Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology

Size: px
Start display at page:

Download "Control of the Keck and CELT Telescopes. Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology"

Transcription

1 Control of the Keck and CELT Telescopes Douglas G. MacMartin Control & Dynamical Systems California Institute of Technology

2 Telescope Control Problems Light from star Primary mirror active control system (ACS) Correct mirror figure due to gravity, wind, Adaptive optics (AO) Compensate for atmospheric turbulence Adaptive optics Deformable mirror Primary mirror Instrument Wavefront sensor

3 Keck Primary Mirror: -36 segments actuators 0.9 m

4 Hale (Palomar) 5m (1948) Keck 10m (1992) CELT 30m (20xx)

5 Science object wavefront Distortion 1 (turbulence) Natural, Laser guide stars Atmosphere Segment Actuators System Block Diagram Gravity 2 Thermal Seismic Wind 3 Primary Mirror K PM 5 Other 4 Edge Sensors Gravity Wind Secondary Mirror K SM 6 AO Def. Mirror(s) Notes: 1 Distortion relevant at multiple layers 2 Gravity impacts segments directly, and through distortion of journals etc.? 3 Wind impacts segments directly, and through base motion of telescope on (non-rigid) ground 4 Other sources include machinery vibration; pumps, bearings, drives, FSM DM Actuators K TT 8 K AO 7 5 Wavefront sensor probably not required 6 May need to control secondary mirror; rigid body motion (hexapod or at supports) or flexibility (tertiary?) 7 Potential multiple AO mirrors, multiple wavefront sensors (Secondary as DM for AO?) 8 Tip/tilt control may require feedback from instruments ( final wavefront) Scientific Instruments Wavefront Sensors

6 Primary Mirror Control Problem Out-of-plane motion of segments is tightly controlled Performance goal (CELT): Primary mirror residual wavefront error < 45 nm rms * from ALL sources Segment out-of-plane alignment (controlled) wavefront error < 18 nm rms Sensor noise Actuator noise (precision) Uncompensated disturbances Disturbances: Gravity: slow, mostly predictable, 1.2 mm max (70 nm/s) Wind: approximate disturbance spectrum guessed at. 3 dof actuation on each segment Relative displacement sensors between each inter-segment edge * Specification with Adaptive Optics; only errors uncorrectable by AO (primarily segment edge discontinuities) contribute

7 Control Hardware CELT Actuator locations (three per segment) Sensor locations (two per intersegment edge) Keck Keck CELT Segments Actuators Sensors

8 Keck Actuator Roller screw, 24:1 hydraulic reduction Roller screw is reliable, but Keck has ~1 actuator failure per year due to hydraulic Some backlash Local feedback loop used to obtain desired output CELT Actuator Voice-coil with trim motor offload Local feedback loop used to obtain desired output and stiffness

9 Precision Sensor Design CELT design: Differential capacitance measurement Components mounted directly on segment edges Gain is sensitive to gap Keck design: Measure differential capacitance Sensor noise ~ 1 nm / Hz (Expensive) precision interlocking components b

10 Dynamics State vector: Displacement at actuator locations x k+1 = x k + g k + w k + u k NO dynamics! ( A = I ) Ignored for Keck, Need to include for CELT Disturbance: Predictable component, Random component Control input: treat as displacement actuator (assuming local loop) x k+1 = Ax k + Bu k y = Cx k + Du k Sensor y = C x + δ + η Sensor noise System influence matrix (from geometry) Desired sensor readings (from alignment camera)

11 Control: (i) estimate x from y, (ii) integral control (iii) feedforward of predicted disturbance component Control Problem

12 Gemini Mirror is 20 cm thick, deforms under gravity 120 actuators used to maintain optical quality

13 Adaptive Optics: Correct for Atmospheric Distortion Source is turbulence at multiple levels in atmosphere (Kolmogorov model) Detect wavefront (Hartmann- Shack sensor), m m array of subapertures Deformable mirror used to invert May need multiple mirrors, each to invert one layer of atmosphere, to increase isoplanatic angle Can use science object, natural guide star, or laser guide star May need multiple LGS to increase isoplanatic angle

14

15 Keck Adaptive Optics on/off

16 Keck AO: Deformable Mirror Insert picture of deformable mirror here.

17 Shack-Hartmann Wavefront Sensing

18 Current Palomar AO Geometry 241 actuators ( o ) 256 element Shack-Hartmann wavefront sensor ( + ) (384 sensor measurements not obscured by secondary) Structural dynamics are outside of control bandwidth

19 Dynamics State vector: Displacement at actuator locations x k+1 = x k + w k + u k NO dynamics! ( A = I ) Disturbance: Random component Control input: treat as displacement actuator x k+1 = Ax k + Bu k y = Cx k + Du k Sensor y = C x + η Sensor noise System influence matrix (from geometry)

20 Control: (i) estimate x from y, (ii) Proportional-integral (PI) control Control Problem

21 Palomar AO FSM Transfer Function 0 Magnitude (db) Phase (deg) Plant: Nonlinear gain, differs for different channels Roughly constant Phase lag due to time delay High frequency modes Frequency (Hz)

22 Loop Transfer Function: PI controller Magnitude (db) Phase (deg) Loop transfer function, KI = 0.66 KP = 0.15 fsm A (max) fsm A (min) fsm B (min) Frequency (Hz) Controller: u = (K I /s + K P )x Integral to boost low frequency gain Proportional term to improve phase at crossover. Bandwidth ~ 10 Hz Gain margin ~ 10 db, phase margin ~ 60

23 Open-loop Closed-loop Performance Magnitude (db) Frequency (Hz) Computed sensitivity S=1/(1+L) Sensitivity matches prediction! Freq uency (Hz)

24 CELT AO Requirements ( diffraction-limited (180 nm rms) at 1 µm) Deformable Mirrors 3-4 mirrors, conjugate to different layers in the atmosphere Each mirror with ~7000 actuators Wavefront sensors Roughly double the number of actuator degrees of freedom Laser guide stars To provide information anywhere in the sky, create your own stars Excite sodium layer at 90km Need 7-11 lasers for reasonable field of view Control loop 20,000 actuators and 40,000 sensors Need to close loop at ~ 1kHz Wait 25 years for Moore s law to catch up, or Be more intelligent about local control

25 7368 Actuators

26 CELT views of Europa Visible Galileo image convolved to 0.5 arcsec resolution (AO off) (seeing-limited) Visible Galileo image convolved to arcsec resolution (AO on) (diffraction-limited at 1µm)

27 CELT: Galaxy Evolution Courtesy of M. Bolte

28 Mauna Kea Chajnantor

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Martin Glück, Jörg-Uwe Pott, Oliver Sawodny Reaching the Diffraction Limit of Large Telescopes using Adaptive

More information

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand

Adaptive Optics for the Giant Magellan Telescope. Marcos van Dam Flat Wavefronts, Christchurch, New Zealand Adaptive Optics for the Giant Magellan Telescope Marcos van Dam Flat Wavefronts, Christchurch, New Zealand How big is your telescope? 15-cm refractor at Townsend Observatory. Talk outline Introduction

More information

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289

Error Budgets, and Introduction to Class Projects. Lecture 6, ASTR 289 Error Budgets, and Introduction to Class Projects Lecture 6, ASTR 89 Claire Max UC Santa Cruz January 8, 016 Page 1 What is residual wavefront error? Telescope AO System Science Instrument Very distorted

More information

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica

The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica The MAORY Multi-Conjugate Adaptive Optics module Emiliano Diolaiti Istituto Nazionale di Astrofisica On behalf of the MAORY module Consortium Shaping E-ELT Science and Instrumentation workshop, ESO, 25

More information

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory

An Introduction to. Adaptive Optics. Presented by. Julian C. Christou Gemini Observatory An Introduction to Adaptive Optics Presented by Julian C. Christou Gemini Observatory Gemini North in action Turbulence An AO Outline Atmospheric turbulence distorts plane wave from distant object. How

More information

Wavefront errors due to atmospheric turbulence Claire Max

Wavefront errors due to atmospheric turbulence Claire Max Wavefront errors due to atmospheric turbulence Claire Max Page 1 Kolmogorov turbulence, cartoon solar Outer scale L 0 Inner scale l 0 h Wind shear convection h ground Page Atmospheric Turbulence generally

More information

Analysis of TMT Primary Mirror Control-Structure Interaction (SPIE )

Analysis of TMT Primary Mirror Control-Structure Interaction (SPIE ) Analysis of TMT Primary Mirror Control-Structure Interaction (SPIE 7017-41) Douglas MacMynowski (Caltech) Peter Thompson (Systems Tech.) Mark Sirota (TMT Observatory) Control Problems TMT.SEN.PRE.08.046.REL01

More information

1. INTRODUCTION ABSTRACT

1. INTRODUCTION ABSTRACT Simulations of E-ELT telescope effects on AO system performance Miska Le Louarn* a, Pierre-Yves Madec a, Enrico Marchetti a, Henri Bonnet a, Michael Esselborn a a ESO, Karl Schwarzschild strasse 2, 85748,

More information

Exoplanet High Contrast Imaging Technologies Ground

Exoplanet High Contrast Imaging Technologies Ground Exoplanet High Contrast Imaging Technologies Ground KISS Short Course: The Hows and Whys of Exoplanet Imaging Jared Males University of Arizona Telescope Diameter (Bigger is Better) Diameter: Collecting

More information

Measurement accuracy in control of segmented-mirror telescopes

Measurement accuracy in control of segmented-mirror telescopes Measurement accuracy in control of segmented-mirror telescopes Douglas G. MacMartin and Gary Chanan Design concepts for future large optical telescopes have highly segmented primary mirrors, with the out-of-plane

More information

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics?

Adaptive Optics Overview Phil Hinz What (Good) is Adaptive Optics? Adaptive Optics Overview Phil Hinz (phinz@as.arizona.edu) What (Good) is Adaptive Optics? System Overview MMT AO system Atmospheric Turbulence Image Structure References: Adaptive Optics for Astronomical

More information

Telescope Project Development Seminar

Telescope Project Development Seminar Telescope Project Development Seminar Session 4: Telescope Performance Matt Johns 4/19/2017 U. Tokyo 4/9/2017 Telescope Project Development 1 Session Outline GMT imaging Image Size Atmospheric dispersion

More information

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson

McMath-Pierce Adaptive Optics Overview. Christoph Keller National Solar Observatory, Tucson McMath-Pierce Adaptive Optics Overview Christoph Keller National Solar Observatory, Tucson Small-Scale Structures on the Sun 1 arcsec Important astrophysical scales (pressure scale height in photosphere,

More information

What do companies win being a supplier to ESO

What do companies win being a supplier to ESO What do companies win being a supplier to ESO Arnout Tromp Head of Contracts and Procurement Topics Characteristics of what ESO procures Technology in Astronomy Spin off from the past The future: E-ELT

More information

Introduction to Adaptive Optics. Tim Morris

Introduction to Adaptive Optics. Tim Morris Introduction to Adaptive Optics Tim Morris Contents Definitions and introduction Atmospheric turbulence Components of an AO system Wavefront Sensing Wavefront Correction Turbulence Conjugation Laser Beacons

More information

Speckles and adaptive optics

Speckles and adaptive optics Chapter 9 Speckles and adaptive optics A better understanding of the atmospheric seeing and the properties of speckles is important for finding techniques to reduce the disturbing effects or to correct

More information

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope

Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths on a 10-meter Telescope 1st AO4ELT conference, 08005 (2010) DOI:10.1051/ao4elt/201008005 Owned by the authors, published by EDP Sciences, 2010 Laboratory Experiments of Laser Tomographic Adaptive Optics at Visible Wavelengths

More information

Telescope Project Development Seminar

Telescope Project Development Seminar Telescope Project Development Seminar Session 5a: Science Instruments & Adaptive Optics Session 5b: Lessons Learned & Discussion Matt Johns 4/27/2017 U. Tokyo 4/27/2017 Telescope Project Development 1

More information

Latency, Bandwidth, and Control Loop Residual Relationships

Latency, Bandwidth, and Control Loop Residual Relationships Latency, Bandwidth, and Control Loop Residual Relationships Keck Adaptive Optics Note 70 Donald Gavel, UCSC Feb. 2, 200 Revision : Feb 6, 200 Abstract This is a description of how latency in a [open closed]

More information

Active optics challenges of a thirty meter segmented mirror telescope

Active optics challenges of a thirty meter segmented mirror telescope Active optics challenges of a thirty meter segmented mirror telescope George Z. Angeli 1, Robert Upton 1, Anna Segurson 1, Brent Ellerbroek 1 1 New Initiatives Office, AURA Inc. ABSTRACT Ground-based telescopes

More information

E-ELT Overview. Alistair McPherson Programme Manager

E-ELT Overview. Alistair McPherson Programme Manager E-ELT Overview Alistair McPherson Programme Manager Science drivers Planets in other stellar systems Imaging and spectroscopy The quest for Earth-like exo-planets Stellar populations In galaxies inaccessible

More information

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007

Adaptive Optics Status & Roadmap. Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 Adaptive Optics Status & Roadmap Norbert Hubin Adaptive Optics Department European Southern Observatory November 2007 1 Analysis CASIS: VLT MCAO Imager NACO upgrade Commissioning PAC The ESO Adaptive Optics

More information

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT

Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Florence, Italy. May 2013 ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13437 Field Tests of elongated Sodium LGS wave-front sensing for the E-ELT Gérard Rousset 1a, Damien Gratadour 1, TIm J. Morris 2,

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

Overview of Thirty Meter Telescope Project

Overview of Thirty Meter Telescope Project Overview of Thirty Meter Telescope Project L. Stepp November 16, 2010 TMT.TEL.PRE.10.016.REL02 1 Outline Introduction to TMT TMT site selection TMT partners Summary of TMT design TMT requirements for segments

More information

More Optical Telescopes

More Optical Telescopes More Optical Telescopes There are some standard reflecting telescope designs used today All have the common feature of light entering a tube and hitting a primary mirror, from which light is reflected

More information

Adaptive Optics. Without adaptive optics (Palomar 200 inch telescope)

Adaptive Optics. Without adaptive optics (Palomar 200 inch telescope) Adaptive Optics Without adaptive optics (Palomar 200 inch telescope) The binary star IW Tau is revealed through adaptive optics. The stars have a 0.3 arc second separation. The images were taken by Chas

More information

The IPIE Adaptive Optical System Application For LEO Observations

The IPIE Adaptive Optical System Application For LEO Observations The IPIE Adaptive Optical System Application For LEO Observations Eu. Grishin (1), V. Shargorodsky (1), P. Inshin (2), V. Vygon (1) and M. Sadovnikov (1) (1) Open Joint Stock Company Research-and-Production

More information

INITIAL CONTROL RESULTS FOR THE THIRTY METER TELESCOPE

INITIAL CONTROL RESULTS FOR THE THIRTY METER TELESCOPE AIAA 2005-6075 INITIAL CONTROL RESULTS FOR THE THIRTY METER TELESCOPE Douglas G. MacMynowski Control and Dynamical Systems California Institute of Technology Pasadena, CA 91125 Carl Blaurock Nightsky Systems

More information

Laser Guide Star Operations at W. M. Keck Observatory

Laser Guide Star Operations at W. M. Keck Observatory Laser Guide Star Operations at W. M. Keck Observatory Bob Goodrich, Observing Support Manager Randy Campbell, AO Operations Lead Introduction Background and history Organization Safety challenges Looking

More information

Lecture 12. AO Control Theory

Lecture 12. AO Control Theory Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable

More information

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova

Telescopes & Adaptive Optics. Roberto Ragazzoni INAF Astronomical Observatory of Padova Telescopes & Adaptive Optics Roberto Ragazzoni INAF Astronomical Observatory of Padova PAST PAST FUTURE This is a simmetry line This object is drawn in a plane but it acctually reppresent a three dimensional

More information

Adaptive Optics: An Introduction and Overview

Adaptive Optics: An Introduction and Overview Adaptive Optics: An Introduction and Overview Mike Hein PH464 Applied Optics Dr. Andres LaRosa Portland State University Winter 2005 Abstract: This paper presents a look at the technology and techniques

More information

1 Naval Research Laboratory Remote Sensing Division, Code Aberdeen Ave SE Kirtland AFB, NM 87117

1 Naval Research Laboratory Remote Sensing Division, Code Aberdeen Ave SE Kirtland AFB, NM 87117 Carbon Fiber Reinforced Polymer (CFRP) Telescope Program at the Naval Research Laboratory Sergio R. Restaino 1, Ty Martinez 1, Jonathan R. Andrews 1, Christopher C. Wilcox 1, S. Teare 2, Robert Romeo 3,

More information

On the possibility to create a prototype of laser system for space debris movement control on the basis of the 3-meter telescope.

On the possibility to create a prototype of laser system for space debris movement control on the basis of the 3-meter telescope. OJC «RPC «Precision Systems and Instruments», Moscow, Russia A. Alexandrov, V. Shargorodskiy On the possibility to create a prototype of laser system for space debris movement control on the basis of the

More information

NB: from now on we concentrate on seeing, as scintillation for large telescopes is unimportant

NB: from now on we concentrate on seeing, as scintillation for large telescopes is unimportant b) intensity changes: scintillation!i/i on the ground is proportional to h!", i.e. # h e -h/h this function has maximum at h = H = 8.5 km! scintillation comes mostly from high layers! seeing and scintillation

More information

Atmospheric dispersion correction for the Subaru AO system

Atmospheric dispersion correction for the Subaru AO system Atmospheric dispersion correction for the Subaru AO system Sebastian Egner a, Yuji Ikeda b, Makoto Watanabe c,y.hayano a,t.golota a, M. Hattori a,m.ito a,y.minowa a,s.oya a,y.saito a,h.takami a,m.iye d

More information

Sky Projected Shack-Hartmann Laser Guide Star

Sky Projected Shack-Hartmann Laser Guide Star Sky Projected Shack-Hartmann Laser Guide Star T. Butterley a, D.F. Buscher b, G. D. Love a, T.J. Morris a, R. M. Myers a and R. W. Wilson a a University of Durham, Dept. of Physics, Rochester Building,

More information

Acceleration Feedback

Acceleration Feedback Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro- Mechanics Electrical- Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic

More information

Expected Performance From WIYN Tip-Tilt Imaging

Expected Performance From WIYN Tip-Tilt Imaging Expected Performance From WIYN Tip-Tilt Imaging C. F. Claver 3 September 1997 Overview Image motion studies done at WIYN show that a significant improvement to delivered image quality can be obtained from

More information

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA

Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA Palomar Testbed Interferometer (PTI) & Keck Interferometer (KI) Mark Colavita 7/29/2005 Michelson Summer School Pasadena, CA PTI as seen from the catwalk of the 200 telescope Michelson Interferometer stellar

More information

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime

Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime Guido Agapito a,c, Carmelo Arcidiacono b,c, and Simone Esposito a,c a INAF Osservatorio Astrofisico di Arcetri,

More information

SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS

SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS SPATIO-TEMPORAL PREDICTION FOR ADAPTIVE OPTICS WAVEFRONT RECONSTRUCTORS Michael Lloyd-Hart and Patrick McGuire Center for Astronomical Adaptive Optics, Steward Observatory, University of Arizona, Tucson,

More information

Adaptive Optics and OIR Interferometry

Adaptive Optics and OIR Interferometry Outline and OIR Interferometry Astro 6525 Fall 2015 November 17 2015 Wavefront Sensing Control Systems Error Terms and Limitations Laser Guide Stars GLAO/MCAO/MOAO 2 Optical vs Radio Telescopes Fraunhofer

More information

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics

Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Analysis of the Sequence Of Phase Correction in Multiconjugate Adaptive Optics Luzma Montoya, Iciar Montilla Instituto de Astrofísica de Canarias Edinburgh, 25-26/03/2014 AO Tomography Workshop The EST

More information

Keck Adaptive Optics Note #385. Feasibility of LGS AO observations in the vicinity of Jupiter. Stephan Kellner and Marcos van Dam

Keck Adaptive Optics Note #385. Feasibility of LGS AO observations in the vicinity of Jupiter. Stephan Kellner and Marcos van Dam Keck Adaptive Optics Note #385 Feasibility of LGS AO observations in the vicinity of Jupiter Stephan Kellner and Marcos van Dam Version 2: 25 July 2006 1 Introduction It has been proposed by Imke De Pater

More information

Astronomie et astrophysique pour physiciens CUSO 2015

Astronomie et astrophysique pour physiciens CUSO 2015 Astronomie et astrophysique pour physiciens CUSO 2015 Instruments and observational techniques Adaptive Optics F. Pepe Observatoire de l Université Genève F. Courbin and P. Jablonka, EPFL Page 1 Adaptive

More information

Modeling and Control of a Large Deformable Mirror

Modeling and Control of a Large Deformable Mirror ISSN 28-5316 ISRN LUTFD2/TFRT--5742--SE Modeling and Control of a Large Deformable Mirror Fredrik Bjöörn Olof Garpinger Department of Automatic Control Lund Institute of Technology April 25 Department

More information

Achieving high resolution

Achieving high resolution Achieving high resolution Diffraction-limited performance with single telescopes with Adaptive Optics Or sparse aperture masking Use masks to sub-divide telescope primary into a numnber of subapertures

More information

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope

Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope Mem. S.A.It. Vol. 86, 436 c SAIt 2015 Memorie della Modelling the multi-conjugate adaptive optics system of the European Extremely Large Telescope L. Schreiber 1, C. Arcidiacono 1, G. Bregoli 1, E. Diolaiti

More information

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo Subaru GLAO Simulation Shin Oya (Subaru Telescope) 2012/6/4 @ Hilo Background Subaru Telescope LGSAO188: commissioning is finishing optical instruments (dark nights) huge projects for prime focus HSC:

More information

Control-Structure Interaction in Extremely Large Telescopes

Control-Structure Interaction in Extremely Large Telescopes Control-Structure Interaction in Extremely Large Telescopes A. Preumont, B. Mokrani & R. Bastaits Université Libre de Bruxelles (ULB)-Active Structures Laboratory, Brussels, Belgium Abstract: The next

More information

Analysis of the NOT Primary Mirror Dynamics

Analysis of the NOT Primary Mirror Dynamics Analysis of the NOT Primary Mirror Dynamics Graham C. Cox October 24, 2000 Introduction On the nights of 12th and 13th May 2000 observations were made using the JOSE camera system, borrowed from the ING,

More information

Sky demonstration of potential for ground layer adaptive optics correction

Sky demonstration of potential for ground layer adaptive optics correction Sky demonstration of potential for ground layer adaptive optics correction Christoph J. Baranec, Michael Lloyd-Hart, Johanan L. Codona, N. Mark Milton Center for Astronomical Adaptive Optics, Steward Observatory,

More information

Keck Adaptive Optics Note 1069

Keck Adaptive Optics Note 1069 Keck Adaptive Optics Note 1069 Tip-Tilt Sensing with Keck I Laser Guide Star Adaptive Optics: Sensor Selection and Performance Predictions DRAFT to be updated as more performance data becomes available

More information

D(s) G(s) A control system design definition

D(s) G(s) A control system design definition R E Compensation D(s) U Plant G(s) Y Figure 7. A control system design definition x x x 2 x 2 U 2 s s 7 2 Y Figure 7.2 A block diagram representing Eq. (7.) in control form z U 2 s z Y 4 z 2 s z 2 3 Figure

More information

arxiv:astro-ph/ v1 5 Nov 1999

arxiv:astro-ph/ v1 5 Nov 1999 Rayleigh scattering and laser spot elongation problems at ALFA arxiv:astro-ph/9911086v1 5 Nov 1999 E. Viard (eviard@eso.org), F. Delplancke (fdelplan@eso.org) and N. Hubin (nhubin@eso.org) European Southern

More information

Development of breakthrough technology for building next generation ground based telescopes

Development of breakthrough technology for building next generation ground based telescopes Development of breakthrough technology for building next generation ground based telescopes SUMMARY Mass production and control technology now exists to build telescope primary mirrors out of panels consisting

More information

ADVANCEMENT OF AO TECHNOLOGY FOR THE NEXT GENERATION OF EXTREMELY LARGE TELESCOPES

ADVANCEMENT OF AO TECHNOLOGY FOR THE NEXT GENERATION OF EXTREMELY LARGE TELESCOPES ADVANCEMENT OF AO TECHNOLOGY FOR THE NEXT GENERATION OF EXTREMELY LARGE TELESCOPES Donald Gavel 1 University of California Observatories, UC Santa Cruz, 1156 High Street, Santa Cruz, CA, USA 95064 Abstract.

More information

arxiv: v1 [astro-ph.im] 12 Jul 2018

arxiv: v1 [astro-ph.im] 12 Jul 2018 Shack-Hartmann wavefront sensor sensitivity loss factor estimation in partial correction regime G. Agapito a, C. Arcidiacono b, S. Esposito a a Osservatorio Astrofisico di Arcetri, INAF; b Osservatorio

More information

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot

Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application. A.K.Saxena and J.P.Lancelot Polarization Shearing Interferometer (PSI) Based Wavefront Sensor for Adaptive Optics Application A.K.Saxena and J.P.Lancelot Adaptive Optics A Closed loop Optical system to compensate atmospheric turbulence

More information

High (Angular) Resolution Astronomy

High (Angular) Resolution Astronomy High (Angular) Resolution Astronomy http://www.mrao.cam.ac.uk/ bn204/ mailto:b.nikolic@mrao.cam.ac.uk Astrophysics Group, Cavendish Laboratory, University of Cambridge January 2012 Outline Science Drivers

More information

Wavefront reconstruction for adaptive optics. Marcos van Dam and Richard Clare W.M. Keck Observatory

Wavefront reconstruction for adaptive optics. Marcos van Dam and Richard Clare W.M. Keck Observatory Wavefront reconstruction for adaptive optics Marcos van Dam and Richard Clare W.M. Keck Observatory Friendly people We borrowed slides from the following people: Lisa Poyneer Luc Gilles Curt Vogel Corinne

More information

University of California Santa Cruz, CA, USA Contents

University of California Santa Cruz, CA, USA Contents University of California Santa Cruz, CA, 95064 USA jnelson@ucolick.org Contents 1. Introduction 1.1. Organization 1.2. Site Selection 1.3. Schedule 1.4. Cost 2. Telescope Overview 3. Key Features of TMT

More information

Point spread function reconstruction at W.M. Keck Observatory : progress and beyond

Point spread function reconstruction at W.M. Keck Observatory : progress and beyond Point spread function reconstruction at W.M. Keck Observatory : progress and beyond Olivier Beltramo-Martin Aix-Marseille Univ., LAM, A*MIDEX, Extra November 9th, 217 - LAM Olivier Beltramo-Martin (LAM)

More information

SDL. Control of the UltraLITE Precision Deployable Test Article Using Adaptive Spatio-Temporal Filtering Based Control

SDL. Control of the UltraLITE Precision Deployable Test Article Using Adaptive Spatio-Temporal Filtering Based Control Control of the UltraLITE Precision Deployable Test Article Using Adaptive Spatio-Temporal Filtering Based Control Albert B. Bosse Thomas D. Sharp Stuart J. Shelley Sheet Dynamics, Ltd. Cincinnati, OH Keith

More information

End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA)

End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA) 1st AO4ELT conference, 04006 (2010) DOI:10.1051/ao4elt/201004006 Owned by the authors, published by EDP Sciences, 2010 End-to-end model for the Polychromatic Laser Guide Star project (ELP-OA) N. Meilard

More information

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo

Subaru GLAO Simulation. Shin Oya (Subaru Telescope) Hilo Subaru GLAO Simulation Shin Oya (Subaru Telescope) 2012/10/16 @ Hilo Outline What is Ground Layer Adaptive Optics (GLAO)? a type of wide-field AO Mauna Kea seeing (which determines GLAO performance) Simulation

More information

Effect of adaptive telescope mirror dynamics on the residual of atmospheric turbulence correction

Effect of adaptive telescope mirror dynamics on the residual of atmospheric turbulence correction Effect of adaptive telescope mirror dynamics on the residual of atmospheric turbulence correction Armando Riccardi ABSTRACT In the present report we quantify the residual error of the correction of the

More information

Closed Loop Active Optics with and without wavefront sensors

Closed Loop Active Optics with and without wavefront sensors Closed Loop Active Optics with and without wavefront sensors P. Schipani 1, R. Holzlöhner 2, L. Noethe 2, A. Rakich 2,3, K. Kuijken 4, S. Savarese 1,5, M. Iuzzolino 1,5 1 INAF Osservatorio Astronomico

More information

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines

Topics for Today. Clicker Q: Radio Waves. Radios. Discussion of how do ROTATING STARS yield Doppler-broadened spectral emission lines ASTR 1040 Accel Astro: Stars & Galaxies Topics for Today Basic principles of eyes, camera, telescopes Twinkle and absorption by our atmosphere What light gets through, what does not Next lecture: Telescopes

More information

ADAPTIVE OPTICS SYSTEMS FOR ASTRONOMY: ITALIAN INDUSTRIAL AND RESEARCH ESTABLISHMENTS

ADAPTIVE OPTICS SYSTEMS FOR ASTRONOMY: ITALIAN INDUSTRIAL AND RESEARCH ESTABLISHMENTS ADAPTIVE OPTICS SYSTEMS FOR ASTRONOMY: ITALIAN INDUSTRIAL AND RESEARCH ESTABLISHMENTS Daniele Gallieni A.D.S. International S.r.l. JINR, Dubna, Dec.21, 2010 Adaptive optics The wavefront sensor measures

More information

Innovations in Gemini Adaptive Optics System Design

Innovations in Gemini Adaptive Optics System Design Header for SPIE use Innovations in Gemini Adaptive Optics System Design Glen Herriot, Simon Morris, Scott Roberts, Murray Fletcher, Leslie Saddlemyer, Gurjeet Singh, Jean-Pierre Véran, E. H. Richardson

More information

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes

Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Disturbance Feedforward Control for Vibration Suppression in Adaptive Optics of Large Telescopes Martin Glück a,b, Jörg-Uwe Pott b, and Oliver Sawodny a a Institute for System Dynamics, University of Stuttgart,

More information

Phase-Referencing and the Atmosphere

Phase-Referencing and the Atmosphere Phase-Referencing and the Atmosphere Francoise Delplancke Outline: Basic principle of phase-referencing Atmospheric / astrophysical limitations Phase-referencing requirements: Practical problems: dispersion

More information

Deformable mirror fitting error by correcting the segmented wavefronts

Deformable mirror fitting error by correcting the segmented wavefronts 1st AO4ELT conference, 06008 (2010) DOI:10.1051/ao4elt/201006008 Owned by the authors, published by EDP Sciences, 2010 Deformable mirror fitting error by correcting the segmented wavefronts Natalia Yaitskova

More information

Adaptive-optics performance of Antarctic telescopes

Adaptive-optics performance of Antarctic telescopes Adaptive-optics performance of Antarctic telescopes Jon S. Lawrence The performance of natural guide star adaptive-optics systems for telescopes located on the Antarctic plateau is evaluated and compared

More information

MRO INTERFEROMETER MEMO Tip/tilt

MRO INTERFEROMETER MEMO Tip/tilt OBJECTIVE: MRO INTERFEROMETER MEMO Tip/tilt N. Thureau, G. Loos, D. Buscher, C. Haniff 19 March 2004 To determine the magnitude of the instantaneous tip-tilt motion expected at the MROI. To calculate the

More information

Technological Development and Needs at ESO

Technological Development and Needs at ESO Technological Development and Needs at ESO Roberto Tamai ESO Technology in Astronomy From a small, manually pointed device for visual observations (around 400 years ago) to a large, sophisticated, computer-controlled

More information

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i)

Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Ground-Layer Adaptive Optics Christoph Baranec (IfA, U. Hawai`i) Photo credit: T. Stalcup What is Ground-layer Adaptive Optics (GLAO)? Benefits of GLAO to astronomy. MMT multiple-laser AO system. Ground-layer

More information

Subaru Next Generation Wide Field AO: Ground Layer AO Simulation

Subaru Next Generation Wide Field AO: Ground Layer AO Simulation Subaru Next Generation Wide Field AO: Ground Layer AO Simulation Shin Oya (Subaru Telescope) Subaru Next Generation AO Working Group 2013/5/9 @ Victoria Subaru Next Generation Wide-Field AO multi-laser

More information

PICTURE sounding rocket telescope

PICTURE sounding rocket telescope PICTURE sounding rocket telescope D. Content, S. Antonille, D. Rabin, T. Wallace NASA GSFC 1 Overview of talk Two {ambitious} sounding rocket concepts sharing a telescope OTA overview PM development program

More information

Control of the Laser Interferometer Space Antenna

Control of the Laser Interferometer Space Antenna Control of the Laser Interferometer Space Antenna P. G. Maghami, T. T. Hyde NASA Goddard Space Flight Center Guidance, Navigation and Control Division Greenbelt, MD 20771 J. Kim Swales Aerospace, Inc.

More information

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing

x Contents Segmented Mirror Telescopes Metal and Lightweight Mirrors Mirror Polishing Contents 1 Fundamentals of Optical Telescopes... 1 1.1 A Brief History of Optical Telescopes.................... 1 1.2 General Astronomical Requirements..................... 6 1.2.1 Angular Resolution.............................

More information

What do we do with the image?

What do we do with the image? Astro 150 Spring 2018: Lecture 7 page 1 Reading: Chapter 6, Sect. 6.4; Chapter 14 + assignment posted on Astro 150 website Homework: questions on special reading - answers due in lecture Thursday Exam

More information

CHARA Meeting 2017 Pasadena, California

CHARA Meeting 2017 Pasadena, California MORE AUTOMATION Laszlo Sturmann M7 ACTUATORS LAB. LASER ALIGNMENT TELESCOPE OPTICAL ALIGNMENT NEW ACTUATORS REMOTELY ACTUATED M7 MOUNT MOTIVATION THE PRECISION OF THE COUDE ALIGNMENT WAS NOT SUFFICIENT

More information

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium

MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT. Paolo Ciliegi. On behalf of the MAORY Consortium MAORY (Multi conjugate Adaptive Optics RelaY) for E-ELT Paolo Ciliegi INAF Osservatorio Astronomico di Bologna On behalf of the MAORY Consortium Science ELT Workshop Team Meeting ESO Garching, MPE Garching,

More information

GEMINI 8-M Telescopes Project

GEMINI 8-M Telescopes Project GEMINI 8-M Telescopes Project RPT-I-G0057 Principles Behind the Gemini Instrumentation Program M. Mountain, F. Gillett, D. Robertson, D. Simons GEMINI PROJECT OFFICE 950 N. Cherry Ave. Tucson, Arizona

More information

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU

CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Florence, Italy. May 013 ISBN: 978-88-908876-0-4 DOI: 10.1839/AO4ELT3.15991 CURRENT STATUS OF RAVEN, A MOAO SCIENCE DEMONSTRATOR FOR SUBARU Olivier Lardière 1a, Dave Andersen, Colin Bradley 1,Célia Blain

More information

Comparison of Adaptive Optics Technologies for Gemini

Comparison of Adaptive Optics Technologies for Gemini Comparison of Adaptive Optics Technologies for Gemini.7.6.5 Strehl.4.3.2.1 Malcolm (APD, 56 act.) Francois (APD, 56 act.) Brent (5 e-, D/d=1) Francois (5 e-, D/d=9) 11 12 13 14 15 16 17 18 19 Brent Ellerbroek

More information

Adaptive Optics with Laser Guide Stars - The ALFA system

Adaptive Optics with Laser Guide Stars - The ALFA system Adaptive Optics with Laser Guide Stars - The ALFA system Thomas Ott, Andreas Eckart, Wolfgang Hackenberg, Sebastian Rabien, Ric Davies, Stephan Anders Max-Planck Institut für extraterrestrische Physik,

More information

Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint)

Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint) AFRL-RD-PS-TP-2008-1008 AFRL-RD-PS-TP-2008-1008 Measuring tilt and focus for sodium beacon adaptive optics on the Starfire 3.5 meter telescope -- Conference Proceedings (Preprint) Robert Johnson 1 September

More information

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW.

Final Announcements. Lecture25 Telescopes. The Bending of Light. Parts of the Human Eye. Reading: Chapter 7. Turn in the homework#6 NOW. Final Announcements Turn in the homework#6 NOW. Homework#5 and Quiz#6 will be returned today. Today is the last lecture. Lecture25 Telescopes Reading: Chapter 7 Final exam on Thursday Be sure to clear

More information

Astronomical Techniques I

Astronomical Techniques I Astronomical Techniques I Lecture 4 Yogesh Wadadekar Jan-Feb 2015 IUCAA-NCRA Grad School 1 / 21 Coma or comatic aberration - inherent to parabolic telescopes show video IUCAA-NCRA Grad School 2 / 21 Schmidt

More information

Numerical atmospheric turbulence models and LQG control for adaptive optics system

Numerical atmospheric turbulence models and LQG control for adaptive optics system Numerical atmospheric turbulence models and LQG control for adaptive optics system Jean-Pierre FOLCHER, Marcel CARBILLET UMR6525 H. Fizeau, Université de Nice Sophia-Antipolis/CNRS/Observatoire de la Côte

More information

Measuring Segment Piston with a Non-Redundant Pupil Mask on the Giant Magellan Telescope

Measuring Segment Piston with a Non-Redundant Pupil Mask on the Giant Magellan Telescope Measuring Segment Piston with a Non-Redundant Pupil Mask on the Giant Magellan Telescope Marcos A. van Dam, a Peter G. Tuthill b, Anthony C. Cheetham, b,c and Fernando Quiros-Pacheco d a Flat Wavefronts,

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Results from the PALM-3000 high-order adaptive optics system Jennifer E. Roberts* a, Richard G. Dekany b, Rick S. Burruss a, Christoph Baranec b, Antonin Bouchez c Ernest E. Croner b, Stephen R. Guiwits

More information

NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS

NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.13893 NA LASER GUIDE STAR AO WITH DYNAMICAL REFOCUS Sebastian Rabien 1,a, Fernando

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

Primary Mirror Cell Deformation and Its Effect on Mirror Figure Assuming a Six-zone Axial Defining System

Primary Mirror Cell Deformation and Its Effect on Mirror Figure Assuming a Six-zone Axial Defining System Primary Mirror Cell Deformation and Its Effect on Mirror Figure Larry Stepp Eugene Huang Eric Hansen Optics Manager Opto-structural Engineer Opto-mechanical Engineer November 1993 GEMINI PROJECT OFFICE

More information