Sparse Matrix Methods for Large-Scale. Closed-Loop Adaptive Optics

Size: px
Start display at page:

Download "Sparse Matrix Methods for Large-Scale. Closed-Loop Adaptive Optics"

Transcription

1 Sparse Matrix Methods for Large-Scale Closed-Loop Adaptive Optics Luc Gilles Michigan Technological University, ECE Department January 23, 24 L.Gilles, IPAM Workshop, UCLA p.1/37

2 Large-Scale Adaptive Optics Extreme Adaptive Optics (ExAO), e.g. coronographs, XAOPI (4K actuators),... Multi-Conjugate Adaptive Optics (MCAO), e.g. 32m TMT (CfAO, NOAO), 5m Euro5 (consortium), 1m OWL (ESO),... L.Gilles, IPAM Workshop, UCLA p.2/37

3 Basic Model Assumptions Geometrical optics propagation through atmos-ao Taylor Frozen flow hypothesis WFS measurements s(n) are linear in the input turbulent OPD profiles x(n) and DM OPD profiles ˆ a(n) DM residual profile ˆ e a (n) is linear in measurements s(n) Standard type-1 discrete integrator with 2-cycle lag Note: - Work on wave optics propagation in progress... - Formalism valid for both ExAO and MCAO - MCAO: block structured matrices, concatanated vecs L.Gilles, IPAM Workshop, UCLA p.3/37

4 Generic System Layout NGS (one or several) Science field - one or several - multiple λ s LGS - one or several - 3-dimensional Geometric or Fresnel propagation through atmosphere Turbulence - multi layer -frozen flow Temporal Filter M2 tip/tilt LGS tip/tilt mirror(s) Temporal Filter LGS pointing commands Reconstructor Temporal Filters Non-common path error Fast tip/tilt mirror Tip/tilt offload Deformable mirror(s) - Zonal actuators (square pattern) - 5 degrees of misregistration Common path error(s) LGS WFS NGS WFS Geometric or Fresnel propagation through optics - Shack-Hartmann - Square subap. geometry - N by N pixels, centroid algorithm - Photon statistics - Read noise - Pupil and relay distortion - Pixel blurring Non-common path errors Performance Evaluation Strehl ratio histories Mean PSF s L.Gilles, IPAM Workshop, UCLA p.4/37

5 Discrete-Space-Time Servo-Loop Standard Control Algorithm: n = ; ˆ a() = ; begin cycles [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; s(n) = s o (n) G aˆ a(n); ˆ e a (n) = R s(n); ˆ a(n + 1) = α ˆ a(n) + β ˆ a(n 1) + γ ˆ e a (n) + δ ˆ e a (n 1); n = n + 1; end cycles s o (n) : open-loop measurements G a : interaction (poke, registration) matrix R : DM residual reconstruction matrix L.Gilles, IPAM Workshop, UCLA p.5/37

6 Simulation-Sensor-Reconstruction Grids - Turbulence profile, x(n) Simulation Grids - Aperture-plane simulation OPD s for performance evaluation : ǫ(n) = Hx SCFoV,sim x(n) Ha SCFoV,sim ˆ a(n) Note: typically 8 finer resolution than sensor grids Sensor Grids - for MCAO, s(n) resolution typically D/16, D/32, or D/64 - for ExAO, s(n) resolution up to D/128 or D/256 L.Gilles, IPAM Workshop, UCLA p.6/37

7 SSR Grids (cont.) Reconstruction Grids - DM grids. Sampling typically matches sensor sampling. - for FE-type reconstructors, i.e. when R = F E: (1) reconstructed turbulence profile ˆ x(n) = E s(n) (2) reconstructed aperture-plane OPD H SCFoV x ˆ x(n) 2 finer resolution than DM grids L.Gilles, IPAM Workshop, UCLA p.7/37

8 Aperture-plane transfer matrices Based on bilinear influence functions: [ ] H SCFoV {iobs, ips} dr dr = h (l) ( r (k) ) k l [ = h ( r (k) r ] (l) (z))/dr where r (l) (z) = r (l) + z θ{iobs} is the coordinate of grid point l in the transverse plane at range z and r (l) is the corresponding aperture-plane coordinate. Bilinear splines: (1 x )(1 y ) if x < 1 and y < 1 h( r) = else L.Gilles, IPAM Workshop, UCLA p.8/37

9 Aperture-plane transfer matrices (cont.) Notation: H SCFoV,sim x maps simulated profile x(n) to aperture-plane simulation grid (perf eval) H SCFoV,sim a maps DM OPD ˆ a(n) to aperture-plane simulation grid (perf eval) For FE-type reconstructors: - Hx SCFoV maps ˆ x(n) = E s(n) to aperture-plane reconstruction grid - Ha SCFoV maps Hx SCFoV ˆ x(n) to DM grids L.Gilles, IPAM Workshop, UCLA p.9/37

10 Control Algorithm: Performance Eval n = ; ˆ a() = ; begin cycles = [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; s(n) = s o (n) G aˆ a(n); ˆ e a (n) = R s(n); ˆ a(n + 1) = α ˆ a(n) + β ˆ a(n 1) + γ ˆ e a (n) + δ ˆ e a (n 1); n = n + 1; end cycles L.Gilles, IPAM Workshop, UCLA p.1/37

11 Performance Evaluation ǫ(n) = H SCFoV,sim x x(n) H SCFoV,sim a ˆ a(n) σol 2 SCFoV,sim (n) = Hx x(n) 2, σ 2 W sim cl (n) = ǫ(n) 2 W sim PSF(n) = F{e i ǫ(n) W A } 2, OTF(n) = F{PSF(n)} SR(n),FWHM(n),... W is the FoV averaging matrix (SPSD). Based on bilinear splines, it provides accurate modeling of aperture-plane OPD and edge effects. Includes piston removal. W = W v v T if zero SCFoV W = Diag ( ω (1) W,,ω (Nobs) W ) else L.Gilles, IPAM Workshop, UCLA p.11/37

12 Control Algorithm: Sensor Measurements n = ; ˆ a() = ; begin cycles [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; = s(n) = s o (n) G aˆ a(n); ˆ e a (n) = R s(n); ˆ a(n + 1) = α ˆ a(n) + β ˆ a(n 1) + γ ˆ e a (n) + δ ˆ e a (n 1); n = n + 1; end cycles L.Gilles, IPAM Workshop, UCLA p.12/37

13 Sensor Measurements s(n) = s o (n) G aˆ a(n) s o (n) = G sim x x(n) + η(n) s{iwfs}(n) = ips G sim x {iwfs, ips} x{ips}(n) + η{iwfs} idm G a {iwfs, idm} ˆ a{idm}(n) Note: G sim x = Γ sim x Hx GSFoV and G a = Γ a Ha GSFoV, where the Γ sim x and Γ a map aperture-plane OPD s to WFS measurements L.Gilles, IPAM Workshop, UCLA p.13/37

14 Turbulence-to-WFS Influence Matrix [ G sim x {iwfs, ips} ] k l = d 2 r W (k) SA {iwfs}( r) α h (l) ( r) - h (l) ( r) = h = ξ2 ξ 1 h (l) ( r(ξ)) α n(ξ)dξ [( r r (l) (z))/dr ], dr = sim grids resolution - r (l) (z) = γ{iwfs} r (l) + z (l) θ{iwfs}, γ{iwfs} = (1 z (l) /z GS {iwfs}) - α = (α x,α y ) is the measurement direction - n(ξ) = (dy(ξ)/dξ, dx(ξ)/dξ) Same eqs for G a {iwfs, idm} but with dr = DM resolutions L.Gilles, IPAM Workshop, UCLA p.14/37

15 Control Algorithm: Reconstructor n = ; ˆ a() = ; begin cycles [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; s(n) = s o (n) G aˆ a(n); = ˆ e a (n) = R s(n); ˆ a(n + 1) = α ˆ a(n) + β ˆ a(n 1) + γ ˆ e a (n) + δ ˆ e a (n 1); n = n + 1; end cycles L.Gilles, IPAM Workshop, UCLA p.15/37

16 Filtered Least-Squares Reconstructor ˆ e a (n) = R s(n) = arg min e a (n) { s(n) G a e a (n) 2 Cη 1 ) 1 a G T a Cη 1 = ( G T a Cη 1 G a + P GSFoV + e a (n) 2 P GSFoV a s(n) Pa GSFoV = V a Va T, where V a = [ v a (1),, v a (p) ]. Range(V a ) spans constrained modes, e.g. waffle for SCAO, cancelling tip/tilt for MCAO NGS, cancelling tip/tilt, astigmatism and defocus for MCAO LGS, i.e. Ha GSFoV {iobs, idm} v a {idm} = Z 1 {iobs} or f{iobs} Null(Γ a ) idm Note: e a (n) 2 P GSFoV a = V a e a (n) 2 } L.Gilles, IPAM Workshop, UCLA p.16/37

17 Minimum Variance Reconstructor Open-loop reconstructor: - Estimation step: ˆ e x (n) = E s(n) = arg min e x (n) = ( G T x C 1 η G x + C 1 x { s(n) G x e x (n) 2 C 1 η + e x (n) 2 C 1 x ) 1 + Px GSFoV G T x Cη 1 s(n) + e x (n) 2 P GSFoV x } - Fitting step: ˆ e a (n) = F ˆ e x (n) = arg min = ( H SCFoV a e a (n) { T WH SCFoV a H SCFoV x + P SCFoV a ˆ e x (n) H SCFoV a ) 1 H SCFoVT a WH SCFoV x e a (n) 2 W + e a (n) 2 P SCFoV ˆ e x (n) a } L.Gilles, IPAM Workshop, UCLA p.17/37

18 Minimum Variance Reconstructor (cont.) E-step GSFoV-projector: P GSFoV x ips = V x V T x, V x = [ v (1) x,, v (q) x ] H GSFoV x {iwfs, ips} v x {ips} = Z 1 {iwfs} or f{iwfs} Null(Γ x ) F-step SCFoV-projector: P SCFoV a idm = V a V T a, V a = [ v (1) a,, v (r) a ] H SCFoV a {iobs, idm} v a {idm} = Z 1 {iobs} or f{iobs} Null(Γ a ) - MVR s P SCFoV a is identical to LSR s P SCFoV a - q >> r, i.e. dim Null(Γ x ) >> dim Null(Γ a ) if H SCFoV a = H GSFoV a - In practive, projectors Pa SCFoV, Px GSFoV not known exactly L.Gilles, IPAM Workshop, UCLA p.18/37

19 Approximate Closed-Loop Reconstructor - Estimation step: ˆ e x (n) = E s(n) = arg min e x (n) = ( G T x C 1 η G x + C 1 { s(n) G x e x (n) 2 C 1 η x d + Px GSFoV ) 1 G T x C 1 η + e x (n) 2 C 1 x d + e x (n) 2 P GSFoV x s(n) where x d (n) = x(n) x(n n τ ) models an n τ -cycle lag, and C xd = F 1 diag( (2π n τ v κ) 2 κ 11/3 )F If wind speed direction v is uniformly distributed in [,2π], (2π n τ v κ) 2 = (1/2)(2πn τ v ) 2 κ 2 } - Fitting step as for MVR L.Gilles, IPAM Workshop, UCLA p.19/37

20 Control Algorithm: Loop Filtering n = ; ˆ a() = ; begin cycles [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; s(n) = s o (n) G aˆ a(n); ˆ e a (n) = R s(n); = ˆ a(n + 1) = α ˆ a(n) + β ˆ a(n 1) + γ ˆ e a (n) + δ ˆ e a (n 1); n = n + 1; end cycles Loop filtering can be rewritten ˆ a(n + 1) = g(n) ˆ e a (n) with g(z) = (γz + δ)/(z 2 αz β). Integrator: α + β = 1 For FE-recons, filtering can be applied on ˆ e x or ˆ e a since gain coeffs are scalar multiples of the identity matrix L.Gilles, IPAM Workshop, UCLA p.2/37

21 Pseudo Open-Loop Reconstructor Inspired by open-loop MVR with loop filtering applied on ˆ e x : s o (n) = s(n) + G aˆ a(n) ˆ e x (n) = arg min e x (n) { s o (n) G x (ˆ x(n) + e x (n)) 2 Cη 1 } + ˆ x(n) + e x (n) 2 P GSFoV x = A 1 G T x C 1 η where ( s(n) + s (n)) A 1 (C 1 x + ˆ x(n) + e x (n) 2 C 1 x + Px GSFoV ) ˆ x(n) s (n) = (G a F G x ) ˆ x(n), A = G T x C 1 η G x + C 1 x + P GSFoV x Note: A 1 G T x C 1 η = E = MVR E-matrix L.Gilles, IPAM Workshop, UCLA p.21/37

22 POLR (cont.) Control Algorithm: Version 1 n = ; ˆ a() = ; ˆ x() = ; begin cycles [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; s(n) = s o (n) G aˆ a(n); s (n) = (G a F G x )ˆ x(n); ˆ e x (n) = E ( s(n) + s (n)) A 1 (Cx 1 + Px GSFoV )ˆ x(n); ˆ x(n + 1) = α ˆ x(n) + β ˆ x(n 1) + γ ˆ e x (n) + δ ˆ e x (n 1); ˆ a(n + 1) = F ˆ x(n + 1); n = n + 1; end cycles L.Gilles, IPAM Workshop, UCLA p.22/37

23 POLR (cont.) Control Algorithm: Version 2 n = ; ˆ a() = ; ˆ x() = ; begin cycles [PSF(n), OTF(n),σ 2 (n)] = perfevl[ x(n), ˆ a(n)]; s(n) = s o (n) G aˆ a(n); ˆ e x (n) = E s(n); ˆ x(n + 1) = [αi + γm] ˆ x(n) + [αi + δm] ˆ x(n 1) + γˆ e x (n) + δˆ e x (n 1); where M = E(G a F G x ) A 1 (Cx 1 ˆ a(n + 1) = F ˆ x(n + 1); n = n + 1; end cycles + P GSFoV x ) L.Gilles, IPAM Workshop, UCLA p.23/37

24 POLR (cont.) POLR is not a conventional matrix multiply reconstructor: requires real-time knowledge of ˆ x(n) POLR requires knowledge of interation matrix G a E = ( G T x Cη 1 G x + Cx 1 open-loop MVR E-matrix + P GSFoV x ) 1 G T x C 1 η = A 1 G T x C 1 η = Computational complexity identical to MVR G a F G x = Γ a H GSFoV a Ha SCFoV Hx SCFoV Γ x H GSFoV x L.Gilles, IPAM Workshop, UCLA p.24/37

25 Transfer Matrix and Loop Stability LSR: ˆ a o (z) = R s o (z) ˆ a(z) = T a (z) ˆ a o (z) T a (z) = g(z)(i + g(z)rg a ) 1 g(z) = (γz + δ)/(z 2 αz β) RG a = I P GSFoV a = I V a V T a - Given RG a = Udiag(λ i )U 1, T a (z) = Udiag[g(z)/(1 + g(z)λ i )]U 1 U 1ˆ a(z) = diag[g(z)/(1 + g(z)λi )]U 1 ˆ a o (z) - Representative filter: γ =,δ = β = α = 1/2, yielding g(z) = 1/[2(z 1)(z + 1/2)] L.Gilles, IPAM Workshop, UCLA p.25/37

26 Loop Stability (cont.) - Poles {z 1 + g(z )λ i = } are z = (1 ± 9 8λ i )/4 - System is stable if and only if all poles are located inside unit circle, i.e. z 1 - LSR is stable since λ i =,1 and thus z = 1, ±1/2 MVR - ACLR: - E-step: ˆ x o (z) = E s o (z) ˆ x(z) = T x (z) ˆ x o (z) T x (z) = g(z)(i + g(z)eg a F) 1 L.Gilles, IPAM Workshop, UCLA p.26/37

27 Loop Stability (cont.) - F-step: ˆ a(z) = F ˆ x(z) = F T x (z) ˆ x o (z) F T x (z) = g(z)f (I + g(z)eg a F) 1 = g(z)(i + g(z)rg a ) 1 F = ˆ a(z) = T a (z) ˆ a o (z) (as for LSR) T a (z) = g(z)(i + g(z)feg a ) 1, ˆ a o (z) = F ˆ x o (z) - Since FEG a has complex eigenvalues λ i that in general won t satisfy the stability criterion (1 ± 9 8λ i )/4 < 1, MVR-ACLR will be unstable. Stability recovered for SCAO by slaving edge actuators and keeping only subaps at least 5% illuminated. Demonstrated in simulations and on the PALAO. L.Gilles, IPAM Workshop, UCLA p.27/37

28 Loop Stability (cont.) POLR: M = EG a F EG x A 1 (C 1 x T x (z) = g(z)[i + g(z)(eg a F M)] 1 ˆ a(z) = F ˆ x(z) = F T x (z) ˆ x o (z) + P GSFoV x ) - M = yields MVR. Given EG a F M = Udiag(λ i )U 1, T x (z) = Udiag[g(z)/(1 + g(z)λ i )]U 1 - POLR doesn t have simple T a (z) s.t. F T x (z) = T a (z)f - Simulations demonstrate that POLR is efficient but becomes unstable with little uncertainty in G a - Real-time implementation worth considering L.Gilles, IPAM Workshop, UCLA p.28/37

29 Sparse MVR solver Sparse layer-oriented multigrid-preconditioned conjugate gradient (MGCG) solver for MVR s E- and F-steps: Layer-by-layer OPD estimation 1 BSGS smoothing iteration for layer decoupling LGS tip/tilt uncertainty leads to spatially colored measurement noise handled by rank-1 projector LGS focus uncertainty can be handled similarly with an additional rank-1 projector E- and F-systems solved using sparse plus low-rank inversion lemma (Sherman-Morrison) L.Gilles, IPAM Workshop, UCLA p.29/37

30 Sample 32m problem description - Cerro Pachon 6 layer median turbulence profile ranging from m to 15,46m scaled to yield r = θ = m phase screens. Reconstructed PS1-PS4 oversample 2 subaps; recons PS5-PS6 match subaps resolution. 7,942 grid points reconstructed - 5 LGS s at the four edges and center of a 1 GSFoV; subapertures each; 33, 32 measurements - 4 NGS s at mid distance between the four LGS s delimiting the GSFoV (8 tip/tilt measurements) SCFoV; Simpson weights - 3 DM s. DM s 1-2 in Fried config, DM3 (1,39m) undersamples 2 subaps. Total of 8, 449 actu L.Gilles, IPAM Workshop, UCLA p.3/37

31 32m open-loop convergence results 1 Estimation Step, σ=.2 arcsec 1 Fitting Step Relative Residual Norm no precon BSGS precon MG precon PCG Iteration Relative Residual Norm no precon BSGS precon MG precon PCG Iteration 1 Estimation Step, σ=.2 arcsec no precon 1 Fitting Step Relative Residual Norm BSGS precon MG precon Relative Residual Norm no precon BSGS precon MG precon PCG Iteration PCG Iteration L.Gilles, IPAM Workshop, UCLA p.31/37

32 8m closed-loop simulation results Same geometry and fields as for 32m but with LGS WFS subaps. 7,826 reconstructed phase screen grid points; 629 actu and 2,248 measurements. 1 7 MVR input 1 6 OPD Variance (nm 2 ) 1 5 POLR with.5% rms error in GA LSR POLR with 1% rms error in phase estimate POLR Simulation Cycle L.Gilles, IPAM Workshop, UCLA p.32/37

33 8m closed-loop poles 1 16 eig( A est ) 1 eig( A fit ) eig( F x E x G a ) 1 Poles L.Gilles, IPAM Workshop, UCLA p.33/37

34 Real part of sample offending modes λ = λ = λ = λ = λ = λ = λ = i x 1 3 λ = i λ = i L.Gilles, IPAM Workshop, UCLA p.34/37

35 Imag part of sample offending modes λ =.2152 λ =.2152 λ = λ = λ = λ = λ = i λ = i λ = i L.Gilles, IPAM Workshop, UCLA p.35/37

36 Constrained MVR Minimizes < σ 2 (n) >=< ǫ(n) 2 W constraints: > subject to 2 linear RG a = P a where P 2 a = P a and P T a = MP a M 1 with M = Ha SCFoVT WHa SCFoV (I P a )R = = R = R 1 + R 2 with R 1 = FE f ( ) 1 E f = G T x Cη 1 f G x + Cx 1 f G T x Cη 1 f η f (z) = η(z)g(z), x f (z) = xg(z) R 2 = (I R 1 G a )G a ( ) 1 G a = G T a Cs 1 f G a G T a Cs 1 f C sf = G x C xf G T x + C ηf L.Gilles, IPAM Workshop, UCLA p.36/37

37 Constrained MVR (cont.) Obviously stable since λ i =,1 Is there a sparse efficient way to compute it? - C 1 x f F 1 diag( κ 11/3 1 + v 2 κ 2 /ν c )F - C ηf C η - G a in R 2 most troublesome Optimized range of projector P a also troublesome L.Gilles, IPAM Workshop, UCLA p.37/37

Wavefront reconstruction for adaptive optics. Marcos van Dam and Richard Clare W.M. Keck Observatory

Wavefront reconstruction for adaptive optics. Marcos van Dam and Richard Clare W.M. Keck Observatory Wavefront reconstruction for adaptive optics Marcos van Dam and Richard Clare W.M. Keck Observatory Friendly people We borrowed slides from the following people: Lisa Poyneer Luc Gilles Curt Vogel Corinne

More information

Sparse Matrix Techniques for MCAO

Sparse Matrix Techniques for MCAO Sparse Matrix Techniques for MCAO Luc Gilles lgilles@mtu.edu Michigan Technological University, ECE Department Brent Ellerbroek bellerbroek@gemini.edu Gemini Observatory Curt Vogel vogel@math.montana.edu

More information

Wavefront Reconstruction

Wavefront Reconstruction Wavefront Reconstruction Lisa A. Poyneer Lawrence Livermore ational Laboratory Center for Adaptive Optics 2008 Summer School University of California, Santa Cruz August 5, 2008 LLL-PRES-405137 This work

More information

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289 Error Budgets, and Introduction to Class Projects Lecture 6, ASTR 89 Claire Max UC Santa Cruz January 8, 016 Page 1 What is residual wavefront error? Telescope AO System Science Instrument Very distorted

More information

Lecture 13: Basic Concepts of Wavefront Reconstruction. Astro 289

Lecture 13: Basic Concepts of Wavefront Reconstruction. Astro 289 Lecture 13: Basic Concepts of Wavefront Reconstruction Astro 289 Claire Max February 25, 2016 Based on slides by Marcos van Dam and Lisa Poyneer CfAO Summer School Page 1 Outline System matrix, H: from

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

A NEW METHOD FOR ADAPTIVE OPTICS POINT SPREAD FUNCTION RECONSTRUCTION

A NEW METHOD FOR ADAPTIVE OPTICS POINT SPREAD FUNCTION RECONSTRUCTION Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13328 A NEW METHOD FOR ADAPTIVE OPTICS POINT SPREAD FUNCTION RECONSTRUCTION J. Exposito 1a, D. Gratadour 1, G. Rousset 1, Y. Clénet

More information

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica On behalf of the MAORY module Consortium Shaping E-ELT Science and Instrumentation workshop, ESO, 25

More information

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Luzma Montoya, Iciar Montilla Instituto de Astrofísica de Canarias Edinburgh, 25-26/03/2014 AO Tomography Workshop The EST

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Simulations of E-ELT telescope effects on AO system performance Miska Le Louarn* a, Pierre-Yves Madec a, Enrico Marchetti a, Henri Bonnet a, Michael Esselborn a a ESO, Karl Schwarzschild strasse 2, 85748,

More information

Introduction to Adaptive Optics. Tim Morris

Introduction to Adaptive Optics. Tim Morris Introduction to Adaptive Optics Tim Morris Contents Definitions and introduction Atmospheric turbulence Components of an AO system Wavefront Sensing Wavefront Correction Turbulence Conjugation Laser Beacons

More information

Deformable mirror fitting error by correcting the segmented wavefronts

Deformable mirror fitting error by correcting the segmented wavefronts 1st AO4ELT conference, 06008 (2010) DOI:10.1051/ao4elt/201006008 Owned by the authors, published by EDP Sciences, 2010 Deformable mirror fitting error by correcting the segmented wavefronts Natalia Yaitskova

More information

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Martin Glück, Jörg-Uwe Pott, Oliver Sawodny Reaching the Diffraction Limit of Large Telescopes using Adaptive

More information

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology

Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Control of the Keck and CELT Telescopes Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology Telescope Control Problems Light from star Primary mirror active control system

More information

Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography

Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography Fourier domain preconditioned conjugate gradient algorithm for atmospheric tomography Qiang Yang, Curtis R. Vogel, and Brent L. Ellerbroek By atmospheric tomography we mean the estimation of a layered

More information

arxiv: v1 [astro-ph.im] 12 Jul 2018

arxiv: v1 [astro-ph.im] 12 Jul 2018 Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime G. Agapito a, C. Arcidiacono b, S. Esposito a a Osservatorio Astrofisico di Arcetri, INAF; b Osservatorio

More information

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope 1st AO4ELT conference, 08005 (2010) DOI:10.1051/ao4elt/201008005 Owned by the authors, published by EDP Sciences, 2010 Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths

More information

Efficient first-order performance estimation for high-order adaptive optics systems

Efficient first-order performance estimation for high-order adaptive optics systems Efficient first-order performance estimation for high-order adaptive optics systems Flicker, Ralf Published in: Astronomy & Astrophysics DOI: 10.1051/0004-6361:20030653 Published: 2003-01-01 Link to publication

More information

PRELIMINARY PERFORMANCE ANALYSIS OF THE MULTI-CONJUGATE AO SYSTEM OF THE EUROPEAN SOLAR TELESCOPE

PRELIMINARY PERFORMANCE ANALYSIS OF THE MULTI-CONJUGATE AO SYSTEM OF THE EUROPEAN SOLAR TELESCOPE Florence, Italy. May 213 ISBN: 978-88-98876--4 DOI: 1.12839/AO4ELT3.13272 PRELIMINARY PERFORMANCE ANALYSIS OF THE MULTI-CONJUGATE AO SYSTEM OF THE EUROPEAN SOLAR TELESCOPE I. Montilla 1a, C. Béchet 2,3,

More information

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application A.K.Saxena and J.P.Lancelot Adaptive Optics A Closed loop Optical system to compensate atmospheric turbulence

More information

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Guido Agapito a,c, Carmelo Arcidiacono b,c, and Simone Esposito a,c a INAF Osservatorio Astrofisico di Arcetri,

More information

Presented by B. Neichel. Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges

Presented by B. Neichel. Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges Edinburgh 25 th March 2013 Presented by B. Neichel Wide-Field Adaptive Optics for ground based telescopes: First science results and new challenges Outline A brief Introduction to Adaptive Optics (AO)

More information

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope Mem. S.A.It. Vol. 86, 436 c SAIt 2015 Memorie della Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope L. Schreiber 1, C. Arcidiacono 1, G. Bregoli 1, E. Diolaiti

More information

Measuring AO Performance Julian C. Christou and Donald Gavel UCO/Lick Observatory

Measuring AO Performance Julian C. Christou and Donald Gavel UCO/Lick Observatory Measuring AO Performance Julian C. Christou and Donald Gavel UCO/Lick Observatory CfAO 2006 Adaptive Optics Performance How to measure it from focal plane images? Conventional approach is using the Strehl

More information

Wavefront errors due to atmospheric turbulence Claire Max

Wavefront errors due to atmospheric turbulence Claire Max Wavefront errors due to atmospheric turbulence Claire Max Page 1 Kolmogorov turbulence, cartoon solar Outer scale L 0 Inner scale l 0 h Wind shear convection h ground Page Atmospheric Turbulence generally

More information

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT Paolo Ciliegi INAF Osservatorio Astronomico di Bologna On behalf of the MAORY Consortium Science ELT Workshop Team Meeting ESO Garching, MPE Garching,

More information

MAORY design trade-off study: tomography dimensioning

MAORY design trade-off study: tomography dimensioning MAORY design trade-off study: tomography dimensioning Sylvain Oberti, Miska Le Louarn ESO Garching Emiliano Diolaiti, Carmelo Arcidiacono, Laura Schreiber, Matteo Lombini INAF Bologna and the rest of the

More information

The AO and MCAO for the 4m European Solar Telescope

The AO and MCAO for the 4m European Solar Telescope The AO and MCAO for the 4m European Solar Telescope Thomas Berkefeld a and the EST AO group a Kiepenheuer-Institut für Sonnenphysik, Freiburg, Germany ABSTRACT We give an overview of the Adaptive Optics

More information

Sky Projected Shack-Hartmann Laser Guide Star

Sky Projected Shack-Hartmann Laser Guide Star Sky Projected Shack-Hartmann Laser Guide Star T. Butterley a, D.F. Buscher b, G. D. Love a, T.J. Morris a, R. M. Myers a and R. W. Wilson a a University of Durham, Dept. of Physics, Rochester Building,

More information

Astronomie et astrophysique pour physiciens CUSO 2015

Astronomie et astrophysique pour physiciens CUSO 2015 Astronomie et astrophysique pour physiciens CUSO 2015 Instruments and observational techniques Adaptive Optics F. Pepe Observatoire de l Université Genève F. Courbin and P. Jablonka, EPFL Page 1 Adaptive

More information

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics?

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics? Adaptive Optics Overview Phil Hinz (phinz@as.arizona.edu) What (Good) is Adaptive Optics? System Overview MMT AO system Atmospheric Turbulence Image Structure References: Adaptive Optics for Astronomical

More information

Wavefront Sensing using Polarization Shearing Interferometer. A report on the work done for my Ph.D. J.P.Lancelot

Wavefront Sensing using Polarization Shearing Interferometer. A report on the work done for my Ph.D. J.P.Lancelot Wavefront Sensing using Polarization Shearing Interferometer A report on the work done for my Ph.D J.P.Lancelot CONTENTS 1. Introduction 2. Imaging Through Atmospheric turbulence 2.1 The statistics of

More information

SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS

SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS Michael Lloyd-Hart and Patrick McGuire Center for Astronomical Adaptive Optics, Steward Observatory, University of Arizona, Tucson,

More information

PSFs for Laser Guide Star Tomographic Adaptive Optics Systems

PSFs for Laser Guide Star Tomographic Adaptive Optics Systems PSFs or Laser Guide Star Tomograpic Adaptive Optics Systems Donald Gavel Center or Adaptive Optics UC Santa Cru PSF Reconstruction Worsop, HIA Victoria May 11, 4 UCO Lic Observatory NSF Center or Adaptive

More information

Sky demonstration of potential for ground layer adaptive optics correction

Sky demonstration of potential for ground layer adaptive optics correction Sky demonstration of potential for ground layer adaptive optics correction Christoph J. Baranec, Michael Lloyd-Hart, Johanan L. Codona, N. Mark Milton Center for Astronomical Adaptive Optics, Steward Observatory,

More information

Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO

Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Lecture 15 The applications of tomography: LTAO, MCAO, MOAO, GLAO Claire Max AY 289 March 3, 2016 Page 1 Outline of lecture What is AO tomography? Applications of AO tomography Laser tomography AO Multi-conjugate

More information

A FREQUENCY DEPENDENT PRECONDITIONED WAVELET METHOD FOR ATMOSPHERIC TOMOGRAPHY

A FREQUENCY DEPENDENT PRECONDITIONED WAVELET METHOD FOR ATMOSPHERIC TOMOGRAPHY Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13433 A FREQUENCY DEPENDENT PRECONDITIONED WAVELET METHOD FOR ATMOSPHERIC TOMOGRAPHY Mykhaylo Yudytskiy 1a, Tapio Helin 2b, and Ronny

More information

Achieving high resolution

Achieving high resolution Achieving high resolution Diffraction-limited performance with single telescopes with Adaptive Optics Or sparse aperture masking Use masks to sub-divide telescope primary into a numnber of subapertures

More information

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13437 Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Gérard Rousset 1a, Damien Gratadour 1, TIm J. Morris 2,

More information

Inverse Problems in Astronomical Adaptive Optics

Inverse Problems in Astronomical Adaptive Optics Inverse Problems in Astronomical Adaptive Optics B L Ellerbroek 1 and C R Vogel 2 1 Thirty Meter Telescope Project, Pasadena, CA, USA 2 Department of Mathematical Sciences, Montana State University, Bozeman,

More information

Tomography for Raven, a Multi-Object Adaptive Optics Science and Technology Demonstrator. Kate Jackson. Carlos Correia

Tomography for Raven, a Multi-Object Adaptive Optics Science and Technology Demonstrator. Kate Jackson. Carlos Correia Tomography for Raven, a Multi-Object Adaptive Optics Science and Technology Demonstrator Kate Jackson a Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5CS Carlos Correia

More information

The Slope-Oriented Hadamard scheme for in-lab or on-sky interaction matrix calibration

The Slope-Oriented Hadamard scheme for in-lab or on-sky interaction matrix calibration The Slope-Oriented Hadamard scheme for in-lab or on-sky interaction matrix calibration Serge Meimon 1a, Cyril Petit 1, and Thierry Fusco 1 Onera - The French Aerospace Lab F-92322 Châtillon, France Abstract.

More information

On-sky MOAO performance evaluation of RAVEN

On-sky MOAO performance evaluation of RAVEN On-sky performance evaluation of RAVEN Y. H. Ono a, Carlos M. Correia a, O. Lardière b, D. R. Andersen b, S. Oya c, M. Akiyama d, D. Gamroth e, K. Jackson f, O. Martin a, and C. Bradley e a Aix Marseille

More information

A novel laser guide star: Projected Pupil Plane Pattern

A novel laser guide star: Projected Pupil Plane Pattern A novel laser guide star: Projected Pupil Plane Pattern Huizhe Yang a, Nazim Barmal a, Richard Myers a, David F. Buscher b, Aglae Kellerer c, Tim Morris a, and Alastair Basden a a Department of Physics,

More information

Performance of Adaptive Optics Systems

Performance of Adaptive Optics Systems Performance of Adaptive Optics Systems Don Gavel UCSC Center for Adaptive Optics Summer School August, 2008 Outline Performance Measures The construction of error budgets AO error contributors AO system

More information

Atmospheric Turbulence and its Influence on Adaptive Optics. Mike Campbell 23rd March 2009

Atmospheric Turbulence and its Influence on Adaptive Optics. Mike Campbell 23rd March 2009 Atmospheric Turbulence and its Influence on Adaptive Optics Mike Campbell 23rd March 2009 i Contents 1 Introduction 1 2 Atmospheric Turbulence 1 Seeing..................................................

More information

An optimized calibration strategy for high order adaptive optics systems : the Slope-Oriented Hadamard Actuation

An optimized calibration strategy for high order adaptive optics systems : the Slope-Oriented Hadamard Actuation 1st AO4ELT conference, 07009 (2010) DOI:10.1051/ao4elt/201007009 Owned by the authors, published by EDP Sciences, 2010 An optimized calibration strategy for high order adaptive optics systems : the Slope-Oriented

More information

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6)

EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) EE 367 / CS 448I Computational Imaging and Display Notes: Image Deconvolution (lecture 6) Gordon Wetzstein gordon.wetzstein@stanford.edu This document serves as a supplement to the material discussed in

More information

arxiv: v2 [astro-ph.im] 15 Mar 2016

arxiv: v2 [astro-ph.im] 15 Mar 2016 Preprint 14 May 2018 Compiled using MNRAS LATEX style file v3.0 A tomographic algorithm to determine tip-tilt information from laser guide stars A. P. Reeves, 1 T. J. Morris, 1 R. M. Myers, 1 N. A. Bharmal

More information

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i)

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Photo credit: T. Stalcup What is Ground-layer Adaptive Optics (GLAO)? Benefits of GLAO to astronomy. MMT multiple-laser AO system. Ground-layer

More information

Calibration of the MCAO Canopus Bench

Calibration of the MCAO Canopus Bench 1st AO4ELT conference, 02012 (2010) DOI:10.1051/ao4elt/201002012 Owned by the authors, published by EDP Sciences, 2010 Calibration of the MCAO Canopus Bench Aurea Garcia-Rissmann 1,a, François Rigaut 1,

More information

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Florence, Italy. May 013 ISBN: 978-88-908876-0-4 DOI: 10.1839/AO4ELT3.15991 CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Olivier Lardière 1a, Dave Andersen, Colin Bradley 1,Célia Blain

More information

Giant Magellan Telescope

Giant Magellan Telescope Giant Magellan Telescope Faint Object Adap6ve Op6cs Michael Hart Steward Observatory, The University of Arizona Challenges for the GMT Melbourne, June 16, 2010 Importance of AO The ELTs in general, including

More information

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 Adaptive Optics Status & Roadmap Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 1 Analysis CASIS: VLT MCAO Imager NACO upgrade Commissioning PAC The ESO Adaptive Optics

More information

Gemini South and LMC Credit Roger Smith (CTIO/Keck) Dennis Crabtree Gemini Observatory

Gemini South and LMC Credit Roger Smith (CTIO/Keck) Dennis Crabtree Gemini Observatory Gemini South and LMC Credit Roger Smith (CTIO/Keck) Dennis Crabtree Gemini Observatory OPD, SOAR and Gemini, Campos do Jordao, March 2010 1 Instruments Gemini s strengths: Observing flexibility IR sensitivity

More information

Structured Linear Algebra Problems in Adaptive Optics Imaging

Structured Linear Algebra Problems in Adaptive Optics Imaging Structured Linear Algebra Problems in Adaptive Optics Imaging Johnathan M. Bardsley, Sarah Knepper, and James Nagy Abstract A main problem in adaptive optics is to reconstruct the phase spectrum given

More information

Raven, a Multi-Object Adaptive Optics technology and science demonstrator

Raven, a Multi-Object Adaptive Optics technology and science demonstrator Raven, a Multi-Object Adaptive Optics technology and science demonstrator D.R. Andersen 1,a, C. Bradley 2, O. Lardière 2, C. Blain 2, D. Gamroth 2, M. Ito 2, K. Jackson 2, P. Lach 2, R. Nash 2, L. Pham

More information

Using Site Testing Data for Adaptive Optics Simulations

Using Site Testing Data for Adaptive Optics Simulations Using Site Testing Data for Adaptive Optics Simulations Glen Herriot a, David Andersen a, Rod Conan d, Brent Ellerbroek b, Luc Gilles b, Paul Hickson c, Kate Jackson d, Olivier Lardière d, Thomas Pfrommer

More information

arxiv: v2 [astro-ph.im] 20 Oct 2016

arxiv: v2 [astro-ph.im] 20 Oct 2016 Wave-front error breakdown in LGS MOAO validated on-sky by CANARY O.A. Martin a, E. Gendron b, G. Rousset b, D. Gratadour b, F. Vidal b, T.J. Morris c, A.G. Basden c, R.M. Myers c, C.M. Correia a, and

More information

AO system Design: Astronomy Olivier Guyon (University of Arizona / Subaru Telescope)

AO system Design: Astronomy Olivier Guyon (University of Arizona / Subaru Telescope) AO system Design: Astronomy Olivier Guyon (University of Arizona / Subaru Telescope) guyon@naoj.org This lecture: Will not discuss detailed optical designs, mechanical designs, hardware choices, computer

More information

Adaptive Optics Lectures

Adaptive Optics Lectures Adaptive Optics Lectures 1. Atmospheric turbulence Andrei Tokovinin 1 Resources CTIO: www.ctio.noao.edu/~atokovin/tutorial/index.html CFHT AO tutorial: http://www.cfht.hawaii.edu/instruments/imaging/aob/other-aosystems.html

More information

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo Subaru GLAO Simulation Shin Oya (Subaru Telescope) 2012/6/4 @ Hilo Background Subaru Telescope LGSAO188: commissioning is finishing optical instruments (dark nights) huge projects for prime focus HSC:

More information

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova Telescopes & Adaptive Optics Roberto Ragazzoni INAF Astronomical Observatory of Padova PAST PAST FUTURE This is a simmetry line This object is drawn in a plane but it acctually reppresent a three dimensional

More information

Experimental results of tomographic reconstruction on ONERA laboratory MCAO bench

Experimental results of tomographic reconstruction on ONERA laboratory MCAO bench 1st AO4ELT conference, 08004 (2010) DOI:10.1051/ao4elt/201008004 Owned by the authors, published by EDP Sciences, 2010 Experimental results of tomographic reconstruction on ONERA laboratory MCAO bench

More information

III.C - Linear Transformations: Optimal Filtering

III.C - Linear Transformations: Optimal Filtering 1 III.C - Linear Transformations: Optimal Filtering FIR Wiener Filter [p. 3] Mean square signal estimation principles [p. 4] Orthogonality principle [p. 7] FIR Wiener filtering concepts [p. 8] Filter coefficients

More information

Adaptive optics and atmospheric tomography: An inverse problem in telescope imaging

Adaptive optics and atmospheric tomography: An inverse problem in telescope imaging Adaptive optics and atmospheric tomography: An inverse problem in telescope imaging Jonatan Lehtonen Bayesian Inversion guest lecture, 29.01.2018 1 / 19 Atmospheric turbulence Atmospheric turbulence =

More information

September 9, Wednesday 3. Tools for Solar Observations-I

September 9, Wednesday 3. Tools for Solar Observations-I September 9, Wednesday 3. Tools for Solar Observations-I Solar telescopes. Resolution, MTF, seeing. High resolution telescopes. Spectrographs. Types of Solar Observations Electro-magnetic observations

More information

Adaptive Optics for Satellite and Debris Imaging in LEO and GEO

Adaptive Optics for Satellite and Debris Imaging in LEO and GEO Adaptive Optics for Satellite and Debris Imaging in LEO and GEO M. Copeland, F. Bennet, A. Zovaro, F. Riguat, P. Piatrou and V. Korkiakoski Research School of Astronomy and Astrophysics, Australian National

More information

Adaptive Optics. Dave Andersen NRC Herzberg.

Adaptive Optics. Dave Andersen NRC Herzberg. Adaptive Optics Dave Andersen NRC Herzberg david.andersen@nrc-cnrc.gc.ca Resources Tokovinin Tutorial: http://www.ctio.noao.edu/~atokovin/tutorial/intro.html - Excellent descriptions of many elements of

More information

Point spread function reconstruction at W.M. Keck Observatory : progress and beyond

Point spread function reconstruction at W.M. Keck Observatory : progress and beyond Point spread function reconstruction at W.M. Keck Observatory : progress and beyond Olivier Beltramo-Martin Aix-Marseille Univ., LAM, A*MIDEX, Extra November 9th, 217 - LAM Olivier Beltramo-Martin (LAM)

More information

Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics

Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics doi:10.1093/mnras/stu941 Visible near-diffraction-limited lucky imaging with full-sky laser-assisted adaptive optics A. G. Basden Department of Physics, Durham University, South Road, Durham, DH1 3LE,

More information

Astronomical Observing Techniques 2017 Lecture 13: Twinkle, twinkle star... No more!

Astronomical Observing Techniques 2017 Lecture 13: Twinkle, twinkle star... No more! Astronomical Observing Techniques 2017 Lecture 13: Twinkle, twinkle li@le star... No more! Christoph U. Keller keller@strw.leidenuniv.nl Overview 1. The Power of Adaptive Optics 2. Atmospheric Turbulence

More information

Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations

Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations Comparison of the Performance of Modal Control Schemes for an Adaptive Optics System and Analysis of the Effect of Actuator Limitations Masaki Nagashima, Jae Jun Kim, Brij Agrawal Abstract In this study,

More information

Response of DIMM turbulence sensor

Response of DIMM turbulence sensor Response of DIMM turbulence sensor A. Tokovinin Version 1. December 20, 2006 [tdimm/doc/dimmsensor.tex] 1 Introduction Differential Image Motion Monitor (DIMM) is an instrument destined to measure optical

More information

Astronomical Observing Techniques Lecture 13: Adap<ve Op<cs

Astronomical Observing Techniques Lecture 13: Adap<ve Op<cs Astronomical Observing Techniques Lecture 13: Adap

More information

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO?

1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? Astronomy 418/518 final practice exam 1. Give short answers to the following questions. a. What limits the size of a corrected field of view in AO? b. Describe the visibility vs. baseline for a two element,

More information

Subaru Next Generation Wide Field AO: Ground Layer AO Simulation

Subaru Next Generation Wide Field AO: Ground Layer AO Simulation Subaru Next Generation Wide Field AO: Ground Layer AO Simulation Shin Oya (Subaru Telescope) Subaru Next Generation AO Working Group 2013/5/9 @ Victoria Subaru Next Generation Wide-Field AO multi-laser

More information

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo Subaru GLAO Simulation Shin Oya (Subaru Telescope) 2012/10/16 @ Hilo Outline What is Ground Layer Adaptive Optics (GLAO)? a type of wide-field AO Mauna Kea seeing (which determines GLAO performance) Simulation

More information

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders

Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders Sensing and control of segmented mirrors with a pyramid wavefront sensor in the presence of spiders Noah Schwartz* a, Jean-François Sauvage b,c, Carlos Correia c, Cyril Petit b, Fernando Quiros- Pacheco

More information

EAGLE multi-object AO concept study for the E-ELT

EAGLE multi-object AO concept study for the E-ELT 1st AO4ELT conference, 02008 (2010) DOI:10.1051/ao4elt/201002008 Owned by the authors, published by EDP Sciences, 2010 EAGLE multi-object AO concept study for the E-ELT G. Rousset 1,a,T.Fusco 2, F. Assemat

More information

Numerical atmospheric turbulence models and LQG control for adaptive optics system

Numerical atmospheric turbulence models and LQG control for adaptive optics system Numerical atmospheric turbulence models and LQG control for adaptive optics system Jean-Pierre FOLCHER, Marcel CARBILLET UMR6525 H. Fizeau, Université de Nice Sophia-Antipolis/CNRS/Observatoire de la Côte

More information

Active optics challenges of a thirty meter segmented mirror telescope

Active optics challenges of a thirty meter segmented mirror telescope Active optics challenges of a thirty meter segmented mirror telescope George Z. Angeli 1, Robert Upton 1, Anna Segurson 1, Brent Ellerbroek 1 1 New Initiatives Office, AURA Inc. ABSTRACT Ground-based telescopes

More information

Computationally efficient performance simulations for a Thirty Meter Telescope (TMT) point design

Computationally efficient performance simulations for a Thirty Meter Telescope (TMT) point design Computationally efficient performance simulations for a Thirty Meter Telescope (TMT) point design Anna Segurson a* and George Angeli a a New Initiatives Office, AURA Inc., Tucson, AZ, USA ABSTRACT Modeling

More information

LOCAL ENSEMBLE TRANSFORM KALMAN FILTER: A NON-STATIONARY CONTROL LAW FOR COMPLEX ADAPTIVE OPTICS SYSTEMS ON ELTS

LOCAL ENSEMBLE TRANSFORM KALMAN FILTER: A NON-STATIONARY CONTROL LAW FOR COMPLEX ADAPTIVE OPTICS SYSTEMS ON ELTS Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13253 LOCAL ENSEMBLE TRANSFORM KALMAN FILTER: A NON-STATIONARY CONTROL LAW FOR COMPLEX ADAPTIVE OPTICS SYSTEMS ON ELTS GRAY Morgan

More information

End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA)

End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA) 1st AO4ELT conference, 04006 (2010) DOI:10.1051/ao4elt/201004006 Owned by the authors, published by EDP Sciences, 2010 End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA) N. Meilard

More information

Characterising daytime atmospheric conditions on La Palma

Characterising daytime atmospheric conditions on La Palma Adapting to the Atmosphere Conference 214 Journal of Physics: Conference Series 9 (21) 123 doi:1.188/1742-696/9/1/123 Characterising daytime atmospheric conditions on La Palma Matthew J. Townson 1, Aglaé

More information

Wavefront Correction of Model-based Sensorless Adaptive Optics System

Wavefront Correction of Model-based Sensorless Adaptive Optics System Wavefront Correction of Model-based Sensorless Adaptive Optics System Huizhen Yang 1*, Jian Wu 2 1. School of Electronic Engineering, Huaihai Institute of Technology, Lianyungang, China 222005; 2. School

More information

Adaptive Optics Simulator

Adaptive Optics Simulator FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO Department of Electrical Engineering and Computers Adaptive Optics Simulator Carlos Correia Da Silva Eduardo Gonçalves da Silva This report aims to present

More information

Interaction Matrix Uncertainty in Active (and Adaptive) Optics

Interaction Matrix Uncertainty in Active (and Adaptive) Optics Interaction Matrix Uncertainty in Active (and Adaptive) Optics Douglas G. MacMynowski Control and Dynamical Systems California Institute of Technology 1200 E. California Blvd., Pasadena, CA 91125 Uncertainty

More information

MCAO for the European Solar Telescope: first results

MCAO for the European Solar Telescope: first results MCAO for the European Solar Telescope: first results Marco Stangalini Roberto Piazzesi Dario Del Moro Francesco Berrilli Alberto Egidi Università di Roma Tor Vergata www.fisica.uniroma2.it/solare EST EST

More information

Pupil matching of Zernike aberrations

Pupil matching of Zernike aberrations Pupil matching of Zernike aberrations C. E. Leroux, A. Tzschachmann, and J. C. Dainty Applied Optics Group, School of Physics, National University of Ireland, Galway charleleroux@yahoo.fr Abstract: The

More information

Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs

Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs Efficient control schemes with limited comptation complexity for Tomographic AO systems on VLTs and ELTs C. Petit, T. Fsco, J.-M. Conan : ONERA M. Le Loarn, P.-Y. Madec: ESO Overview Context: Tomographic

More information

Non-linear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iteration

Non-linear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iteration Non-linear wavefront reconstruction methods for pyramid sensors using Landweber and Landweber-Kaczmarz iteration Victoria Hutterer 1 and Ronny Ramlau 1, arxiv:1808.07673v1 [astro-ph.im] 3 Aug 018 August

More information

Comparing the performance of open loop centroiding techniques in the Raven MOAO system

Comparing the performance of open loop centroiding techniques in the Raven MOAO system Comparing the performance of open loop centroiding techniques in the Raven MOAO system David R. Andersen *a, Colin Bradley b, Darryl Gamroth b, Dan Kerley a, Olivier Lardière b, Jean-Pierre Véran a a NRC

More information

Measurement of Atmospheric Turbulence with a Shack Hartmann Wavefront Sensor at the new MMT s Prime Focus

Measurement of Atmospheric Turbulence with a Shack Hartmann Wavefront Sensor at the new MMT s Prime Focus Measurement of Atmospheric Turbulence with a Shack Hartmann Wavefront Sensor at the new MMT s Prime Focus Patrick C. McGuire 1, Maud P. Langlois, Michael Lloyd Hart, Troy A. Rhoadarmer, J. Roger P. Angel

More information

SOLAR MULTI-CONJUGATE ADAPTIVE OPTICS AT THE DUNN SOLAR TELESCOPE

SOLAR MULTI-CONJUGATE ADAPTIVE OPTICS AT THE DUNN SOLAR TELESCOPE SOLAR MULTI-CONJUGATE ADAPTIVE OPTICS AT THE DUNN SOLAR TELESCOPE T. Rimmele, S. Hegwer, K. Richards, F. Woeger National Solar Observatory 1, Sunspot, NM-88349, USA J. Marino University of Florida, Gainesville,

More information

NGAO trade study report: LOWFS architecture KAON 487 (WBS )

NGAO trade study report: LOWFS architecture KAON 487 (WBS ) NGAO trade study report: LOWFS architecture KAON 487 (WBS 3.1.2.2.9) Ralf Flicker (rflicker@keck.hawaii.edu) W.M. Keck Observatory, 65-1120 Mamalahoa Hwy., Kamuela, HI 96743, USA Viswa Velur (vnv@astro.caltech.edu)

More information

New challenges for adaptive optics: the OWL 1OOm telescope

New challenges for adaptive optics: the OWL 1OOm telescope New challenges for adaptive optics: the OWL 1OOm telescope N. Hubin, M. Le Louarn, M. Sarazin, A. Tokovinin, E. Viard European Southern Observatory Karl Schwarzschild str., 2 D-85748 Garching bei Miinchen

More information

arxiv: v1 [astro-ph.im] 27 Feb 2014

arxiv: v1 [astro-ph.im] 27 Feb 2014 Mon. Not. R. Astron. Soc. 000, 1 20 (2014) Printed 28 February 2014 (MN LaT E X style file v2.2) Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance

More information