAMIC STABILITY

PAPER 331 HYDRODYNAMIC STABILITY MATHEMATICAL TRIPOS Part III Thursday, 6 May, 016 1:30 pm to 4:30 pm PAPER 331 HYDRODYNAMIC STABILITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

Spiral and Bar Pattern Time-Dependence in Galaxies

Spiral and Bar Pattern Time-Dependence in Galaxies Spiral and Bar Pattern Time-Dependence in Galaxies M95 Daniel Pfenniger Geneva Observatory, University of Geneva, Switzerland Collaborators: Kanak Saha (Pune), Yu-Ting Wu & Ron Taam (Taipei) NASA/JPL-Caltech/ESO/R.

More information

A Guide to the Next Few Lectures!

A Guide to the Next Few Lectures! Dynamics and how to use the orbits of stars to do interesting things chapter 3 of S+G- parts of Ch 11 of MWB (Mo, van den Bosch, White) READ S&G Ch 3 sec 3.1, 3.2, 3.4 we are skipping over epicycles 1

More information

Today in Astronomy 111: rings, gaps and orbits

Today in Astronomy 111: rings, gaps and orbits Today in Astronomy 111: rings, gaps and orbits Gap sizes: the Hill radius Perturbations and resonances The variety of structures in planetary rings Spiral density waves Titan Bending waves Horseshoe and

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Kinematics of the Solar Neighborhood

Kinematics of the Solar Neighborhood Chapter 15 Kinematics of the Solar Neighborhood Unlike an elliptical galaxy, the Milky Way rotates with a speed much larger than the random velocities of typical stars. Our position inside the disk of

More information

3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes. Kambiz Fathi. Stockholm University, Sweden

3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes. Kambiz Fathi. Stockholm University, Sweden 3D Spectroscopy to Dissect Galaxies Down to Their Central Supermassive Black Holes Kambiz Fathi Stockholm University, Sweden Towards a better understanding of the Hubble Diagram Towards a better understanding

More information

Finite-Orbit-Width Effect and the Radial Electric Field in Neoclassical Transport Phenomena

Finite-Orbit-Width Effect and the Radial Electric Field in Neoclassical Transport Phenomena 1 TH/P2-18 Finite-Orbit-Width Effect and the Radial Electric Field in Neoclassical Transport Phenomena S. Satake 1), M. Okamoto 1), N. Nakajima 1), H. Sugama 1), M. Yokoyama 1), and C. D. Beidler 2) 1)

More information

Kinetic Theory. Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system

Kinetic Theory. Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system Kinetic Theory Motivation - Relaxation Processes Violent Relaxation Thermodynamics of self-gravitating system negative heat capacity the gravothermal catastrophe The Fokker-Planck approximation Master

More information

ORIGIN OF THE SPIRAL-ARM INSTABILITY

ORIGIN OF THE SPIRAL-ARM INSTABILITY THE POSSIBLE ORIGIN OF THE SPIRAL-ARM INSTABILITY J. G. HILLS Department of Astronomy, The University of Michigan, Ann Arbor, Michigan, U.S.A. (Received 26 February, 1976) Abstract. Physical argumenls

More information

Planet disk interaction

Planet disk interaction Planet disk interaction Wilhelm Kley Institut für Astronomie & Astrophysik & Kepler Center for Astro and Particle Physics Tübingen March 2015 4. Planet-Disk: Organisation Lecture overview: 4.1 Introduction

More information

KINEMATIC SIGNATURE OF A ROTATING BAR NEAR A RESONANCE

KINEMATIC SIGNATURE OF A ROTATING BAR NEAR A RESONANCE University of Massachusetts Amherst ScholarWorks@UMass Amherst Astronomy Department Faculty Publication Series Astronomy 1994 KINEMATIC SIGNATURE OF A ROTATING BAR NEAR A RESONANCE MD Weinberg weinberg@astro.umass.edu

More information

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson

2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2/8/16 Dispersive Media, Lecture 5 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasma physics Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas Transverse waves

More information

arxiv:astro-ph/ v1 5 Dec 2003

arxiv:astro-ph/ v1 5 Dec 2003 Dark Matter in Galaxies IAU Symposium, Vol. 220, 2003 S. Ryder, D.J. Pisano, M. Walker, and K.C. Freeman, eds. Bars and the connection between dark and visible matter E. Athanassoula Observatoire, 2 place

More information

M31: black hole & dynamics of nucleus

M31: black hole & dynamics of nucleus M31: black hole & dynamics of nucleus John Magorrian The Great Andromeda Galaxy Princeton, 19 June 2012 1. The black hole at the centre of M31 (just P3) Photometry of P3 (Bender et al 2005) Distinct component

More information

arxiv: v1 [astro-ph.ga] 20 Apr 2015

arxiv: v1 [astro-ph.ga] 20 Apr 2015 Mon. Not. R. Astron. Soc. 000, 1 16 (0000) Printed 21 April 2015 (MN LATEX style file v2.2) Lindblad Zones: resonant eccentric orbits to aid bar and spiral formation in galaxy discs arxiv:1504.05161v1

More information

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson

Dispersive Media, Lecture 7 - Thomas Johnson 1. Waves in plasmas. T. Johnson 2017-02-14 Dispersive Media, Lecture 7 - Thomas Johnson 1 Waves in plasmas T. Johnson Introduction to plasmas as a coupled system Magneto-Hydro Dynamics, MHD Plasmas without magnetic fields Cold plasmas

More information

13.1 Ion Acoustic Soliton and Shock Wave

13.1 Ion Acoustic Soliton and Shock Wave 13 Nonlinear Waves In linear theory, the wave amplitude is assumed to be sufficiently small to ignore contributions of terms of second order and higher (ie, nonlinear terms) in wave amplitude In such a

More information

Universal Relations for the Moment of Inertia in Relativistic Stars

Universal Relations for the Moment of Inertia in Relativistic Stars Universal Relations for the Moment of Inertia in Relativistic Stars Cosima Breu Goethe Universität Frankfurt am Main Astro Coffee Motivation Crab-nebula (de.wikipedia.org/wiki/krebsnebel) neutron stars

More information

HW#6 is due; please pass it in. HW#7 is posted; it requires you to write out answers clearly and completely explaining your logic.

HW#6 is due; please pass it in. HW#7 is posted; it requires you to write out answers clearly and completely explaining your logic. Oct 21, 2015 Basic properties of groups and clusters of galaxies Number density, structure X-ray emission from hot ICM Estimating cluster masses Cluster scaling relations Impact of environment on galaxies

More information

Alessandro Romeo

Alessandro Romeo A simple and accurate approximation for the Q stability parameter and characteristic instability wavelength in multi-component and realistically thick discs Alessandro Romeo romeo@chalmers.se Toomre s

More information

Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and

Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and Galaxies The Hubble Sequence Different Types of Galaxies 4 broad Morphological Types created by Edwin Hubble Galaxies come is a variety of shapes and sizes Edwin Hubble classified the galaxies into four

More information

The Evolution of Large-Amplitude Internal Gravity Wavepackets

The Evolution of Large-Amplitude Internal Gravity Wavepackets The Evolution of Large-Amplitude Internal Gravity Wavepackets Sutherland, Bruce R. and Brown, Geoffrey L. University of Alberta Environmental and Industrial Fluid Dynamics Laboratory Edmonton, Alberta,

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Astronomy 330 Lecture Oct 2010

Astronomy 330 Lecture Oct 2010 Astronomy 330 Lecture 10 06 Oct 2010 Outline Review Galactic dynamics Potentials Energetics Rotation curves Disk-halo degeneracy Characteristics of dynamical systems Dynamics of collisionless systems But

More information

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES: (references therein)

PLASMA ASTROPHYSICS. ElisaBete M. de Gouveia Dal Pino IAG-USP. NOTES:  (references therein) PLASMA ASTROPHYSICS ElisaBete M. de Gouveia Dal Pino IAG-USP NOTES:http://www.astro.iag.usp.br/~dalpino (references therein) ICTP-SAIFR, October 7-18, 2013 Contents What is plasma? Why plasmas in astrophysics?

More information