Dynamic-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Dynamic-priority Scheduling

Size: px
Start display at page:

Download "Dynamic-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Dynamic-priority Scheduling"

Transcription

1 CSCE 990: Real-Time Systems Dynamic-Priority Scheduling Steve Goddard htt:// Dynamic-riority Scheduling Real-Time Systems Dynamic-Priority Scheduling - The remaining scheduling discilines we consider are riority-based.» Each ob is assigned a riority, and the highest-riority ob executes at any time. We begin with dynamic-riority scheduling.» Under dynamic-riority scheduling, different obs of a task may be assigned different riorities.» Can have the following: ob J i,k of task T i has higher riority than ob J,m of task T, but ob J i, of T i has lower riority than ob J,n of T. We will consider static-riority scheduling later. Real-Time Systems Dynamic-Priority Scheduling - 2 2

2 Outline We consider both earliest-deadline-first (EDF) and least-laxity-first (LLF) (called least-slacktime-first by Liu) scheduling. Outline:» Otimality of EDF and LLF (Section 4.6 of Liu).» Utilization-based schedulability test for EDF (Section 6.3 of Liu).» Non-reemtive EDF from: Jeffay, Stanat, and Martel, On Otimal, Non-reemtive Scheduling of Periodic nad Soradic Tasks, 8th IEEE RTSS, 99, Otimality of EDF Theorem 4-: [Liu and Layland] When reemtion is allowed and obs do not contend for resources, the EDF algorithm can roduce a feasible schedule of a set J of indeendent obs with arbitrary release times and deadlines on a rocessor if and only if J has feasible schedules. Notes: Alies even if tasks are not eriodic. If eriodic, a task s relative deadline can be less than its eriod, equal to its eriod, or greater than its eriod. Real-Time Systems Dynamic-Priority Scheduling - 3 Real-Time Systems Dynamic-Priority Scheduling

3 Proof of Theorem 4- We show that any feasible schedule of J can be systematically transformed into an EDF schedule. Suose arts of two obs J i and are executed out of EDF order: If we inductively reeat this rocedure, we can eliminate all out-of-order violations. The resulting schedule may still fail to be an EDF schedule because it has idle intervals where some ob is ready: J i J i r k d k d i This situation can be corrected by erforming a swa : Such idle intervals can be eliminated by moving some obs forward: J i J i Real-Time Systems Dynamic-Priority Scheduling - 5 Real-Time Systems Dynamic-Priority Scheduling

4 LLF Scheduling Definition: At any time t, the slack (or laxity) of a ob with deadline d is equal to d t minus the time required to comlete the remaining ortion of the ob. laxity: deadline LLF Scheduling: The ob with the smallest laxity has highest riority at all times. Otimality of LLF Theorem 4-3: When reemtion is allowed and obs do not contend for resources, the LLF algorithm can roduce a feasible schedule of a set J of indeendent obs with arbitrary release times and deadlines on a rocessor if and only if J has feasible schedules. The roof is similar to that for EDF and is left as an exercise. Question: Which of EDF and LLF would be referable in ractice? Real-Time Systems Dynamic-Priority Scheduling - 7 Real-Time Systems Dynamic-Priority Scheduling

5 Preemtive vs. Nonreemtive EDF The rest of our discussion of dynamic-riority scheduling will focus reemtive and non-reemtive EDF. We first show the following: But under non-reemtive EDF, a deadline is missed! Theorem: Non-reemtive EDF is not otimal. Proof: Consider a system of three obs J, J 2, and J 3 such that (r, e, d ) = (0, 3, 0), (r 2, e 2, d 2 ) = (2, 6, 4), (r 3, e 3, d 3 ) = (4, 4, 2). Here s a schedule: J J 3 J Real-Time Systems Dynamic-Priority Scheduling - 9 J J 2 J r r 2 r 3 J 3 s deadline Question: Should we conclude from this result that reemtive EDF is always better than non-reemtive EDF in ractice? Note: The EDF otimality roof assumes there is no enalty due to reemtion. Are there other ractical issues we have ignored? Real-Time Systems Dynamic-Priority Scheduling

6 Utilization-based Schedulability Test for (Preemtive) EDF Note: Whenever we say EDF from now on, we mean reemtive EDF, unless secified otherwise. Theorem 6-: [Liu and Layland] A system T of indeendent, reemtable, eriodic tasks with relative deadlines equal to their eriods can be feasibly scheduled (under EDF) on one rocessor if and only if its total utilization U is at most one. Setting U the Proof We wish to show: U T is schedulable. We rove the contraositive, i.e., T is not schedulable U >. Assume T is not schedulable. Let J i,k be the first ob to miss its deadline. Proof: The only if art is obvious: If U >, then some task clearly must miss a deadline. So, we concentrate on the if art. T i t- ri,k r this is the last idle instant Real-Time Systems Dynamic-Priority Scheduling - Real-Time Systems Dynamic-Priority Scheduling - 2 2

7 Because J i,k missed its deadline the demand laced on the rocessor in [t -, r ) by obs with deadlines r is greater than the available rocessor time in [t -, r ]. Thus, r = = = = t r r = available rocessor time in [t,r < demand laced on the rocessor in [t,r N N (the number of N t t e e obs of T with deadlines r ] - ) - by obs with deadlines released in [t,r r - )) e Real-Time Systems Dynamic-Priority Scheduling - 3 r Thus, we have Cancelling r < i.e., t N = < U. e, < t t yields This comletes the roof. N = r e. Note: This roof is actually still valid if deadlines are larger than eriods. Real-Time Systems Dynamic-Priority Scheduling

8 EDF with Deadlines < Periods If deadlines are less than eriods than U is no longer a sufficient schedulability condition. This is easy to see. Consider two tasks such that, for both, e i = and i = 2. If both have deadlines at.9, then the system is not schedulable, even though U =. For these kinds of systems, we work with densities instead of utilizations. Definition: The density of task T k is defined to be δ k = e k /min(d k, k ). The density of the system is defined to be = k=.,,,.,n δ k. Deadlines < Periods (Continued) Theorem 6-2: A system T of indeendent, reemtable, eriodic tasks can be feasibly scheduled on one rocessor if its density is at most one. The roof is similar to that for Theorem 6- and is left as an exercise. Note: This theorem only gives sufficient condition. We refer to the following as the schedulability condition for EDF: n k= ek min(d, ) k k Real-Time Systems Dynamic-Priority Scheduling - 5 Real-Time Systems Dynamic-Priority Scheduling

9 Proof of Non-tightness To see that > doesn t imly non-schedulability, consider the following examle. Examle: We have two tasks T = (2, 0.6, ) and T 2 = (5, 2.3). = 0.6/ + 2.3/5 =.06. Nonetheless, we can schedule this task set under EDF: T T reeats Non-reemtive EDF (Jeffay et al.) Theorem : Let T = {T, T 2,, T n } be a system of indeendent, eriodic tasks with relative deadlines equal to their eriods such that the tasks in T are indexed in non-decreasing order by eriod (i.e., if i <, then i ). T can be scheduled by the non-reemtive EDF algorithm if: n ei ) i= i 2) i : i n :: L : < L < :: L e + i i i- = L e Note: This condition is actually necessary and sufficient for real-world soradic tasks. Real-Time Systems Dynamic-Priority Scheduling - 7 Real-Time Systems Dynamic-Priority Scheduling

10 Exlanation The first condition is ust a constraint on utilization. In the second condition, the term i- L L ei + e = gives an uer bound on rocessor demand in an interval [t, t+l]. Intuition: The worst-case attern of ob releases occurs when a ob of some T i begins executing (non-reemtively!) one time unit before some tasks with smaller eriods begin releasing some obs. These other obs are blocked by the ob of T i. Real-Time Systems Dynamic-Priority Scheduling - 9 Second Condition (Continued) Here s an illustration: T i T T 2 T 3 For any L over the range < L < i, the total demand on the rocessor in [t, t + L] due to obs with deadlines at or before t + L is: i- L ei + e = For the system to be schedulable, this demand must not exceed the length of the interval (which is L). Real-Time Systems Dynamic-Priority Scheduling

11 Proof of Theorem Suose conditions () and (2) hold for T but a deadline is missed. Let t d be the earliest oint in time at which a deadline is missed. There are two cases. Case : No ob with a deadline after time t d is scheduled rior to time t d. The analysis is ust like with reemtive EDF. Case 2: Some ob with a deadline after time t d is scheduled rior to time t d. Let T i be the task with the last ob with deadline after t d that is scheduled rior to t d. Then, we have the following: As before, let t - be the last idle instant. As before, because a deadline is missed at t d, demand over [t -, t d ] exceeds t d t -. In addition, this demand is at most =,..,n (t d t - )/ e. Thus, we have t d t - < =,..,n (t d t - )/ e =,..,n [(t d t - )/ ] e. This imlies utilization exceeds one, which contradicts condition (). Time T i t i Let us bound the rocessor demand in [t i, t d ] t d Real-Time Systems Dynamic-Priority Scheduling - 2 Real-Time Systems Dynamic-Priority Scheduling

12 Observe the following:» i > t d t i. This follows from the fact that the ob of task T i scheduled at time t i had a deadline after t d.» No task with index greater than i is scheduled in the interval [t i, t d ].» Other than a ob of task T i, no ob scheduled in [t i, t d ] could have been released at time t i.» There is no idle time in the interval [t i, t d ].» There is a least one ob that is released in [t i, t d ] with a deadline at or before time t d. From these facts, we conclude that demand over [t i, t d ] is less than or equal to i- t d (ti + ) ei + e. = Let L = t d t i. Then, L < e + This contradicts condition (2). i i- = L e. Real-Time Systems Dynamic-Priority Scheduling - 23 Real-Time Systems Dynamic-Priority Scheduling

13 Notes Note that this scheduling condition requires seudoolynomial time to evaluate. (Why?) Using real-world terminology, this condition is necessary and sufficient for soradic and non-concrete eriodic task systems. (Why?) Concrete = fixed release times (though maybe not all 0). For a non-concrete task system to be feasible, it must be schedulable for any initial hasing. In the rest of the aer, it is shown that the feasibility roblem for non-reemtive concrete eriodic task systems is NP-hard in the strong sense. Imlies that a seudo-olynomial-time feasibility test is unlikely for such systems. (We cover this result later when we consider intractability.) Real-Time Systems Dynamic-Priority Scheduling

New Schedulability Test Conditions for Non-preemptive Scheduling on Multiprocessor Platforms

New Schedulability Test Conditions for Non-preemptive Scheduling on Multiprocessor Platforms New Schedulability Test Conditions for Non-reemtive Scheduling on Multirocessor Platforms Technical Reort May 2008 Nan Guan 1, Wang Yi 2, Zonghua Gu 3 and Ge Yu 1 1 Northeastern University, Shenyang, China

More information

Periodic scheduling 05/06/

Periodic scheduling 05/06/ Periodic scheduling T T or eriodic scheduling, the best that we can do is to design an algorithm which will always find a schedule if one exists. A scheduler is defined to be otimal iff it will find a

More information

Multi-Operation Multi-Machine Scheduling

Multi-Operation Multi-Machine Scheduling Multi-Oeration Multi-Machine Scheduling Weizhen Mao he College of William and Mary, Williamsburg VA 3185, USA Abstract. In the multi-oeration scheduling that arises in industrial engineering, each job

More information

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling

Static-Priority Scheduling. CSCE 990: Real-Time Systems. Steve Goddard. Static-priority Scheduling CSCE 990: Real-Time Systems Static-Priority Scheduling Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/realtimesystems Static-priority Scheduling Real-Time Systems Static-Priority

More information

Deadline-driven scheduling

Deadline-driven scheduling Deadline-driven scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3

Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Real-time Scheduling of Periodic Tasks (2) Advanced Operating Systems Lecture 3 Lecture Outline The rate monotonic algorithm (cont d) Maximum utilisation test The deadline monotonic algorithm The earliest

More information

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund

Scheduling Periodic Real-Time Tasks on Uniprocessor Systems. LS 12, TU Dortmund Scheduling Periodic Real-Time Tasks on Uniprocessor Systems Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 08, Dec., 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 38 Periodic Control System Pseudo-code

More information

There are three priority driven approaches that we will look at

There are three priority driven approaches that we will look at Priority Driven Approaches There are three priority driven approaches that we will look at Earliest-Deadline-First (EDF) Least-Slack-Time-first (LST) Latest-Release-Time-first (LRT) 1 EDF Earliest deadline

More information

Static priority scheduling

Static priority scheduling Static priority scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017 Some slides are derived from lectures

More information

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i

Embedded Systems 15. REVIEW: Aperiodic scheduling. C i J i 0 a i s i f i d i Embedded Systems 15-1 - REVIEW: Aperiodic scheduling C i J i 0 a i s i f i d i Given: A set of non-periodic tasks {J 1,, J n } with arrival times a i, deadlines d i, computation times C i precedence constraints

More information

Real-Time Computing with Lock-Free Shared Objects

Real-Time Computing with Lock-Free Shared Objects Real-Time Comuting with Lock-Free Shared Objects JAMES H. ADERSO, SRIKATH RAMAMURTHY, and KEVI JEFFAY University of orth Carolina This article considers the use of lock-free shared objects within hard

More information

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2

Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Real-time Scheduling of Periodic Tasks (1) Advanced Operating Systems Lecture 2 Lecture Outline Scheduling periodic tasks The rate monotonic algorithm Definition Non-optimality Time-demand analysis...!2

More information

Polynomial-Time Exact Schedulability Tests for Harmonic Real-Time Tasks

Polynomial-Time Exact Schedulability Tests for Harmonic Real-Time Tasks Polynomial-Time Exact Schedulability Tests for Harmonic Real-Time Tasks Vincenzo Bonifaci, Alberto Marchetti-Saccamela, Nicole Megow, Andreas Wiese Istituto di Analisi dei Sistemi ed Informatica Antonio

More information

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks

Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Non-preemptive Fixed Priority Scheduling of Hard Real-Time Periodic Tasks Moonju Park Ubiquitous Computing Lab., IBM Korea, Seoul, Korea mjupark@kr.ibm.com Abstract. This paper addresses the problem of

More information

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling

Lecture 6. Real-Time Systems. Dynamic Priority Scheduling Real-Time Systems Lecture 6 Dynamic Priority Scheduling Online scheduling with dynamic priorities: Earliest Deadline First scheduling CPU utilization bound Optimality and comparison with RM: Schedulability

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Hermann Härtig WS 2018/19 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed Priority schedulers

More information

Andrew Morton University of Waterloo Canada

Andrew Morton University of Waterloo Canada EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo Canada Outline 1) Introduction and motivation 2) Review of EDF and feasibility analysis 3) Hardware accelerators and scheduling

More information

Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment

Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment Scheduling Algorithms for Multiprogramming in a Hard Realtime Environment C. Liu and J. Layland Journal of the ACM, 20(1):46--61, January 1973. 2 Contents 1. Introduction and Background 2. The Environment

More information

Real-Time and Embedded Systems (M) Lecture 5

Real-Time and Embedded Systems (M) Lecture 5 Priority-driven Scheduling of Periodic Tasks (1) Real-Time and Embedded Systems (M) Lecture 5 Lecture Outline Assumptions Fixed-priority algorithms Rate monotonic Deadline monotonic Dynamic-priority algorithms

More information

Real-time Systems: Scheduling Periodic Tasks

Real-time Systems: Scheduling Periodic Tasks Real-time Systems: Scheduling Periodic Tasks Advanced Operating Systems Lecture 15 This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To view a copy of

More information

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems

Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Schedulability of Periodic and Sporadic Task Sets on Uniprocessor Systems Jan Reineke Saarland University July 4, 2013 With thanks to Jian-Jia Chen! Jan Reineke July 4, 2013 1 / 58 Task Models and Scheduling

More information

Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4

Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4 Priority-driven Scheduling of Periodic Tasks (1) Advanced Operating Systems (M) Lecture 4 Priority-driven Scheduling Assign priorities to jobs, based on their deadline or other timing constraint Make scheduling

More information

EDF Scheduling. Giuseppe Lipari May 11, Scuola Superiore Sant Anna Pisa

EDF Scheduling. Giuseppe Lipari   May 11, Scuola Superiore Sant Anna Pisa EDF Scheduling Giuseppe Lipari http://feanor.sssup.it/~lipari Scuola Superiore Sant Anna Pisa May 11, 2008 Outline 1 Dynamic priority 2 Basic analysis 3 FP vs EDF 4 Processor demand bound analysis Generalization

More information

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology

Real-Time Systems. Lecture #14. Risat Pathan. Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Lecture #14 Risat Pathan Department of Computer Science and Engineering Chalmers University of Technology Real-Time Systems Specification Implementation Multiprocessor scheduling -- Partitioned

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Lecture 3 Real-Time Scheduling Dr. Daniel Kästner AbsInt Angewandte Informatik GmbH kaestner@absint.com Model-based Software Development Generator Lustre programs Esterel programs

More information

Real-Time Systems. Event-Driven Scheduling

Real-Time Systems. Event-Driven Scheduling Real-Time Systems Event-Driven Scheduling Marcus Völp, Hermann Härtig WS 2013/14 Outline mostly following Jane Liu, Real-Time Systems Principles Scheduling EDF and LST as dynamic scheduling methods Fixed

More information

Task Models and Scheduling

Task Models and Scheduling Task Models and Scheduling Jan Reineke Saarland University June 27 th, 2013 With thanks to Jian-Jia Chen at KIT! Jan Reineke Task Models and Scheduling June 27 th, 2013 1 / 36 Task Models and Scheduling

More information

Rate-Monotonic Scheduling with variable. execution time and period. October 31, Abstract

Rate-Monotonic Scheduling with variable. execution time and period. October 31, Abstract Rate-Monotonic Scheduling with variable execution time and period Oldeld Peter October 31, 1997 Abstract Abstract is something cannot be understood. 1 Rate Monotonic Model Let Ti be a task. Let Pi be the

More information

EDF Feasibility and Hardware Accelerators

EDF Feasibility and Hardware Accelerators EDF Feasibility and Hardware Accelerators Andrew Morton University of Waterloo, Waterloo, Canada, arrmorton@uwaterloo.ca Wayne M. Loucks University of Waterloo, Waterloo, Canada, wmloucks@pads.uwaterloo.ca

More information

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES

RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES RUN-TIME EFFICIENT FEASIBILITY ANALYSIS OF UNI-PROCESSOR SYSTEMS WITH STATIC PRIORITIES Department for Embedded Systems/Real-Time Systems, University of Ulm {name.surname}@informatik.uni-ulm.de Abstract:

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information

CMSC 451: Lecture 7 Greedy Algorithms for Scheduling Tuesday, Sep 19, 2017

CMSC 451: Lecture 7 Greedy Algorithms for Scheduling Tuesday, Sep 19, 2017 CMSC CMSC : Lecture Greedy Algorithms for Scheduling Tuesday, Sep 9, 0 Reading: Sects.. and. of KT. (Not covered in DPV.) Interval Scheduling: We continue our discussion of greedy algorithms with a number

More information

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution

A Theory of Rate-Based Execution. A Theory of Rate-Based Execution Kevin Jeffay Department of Computer Science University of North Carolina at Chapel Hill jeffay@cs cs.unc.edu Steve Goddard Computer Science & Engineering University of Nebraska Ð Lincoln goddard@cse cse.unl.edu

More information

Analysis of M/M/n/K Queue with Multiple Priorities

Analysis of M/M/n/K Queue with Multiple Priorities Analysis of M/M/n/K Queue with Multile Priorities Coyright, Sanjay K. Bose For a P-riority system, class P of highest riority Indeendent, Poisson arrival rocesses for each class with i as average arrival

More information

CHAPTER-5 PERFORMANCE ANALYSIS OF AN M/M/1/K QUEUE WITH PREEMPTIVE PRIORITY

CHAPTER-5 PERFORMANCE ANALYSIS OF AN M/M/1/K QUEUE WITH PREEMPTIVE PRIORITY CHAPTER-5 PERFORMANCE ANALYSIS OF AN M/M//K QUEUE WITH PREEMPTIVE PRIORITY 5. INTRODUCTION In last chater we discussed the case of non-reemtive riority. Now we tae the case of reemtive riority. Preemtive

More information

EDF Scheduling. Giuseppe Lipari CRIStAL - Université de Lille 1. October 4, 2015

EDF Scheduling. Giuseppe Lipari  CRIStAL - Université de Lille 1. October 4, 2015 EDF Scheduling Giuseppe Lipari http://www.lifl.fr/~lipari CRIStAL - Université de Lille 1 October 4, 2015 G. Lipari (CRIStAL) Earliest Deadline Scheduling October 4, 2015 1 / 61 Earliest Deadline First

More information

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks

Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Segment-Fixed Priority Scheduling for Self-Suspending Real-Time Tasks Junsung Kim, Björn Andersson, Dionisio de Niz, and Raj Rajkumar Carnegie Mellon University 2/31 Motion Planning on Self-driving Parallel

More information

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions

3. Scheduling issues. Common approaches 3. Common approaches 1. Preemption vs. non preemption. Common approaches 2. Further definitions Common approaches 3 3. Scheduling issues Priority-driven (event-driven) scheduling This class of algorithms is greedy They never leave available processing resources unutilized An available resource may

More information

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2, MATH 4400 roblems. Math 4400/6400 Homework # solutions 1. Let P be an odd integer not necessarily rime. Show that modulo, { P 1 0 if P 1, 7 mod, 1 if P 3, mod. Proof. Suose that P 1 mod. Then we can write

More information

The Value of Even Distribution for Temporal Resource Partitions

The Value of Even Distribution for Temporal Resource Partitions The Value of Even Distribution for Temoral Resource Partitions Yu Li, Albert M. K. Cheng Deartment of Comuter Science University of Houston Houston, TX, 7704, USA htt://www.cs.uh.edu Technical Reort Number

More information

Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors. Sanjoy K.

Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors. Sanjoy K. Optimal Utilization Bounds for the Fixed-priority Scheduling of Periodic Task Systems on Identical Multiprocessors Sanjoy K. Baruah Abstract In fixed-priority scheduling the priority of a job, once assigned,

More information

MATH 2710: NOTES FOR ANALYSIS

MATH 2710: NOTES FOR ANALYSIS MATH 270: NOTES FOR ANALYSIS The main ideas we will learn from analysis center around the idea of a limit. Limits occurs in several settings. We will start with finite limits of sequences, then cover infinite

More information

The Rate-Based Execution Model

The Rate-Based Execution Model University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln CSE Technical reports Computer Science and Engineering, Department of 4-1-1999 The Rate-Based Execution Model Kevin Jeffay

More information

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00

IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 TECHNISCHE UNIVERSITEIT DELFT Faculteit Elektrotechniek, Wiskunde en Informatica IN4343 Real Time Systems April 9th 2014, from 9:00 to 12:00 Koen Langendoen Marco Zuniga Question: 1 2 3 4 5 Total Points:

More information

Bounding the Maximum Length of Non-Preemptive Regions Under Fixed Priority Scheduling

Bounding the Maximum Length of Non-Preemptive Regions Under Fixed Priority Scheduling Bounding the Maximum Length of Non-Preemptive Regions Under Fixed Priority Scheduling Gang Yao, Giorgio Buttazzo and Marko Bertogna Scuola Superiore Sant Anna, Pisa, Italy {g.yao, g.buttazzo, m.bertogna}@sssup.it

More information

Aperiodic Task Scheduling

Aperiodic Task Scheduling Aperiodic Task Scheduling Jian-Jia Chen (slides are based on Peter Marwedel) TU Dortmund, Informatik 12 Germany Springer, 2010 2017 年 11 月 29 日 These slides use Microsoft clip arts. Microsoft copyright

More information

Laxity dynamics and LLF schedulability analysis on multiprocessor platforms

Laxity dynamics and LLF schedulability analysis on multiprocessor platforms DOI 10.1007/s11241-012-9157-x Laxity dynamics and LLF schedulability analysis on multiprocessor platforms Jinkyu Lee Arvind Easwaran Insik Shin Springer Science+Business Media, LLC 2012 Abstract LLF Least

More information

4 Scheduling. Outline of the chapter. 4.1 Preliminaries

4 Scheduling. Outline of the chapter. 4.1 Preliminaries 4 Scheduling In this section, e consider so-called Scheduling roblems I.e., if there are altogether M machines or resources for each machine, a roduction sequence of all N jobs has to be found as ell as

More information

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS

ON THE LEAST SIGNIFICANT p ADIC DIGITS OF CERTAIN LUCAS NUMBERS #A13 INTEGERS 14 (014) ON THE LEAST SIGNIFICANT ADIC DIGITS OF CERTAIN LUCAS NUMBERS Tamás Lengyel Deartment of Mathematics, Occidental College, Los Angeles, California lengyel@oxy.edu Received: 6/13/13,

More information

On the Chvatál-Complexity of Knapsack Problems

On the Chvatál-Complexity of Knapsack Problems R u t c o r Research R e o r t On the Chvatál-Comlexity of Knasack Problems Gergely Kovács a Béla Vizvári b RRR 5-08, October 008 RUTCOR Rutgers Center for Oerations Research Rutgers University 640 Bartholomew

More information

Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors

Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors Schedulability and Optimization Analysis for Non-Preemptive Static Priority Scheduling Based on Task Utilization and Blocking Factors Georg von der Brüggen, Jian-Jia Chen, Wen-Hung Huang Department of

More information

Tardiness Bounds under Global EDF Scheduling on a. Multiprocessor

Tardiness Bounds under Global EDF Scheduling on a. Multiprocessor Tardiness Bounds under Global EDF Scheduling on a Multiprocessor UmaMaheswari C. Devi and James H. Anderson Department of Computer Science The University of North Carolina at Chapel Hill Abstract We consider

More information

Embedded Systems 14. Overview of embedded systems design

Embedded Systems 14. Overview of embedded systems design Embedded Systems 14-1 - Overview of embedded systems design - 2-1 Point of departure: Scheduling general IT systems In general IT systems, not much is known about the computational processes a priori The

More information

Shadow Computing: An Energy-Aware Fault Tolerant Computing Model

Shadow Computing: An Energy-Aware Fault Tolerant Computing Model Shadow Comuting: An Energy-Aware Fault Tolerant Comuting Model Bryan Mills, Taieb Znati, Rami Melhem Deartment of Comuter Science University of Pittsburgh (bmills, znati, melhem)@cs.itt.edu Index Terms

More information

Lecture 21: Quantum Communication

Lecture 21: Quantum Communication CS 880: Quantum Information Processing 0/6/00 Lecture : Quantum Communication Instructor: Dieter van Melkebeek Scribe: Mark Wellons Last lecture, we introduced the EPR airs which we will use in this lecture

More information

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous

On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous On the Soft Real-Time Optimality of Global EDF on Multiprocessors: From Identical to Uniform Heterogeneous Kecheng Yang and James H. Anderson Department of Computer Science, University of North Carolina

More information

Statistical Multiplexing Gain of Link Scheduling Algorithms in QoS Networks (Short Version)

Statistical Multiplexing Gain of Link Scheduling Algorithms in QoS Networks (Short Version) 1 Statistical Multilexing Gain of Link Scheduling Algorithms in QoS Networks (Short Version) Technical Reort: University of Virginia, CS-99-23, July 1999 Robert Boorstyn Almut Burchard Jörg Liebeherr y

More information

Optimal Reward-Based Scheduling for Periodic Real-Time Tasks

Optimal Reward-Based Scheduling for Periodic Real-Time Tasks IEEE TRANSACTIONS ON COMUTERS, VOL. 50, NO. 2, FEBRUARY 200 Optimal Reward-Based Scheduling for eriodic Real-Time Tasks Hakan Aydin, Student Member, IEEE, Rami Melhem, Fellow, IEEE, Daniel MosseÂ, Member,

More information

Approximating min-max k-clustering

Approximating min-max k-clustering Aroximating min-max k-clustering Asaf Levin July 24, 2007 Abstract We consider the roblems of set artitioning into k clusters with minimum total cost and minimum of the maximum cost of a cluster. The cost

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes

16.2. Infinite Series. Introduction. Prerequisites. Learning Outcomes Infinite Series 6.2 Introduction We extend the concet of a finite series, met in Section 6., to the situation in which the number of terms increase without bound. We define what is meant by an infinite

More information

Task assignment in heterogeneous multiprocessor platforms

Task assignment in heterogeneous multiprocessor platforms Task assignment in heterogeneous multiprocessor platforms Sanjoy K. Baruah Shelby Funk The University of North Carolina Abstract In the partitioned approach to scheduling periodic tasks upon multiprocessors,

More information

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling

EECS 571 Principles of Real-Time Embedded Systems. Lecture Note #7: More on Uniprocessor Scheduling EECS 571 Principles of Real-Time Embedded Systems Lecture Note #7: More on Uniprocessor Scheduling Kang G. Shin EECS Department University of Michigan Precedence and Exclusion Constraints Thus far, we

More information

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions

Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Non-Work-Conserving Non-Preemptive Scheduling: Motivations, Challenges, and Potential Solutions Mitra Nasri Chair of Real-time Systems, Technische Universität Kaiserslautern, Germany nasri@eit.uni-kl.de

More information

Simple Dispatch Rules

Simple Dispatch Rules Simple Dispatch Rules We will first look at some simple dispatch rules: algorithms for which the decision about which job to run next is made based on the jobs and the time (but not on the history of jobs

More information

Advanced Calculus I. Part A, for both Section 200 and Section 501

Advanced Calculus I. Part A, for both Section 200 and Section 501 Sring 2 Instructions Please write your solutions on your own aer. These roblems should be treated as essay questions. A roblem that says give an examle requires a suorting exlanation. In all roblems, you

More information

Elementary Analysis in Q p

Elementary Analysis in Q p Elementary Analysis in Q Hannah Hutter, May Szedlák, Phili Wirth November 17, 2011 This reort follows very closely the book of Svetlana Katok 1. 1 Sequences and Series In this section we will see some

More information

Sums of independent random variables

Sums of independent random variables 3 Sums of indeendent random variables This lecture collects a number of estimates for sums of indeendent random variables with values in a Banach sace E. We concentrate on sums of the form N γ nx n, where

More information

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling II: Global Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling II: Global Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 28, June, 2016 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 42 Global Scheduling We will only focus on identical

More information

Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems

Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems Predictability of Least Laxity First Scheduling Algorithm on Multiprocessor Real-Time Systems Sangchul Han and Minkyu Park School of Computer Science and Engineering, Seoul National University, Seoul,

More information

A New Task Model and Utilization Bound for Uniform Multiprocessors

A New Task Model and Utilization Bound for Uniform Multiprocessors A New Task Model and Utilization Bound for Uniform Multiprocessors Shelby Funk Department of Computer Science, The University of Georgia Email: shelby@cs.uga.edu Abstract This paper introduces a new model

More information

where x i is the ith coordinate of x R N. 1. Show that the following upper bound holds for the growth function of H:

where x i is the ith coordinate of x R N. 1. Show that the following upper bound holds for the growth function of H: Mehryar Mohri Foundations of Machine Learning Courant Institute of Mathematical Sciences Homework assignment 2 October 25, 2017 Due: November 08, 2017 A. Growth function Growth function of stum functions.

More information

A Competitive Algorithm for Minimizing Weighted Flow Time on Unrelated Machines with Speed Augmentation

A Competitive Algorithm for Minimizing Weighted Flow Time on Unrelated Machines with Speed Augmentation Cometitive lgorithm for Minimizing Weighted Flow Time on Unrelated Machines with Seed ugmentation Jivitej S. Chadha and Naveen Garg and mit Kumar and V. N. Muralidhara Comuter Science and Engineering Indian

More information

On Non-Preemptive Scheduling of Periodic and Sporadic Tasks

On Non-Preemptive Scheduling of Periodic and Sporadic Tasks On Non-Preemptive Scheduling of Periodic and Sporadic Tasks Kevin Jeffay * Donald F. Stanat University of North Carolina at Chapel Hill Department of Computer Science Charles U. Martel ** University of

More information

The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems

The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems The Partitioned Dynamic-priority Scheduling of Sporadic Task Systems Abstract A polynomial-time algorithm is presented for partitioning a collection of sporadic tasks among the processors of an identical

More information

Real-Time Systems. Lecture 4. Scheduling basics. Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling

Real-Time Systems. Lecture 4. Scheduling basics. Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling Real-Time Systems Lecture 4 Scheduling basics Task scheduling - basic taxonomy Basic scheduling techniques Static cyclic scheduling 1 Last lecture (3) Real-time kernels The task states States and transition

More information

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption

A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption A Dynamic Real-time Scheduling Algorithm for Reduced Energy Consumption Rohini Krishnapura, Steve Goddard, Ala Qadi Computer Science & Engineering University of Nebraska Lincoln Lincoln, NE 68588-0115

More information

Clock-driven scheduling

Clock-driven scheduling Clock-driven scheduling Also known as static or off-line scheduling Michal Sojka Czech Technical University in Prague, Faculty of Electrical Engineering, Department of Control Engineering November 8, 2017

More information

CIS 4930/6930: Principles of Cyber-Physical Systems

CIS 4930/6930: Principles of Cyber-Physical Systems CIS 4930/6930: Principles of Cyber-Physical Systems Chapter 11 Scheduling Hao Zheng Department of Computer Science and Engineering University of South Florida H. Zheng (CSE USF) CIS 4930/6930: Principles

More information

AS computer hardware technology advances, both

AS computer hardware technology advances, both 1 Best-Harmonically-Fit Periodic Task Assignment Algorithm on Multiple Periodic Resources Chunhui Guo, Student Member, IEEE, Xiayu Hua, Student Member, IEEE, Hao Wu, Student Member, IEEE, Douglas Lautner,

More information

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness

A Note on Scheduling Tall/Small Multiprocessor Tasks with Unit Processing Time to Minimize Maximum Tardiness A Note on Scheduling Tall/Sall Multiprocessor Tasks with Unit Processing Tie to Miniize Maxiu Tardiness Philippe Baptiste and Baruch Schieber IBM T.J. Watson Research Center P.O. Box 218, Yorktown Heights,

More information

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol.

Bounding the End-to-End Response Times of Tasks in a Distributed. Real-Time System Using the Direct Synchronization Protocol. Bounding the End-to-End Response imes of asks in a Distributed Real-ime System Using the Direct Synchronization Protocol Jun Sun Jane Liu Abstract In a distributed real-time system, a task may consist

More information

Lecture: Workload Models (Advanced Topic)

Lecture: Workload Models (Advanced Topic) Lecture: Workload Models (Advanced Topic) Real-Time Systems, HT11 Martin Stigge 28. September 2011 Martin Stigge Workload Models 28. September 2011 1 System

More information

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund

Multiprocessor Scheduling I: Partitioned Scheduling. LS 12, TU Dortmund Multiprocessor Scheduling I: Partitioned Scheduling Prof. Dr. Jian-Jia Chen LS 12, TU Dortmund 22/23, June, 2015 Prof. Dr. Jian-Jia Chen (LS 12, TU Dortmund) 1 / 47 Outline Introduction to Multiprocessor

More information

Schedulability analysis of global Deadline-Monotonic scheduling

Schedulability analysis of global Deadline-Monotonic scheduling Schedulability analysis of global Deadline-Monotonic scheduling Sanjoy Baruah Abstract The multiprocessor Deadline-Monotonic (DM) scheduling of sporadic task systems is studied. A new sufficient schedulability

More information

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017

MTH 3102 Complex Variables Practice Exam 1 Feb. 10, 2017 Name (Last name, First name): MTH 310 Comlex Variables Practice Exam 1 Feb. 10, 017 Exam Instructions: You have 1 hour & 10 minutes to comlete the exam. There are a total of 7 roblems. You must show your

More information

Runtime feasibility check for non-preemptive real-time periodic tasks

Runtime feasibility check for non-preemptive real-time periodic tasks Information Processing Letters 97 (2006) 83 87 www.elsevier.com/locate/ipl Runtime feasibility check for non-preemptive real-time periodic tasks Sangwon Kim, Joonwon Lee, Jinsoo Kim Division of Computer

More information

15-451/651: Design & Analysis of Algorithms October 23, 2018 Lecture #17: Prediction from Expert Advice last changed: October 25, 2018

15-451/651: Design & Analysis of Algorithms October 23, 2018 Lecture #17: Prediction from Expert Advice last changed: October 25, 2018 5-45/65: Design & Analysis of Algorithms October 23, 208 Lecture #7: Prediction from Exert Advice last changed: October 25, 208 Prediction with Exert Advice Today we ll study the roblem of making redictions

More information

Linear diophantine equations for discrete tomography

Linear diophantine equations for discrete tomography Journal of X-Ray Science and Technology 10 001 59 66 59 IOS Press Linear diohantine euations for discrete tomograhy Yangbo Ye a,gewang b and Jiehua Zhu a a Deartment of Mathematics, The University of Iowa,

More information

Convex Optimization methods for Computing Channel Capacity

Convex Optimization methods for Computing Channel Capacity Convex Otimization methods for Comuting Channel Caacity Abhishek Sinha Laboratory for Information and Decision Systems (LIDS), MIT sinhaa@mit.edu May 15, 2014 We consider a classical comutational roblem

More information

Real Analysis 1 Fall Homework 3. a n.

Real Analysis 1 Fall Homework 3. a n. eal Analysis Fall 06 Homework 3. Let and consider the measure sace N, P, µ, where µ is counting measure. That is, if N, then µ equals the number of elements in if is finite; µ = otherwise. One usually

More information

Math 701: Secant Method

Math 701: Secant Method Math 701: Secant Method The secant method aroximates solutions to f(x = 0 using an iterative scheme similar to Newton s method in which the derivative has been relace by This results in the two-term recurrence

More information

Sampling and Distortion Tradeoffs for Bandlimited Periodic Signals

Sampling and Distortion Tradeoffs for Bandlimited Periodic Signals Samling and Distortion radeoffs for Bandlimited Periodic Signals Elaheh ohammadi and Farokh arvasti Advanced Communications Research Institute ACRI Deartment of Electrical Engineering Sharif University

More information

End-to-End Delay Minimization in Thermally Constrained Distributed Systems

End-to-End Delay Minimization in Thermally Constrained Distributed Systems End-to-End Delay Minimization in Thermally Constrained Distributed Systems Pratyush Kumar, Lothar Thiele Comuter Engineering and Networks Laboratory (TIK) ETH Zürich, Switzerland {ratyush.kumar, lothar.thiele}@tik.ee.ethz.ch

More information

Controlling Preemption for Better Schedulability in Multi-Core Systems

Controlling Preemption for Better Schedulability in Multi-Core Systems 2012 IEEE 33rd Real-Time Systems Symposium Controlling Preemption for Better Schedulability in Multi-Core Systems Jinkyu Lee and Kang G. Shin Dept. of Electrical Engineering and Computer Science, The University

More information

Multiprocessor EDF and Deadline Monotonic Schedulability Analysis

Multiprocessor EDF and Deadline Monotonic Schedulability Analysis Multiprocessor EDF and Deadline Monotonic Schedulability Analysis Ted Baker Department of Computer Science Florida State University Tallahassee, FL 32306-4530 http://www.cs.fsu.edu/ baker Overview 1. question

More information

2. Review of Calculus Notation. C(X) all functions continuous on the set X. C[a, b] all functions continuous on the interval [a, b].

2. Review of Calculus Notation. C(X) all functions continuous on the set X. C[a, b] all functions continuous on the interval [a, b]. CHAPTER Mathematical Preliminaries and Error Analysis. Review of Calculus Notation. C(X) all functions continuous on the set X. C[a, b] all functions continuous on the interval [a, b]. C n(x) all functions

More information

On Wald-Type Optimal Stopping for Brownian Motion

On Wald-Type Optimal Stopping for Brownian Motion J Al Probab Vol 34, No 1, 1997, (66-73) Prerint Ser No 1, 1994, Math Inst Aarhus On Wald-Tye Otimal Stoing for Brownian Motion S RAVRSN and PSKIR The solution is resented to all otimal stoing roblems of

More information

A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets

A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets A New Sufficient Feasibility Test for Asynchronous Real-Time Periodic Task Sets Abstract The problem of feasibility analysis for asynchronous periodic task sets (ie where tasks can have an initial offset

More information

Homework 2 - Solutions

Homework 2 - Solutions Homework 2 - Solutions Carbon Nanotubes Part 4) We can write the wavefunction of the grahene sheet within the tight-binding model in the usual way ( ~ R)= e i~ k ~R Then, to imose eriodic boundary condition

More information