HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma

Size: px
Start display at page:

Download "HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma"

Transcription

1 HIGGS COMPOSITENESS: CURRENT STATUS (AND FUTURE STRATEGIES) Roberto Contino Università di Roma La Sapienza & INFN Roma SUSY ICTP, Trieste 6-31 August, 013

2 Outline Strong vs Weak EWSB Current Status of Higgs Compositeness: 1. Higgs mass. EW Precision Tests 3. Impact of Searches for top partners 4. Impact of data on Higgs couplings

3 Strong vs Weak EWSB

4 In the {SM-H} χ χ χ χ A(W L W L W L W L )=A(χχ χχ) E v g (E) In the {SM-H} + H + h c V A E v (1 c V ) c V m h v s s m h 4

5 χ χ In the {SM-H} A(W L W L W L W L )=A(χχ χχ) E v g (E) χ χ In the {SM-H} + H + h c V A E v (1 c V ) c V m h v s s m h =0 g(e) Elementary Higgs: c V =1 weak m h v 4 E

6 In the {SM-H} χ χ χ χ A(W L W L W L W L )=A(χχ χχ) E v g (E) In the {SM-H} + Hi + h i c Vi A E v 1 i =0 c Vi Elementary Higgses: (more than one) δc Vi O(1) possible sum rule: c Vi =1 i

7 h Composite Higgs: + + ρ c V =1 coupling strength grows with energy and saturates at g 4π E g(λ S )=4π strong scale Λ S Energy cartoon: g g(m ) m W, Z, h 6

8 Analogy with ππ scattering in QCD: h σ Q: why light and narrow? 7

9 Analogy with ππ scattering in QCD: h σ Q: why light and narrow? A: the Higgs is itself a (pseudo) NG boson Georgi & Kaplan, 80 Kaplan, Georgi, Dimopoulos SO(5) SO(4) ex: 4 NGBs transforming as a (,) of SO(4)~SU()LxSU()R Agashe, RC, Pomarol NPB 719 (005) 165 f µ e iπ/f =( π) + (π π) f + π (π π) f

10 Analogy with ππ scattering in QCD: h σ Q: why light and narrow? A: the Higgs is itself a (pseudo) NG boson Georgi & Kaplan, 80 Kaplan, Georgi, Dimopoulos SO(5) SO(4) ex: 4 NGBs transforming as a (,) of SO(4)~SU()LxSU()R Agashe, RC, Pomarol NPB 719 (005) 165 f µ e iπ/f = Dµ H + c H f µ (H H) + c H f 4 (H H) µ (H H) +... Giudice et al. JHEP 0706 (007) 045 8

11 Analogy with ππ scattering in QCD: h σ Q: why light and narrow? A: the Higgs is itself a (pseudo) NG boson Georgi & Kaplan, 80 Kaplan, Georgi, Dimopoulos SO(5) SO(4) ex: 4 NGBs transforming as a (,) of SO(4)~SU()LxSU()R Agashe, RC, Pomarol NPB 719 (005) 165 f µ e iπ/f = Dµ H + c H f µ (H H) + c H f 4 (H H) µ (H H) +... Giudice et al. JHEP 0706 (007) 045 O(v /f v 1. ) shifts in tree-level Higgs couplings. Ex: c V =1 c H +... f 8

12 Analogy with ππ scattering in QCD: h σ Q: why light and narrow? A: the Higgs is itself a (pseudo) NG boson Georgi & Kaplan, 80 Kaplan, Georgi, Dimopoulos ex: SO(5) SO(4) 4 NGBs transforming as a (,) of SO(4)~SU()LxSU()R Agashe, RC, Pomarol NPB 719 (005) 165 f µ e iπ/f = Dµ H + c H f µ (H H) + c H f 4 (H H) µ (H H) +... Giudice et al. JHEP 0706 (007) 045. Scatterings involving the Higgs also grow with energy 9 A(WW hh) s v (c V c V ) c V c V c 3

13 Linear couplings D.B. Kaplan NPB 365 (1991) RS with bulk fermions Hypothesis: each SM fermion couples to a composite fermionic operator with the same SU(3)cxSU()LxU(1)Y quantum numbers L = λ L q L O R + λ R ū R O L + h.c. 10

14 Linear couplings D.B. Kaplan NPB 365 (1991) RS with bulk fermions Hypothesis: each SM fermion couples to a composite fermionic operator with the same SU(3)cxSU()LxU(1)Y quantum numbers L = λ L q L O R + λ R ū R O L + h.c. Quark masses need two such couplings q L q R m q λ L(µ)λ R (µ) g v µ m 10

15 Linear couplings D.B. Kaplan NPB 365 (1991) RS with bulk fermions Hypothesis: each SM fermion couples to a composite fermionic operator with the same SU(3)cxSU()LxU(1)Y quantum numbers L = λ L q L O R + λ R ū R O L + h.c. Quark masses need two such couplings q L q R m q λ L(µ)λ R (µ) g v µ m Similar to linear couplings of elementary gauge fields: L = ga µ J µ 10

16 Linear couplings D.B. Kaplan NPB 365 (1991) RS with bulk fermions Hypothesis: each SM fermion couples to a composite fermionic operator with the same SU(3)cxSU()LxU(1)Y quantum numbers L = λ L q L O R + λ R ū R O L + h.c. Quark masses need two such couplings break explicitly the Goldstone symmetry q L m q λ L(µ)λ R (µ) g v q R µ m Similar to linear couplings of elementary gauge fields: L = ga µ J µ 10

17 Partial compositeness D.B. Kaplan NPB 365 (1991) RS with bulk fermions Fermionic operators can excite composite fermions at low energy: 0 O χ = λ f same as for a conserved current: 0 J µ ρ = r µ f ρ m ρ 11

18 Partial compositeness D.B. Kaplan NPB 365 (1991) RS with bulk fermions Fermionic operators can excite composite fermions at low energy: vector-like composite fermion 0 O χ = λ f same as for a conserved current: 0 J µ ρ = r µ f ρ m ρ 11

19 Partial compositeness D.B. Kaplan NPB 365 (1991) RS with bulk fermions Fermionic operators can excite composite fermions at low energy: vector-like composite fermion 0 O χ = λ f same as for a conserved current: 0 J µ ρ = r µ f ρ m ρ Linear couplings imply mass mixings: L = ψ i ψ+ χ( i m )χ + λf ψu(π)χ + h.c. rotating to mass eigenbasis: ψ χ cos ϕ sin ϕ ψ sin ϕ cos ϕ χ tan ϕ = λ f m ϕ parametrizes the degree of compositeness of the SM fermions SM = cos ϕ ψ +sinϕ χ heavy = sin ϕ ψ + cos ϕ χ 11

20 Higgs mass Can a 15GeV Higgs be composite?

21 Structure of the Higgs Potential V (h) = m4 g N c 8π λ i A i (h/f)+λ 4 i B i (h/f)+... h H H explicit breaking vacuum A i (x),b i (x) SO(4) structures trigonometric functions: sin (x) θ sin 4 (x)... SO(5) SO(4) = S4 vacuum manifold is the 4-sphere 13

22 Structure of the Higgs Potential V (h) = m4 g N c 8π λ i A i (h/f)+λ 4 i B i (h/f)+... h H H explicit breaking of Goldstone symmetry (spurion couplings) explicit breaking vacuum A i (x),b i (x) SO(4) structures trigonometric functions: sin (x) θ sin 4 (x)... SO(5) SO(4) = S4 vacuum manifold is the 4-sphere 13

23 Structure of the Higgs Potential Potential is FINITE - loop integral fully saturated at the compositeness scale V (h) = m4 g N c 8π λ i A i (h/f)+λ 4 i B i (h/f)+... h H H explicit breaking of Goldstone symmetry (spurion couplings) explicit breaking vacuum A i (x),b i (x) SO(4) structures trigonometric functions: sin (x) θ sin 4 (x)... SO(5) SO(4) = S4 vacuum manifold is the 4-sphere 13

24 Structure of the Higgs Potential Potential is FINITE - loop integral fully saturated at the compositeness scale V (h) = m4 g N c 8π λ i A i (h/f)+λ 4 i B i (h/f)+... h H H explicit breaking of Goldstone symmetry (spurion couplings) explicit breaking vacuum A i (x),b i (x) SO(4) structures trigonometric functions: sin (x) θ sin 4 (x)... To get EWSB ( 0<x π ) at least two SO(4) structures are needed plus some tuning SO(5) SO(4) = S4 vacuum manifold is the 4-sphere v FT = O f 13

25 If EWSB is triggered at O(λ ) t L,R V (h) m4 g N c h 8π λ L,R A f m h N c 4π m f λ L,R v 14

26 If EWSB is triggered at O(λ ) t L,R V (h) m4 g N c h 8π λ L,R A f m h N c 4π m f λ L,R v t L t R y t λ Lλ R g assuming λ L λ R m h N c 4π g3 y t v = 330 GeV g 3 3/ 14

27 If EWSB is triggered at O(λ ) t L,R V (h) m4 g N c h 8π λ L,R A f m h N c 4π m f λ L,R v t L t R y t λ Lλ R g assuming λ L λ R m h N c 4π g3 y t v = 330 GeV g 3 3/ Higgs tends to be too heavy (unless g 1 ) 14

28 If EWSB is triggered at O(λ ) t L,R V (h) m4 g N c h 8π λ L,R A f m h N c 4π m f λ L,R v t L t R y t λ Lλ R g assuming λ L λ R m h N c 4π g3 y t v = 330 GeV g 3 3/ Higgs tends to be too heavy (unless g 1 ) see however arxiv: for SUSY completion with extra spurion suppression Talk by A. Parolini 14

29 O(λ ) If EWSB is triggered at + tr fully composite t L V (h) m4 g N c h 8π λ L A f t L t R y t λ L m h N c 4π m f λ L v λ L y t m h N c 4π g y t v = 175 GeV g 3 15

30 O(λ ) If EWSB is triggered at + tr fully composite t L V (h) m4 g N c h 8π λ L A f t L t R y t λ L m h N c 4π m f λ L v λ L y t m h N c 4π g y t v = 175 GeV g 3 mh=15gev implies top partners are naturally - not too strongly coupled, hence - not too heavy Matsedonskyi, Panico, Wulzer JHEP 1301 (013) 164 Redi, Tesi JHEP 110 (01) 166 Marzocca, Serone, Shu JHEP 108 (01) 013 Pomarol, Riva JHEP 108 (01) 135 Panico, Redi, Tesi, Wulzer JHEP 1303 (013) 051 De Simone et al. JHEP 1304 (013)

31 O(λ ) If EWSB is triggered at + tr fully composite t L V (h) m4 g N c h 8π λ L A f t L t R y t λ L m h N c 4π m f λ L v λ L y t m h N c 4π g y t v = 175 GeV g 3 mh=15gev implies top partners are naturally - not too strongly coupled, hence - not too heavy FT v f m h m 4π N c y t = 55 GeV m Matsedonskyi, Panico, Wulzer JHEP 1301 (013) 164 Redi, Tesi JHEP 110 (01) 166 Marzocca, Serone, Shu JHEP 108 (01) 013 Pomarol, Riva JHEP 108 (01) 135 Panico, Redi, Tesi, Wulzer JHEP 1303 (013) 051 De Simone et al. JHEP 1304 (013)

32 If EWSB is triggered at O(λ 4 ) t L,R + t L L V (h) m4 g N c 8π h λ L,R A f + λ L λ R g h B f t R 16

33 If EWSB is triggered at O(λ 4 ) extra tuning required to suppress O(λ ) terms down to O(λ 4 ) t L,R + t L L V (h) m4 g N c 8π h λ L,R A f + λ L λ R g h B f t R 16

34 If EWSB is triggered at O(λ 4 ) extra tuning required to suppress O(λ ) terms down to O(λ 4 ) t L,R + t L L V (h) m4 g N c 8π h λ L,R A f + λ L λ R g h B f t R m h N c m 4π f λ L λ R g v N c 4π g y t v = 175 GeV g 3 16

35 If EWSB is triggered at O(λ 4 ) extra tuning required to suppress O(λ ) terms down to O(λ 4 ) t L,R + t L L V (h) m4 g N c 8π h λ L,R A f + λ L λ R g h B f t R m h N c m 4π f λ L λ R g v N c 4π g y t v = 175 GeV g 3 FT v f λ g 55 GeV y t m g mh automatically lighter but larger tuning to get EWSB Panico, Redi, Tesi, Wulzer JHEP 1303 (013)

36 EW Precision Tests

37 Constraints on c V from EW Precision Tests , 95, 99 CL m h = 16 GeV W, Z h W, Z c V c V =1 Ε c V = Ε 3 fit from: GFitter coll. Eur. Phys. J. C 7 (01) 05 1 = 3 16π α em cos θ W log Λ m Z 3 =+ 1 1π α em 4 sin θ W log Λ m Z 18 Barbieri et al. PRD 76 (007)

38 Constraints on c V from EW Precision Tests , 95, 99 CL m h = 16 GeV W, Z h W, Z c V =1 c V Λ =4πv/ 1 c V Ε M W c V = Ε 3 fit from: GFitter coll. Eur. Phys. J. C 7 (01) 05 Γ Z Pol Pτ A l 1 = 3 16π 3 =+ 1 1π α em cos θ W log Λ m Z α em 4 sin θ W log Λ m Z 0,b A FB c V a Ciuchini, Franco, Silvestrini, Mishima, arxiv: Barbieri et al. PRD 76 (007)

39 Constraints on c V from EW Precision Tests , 95, 99 CL m h = 16 GeV W, Z h W, Z c V =1 c V Λ =4πv/ 1 c V Ε M W c V = Ε 3 fit from: GFitter coll. Eur. Phys. J. C 7 (01) 05 Γ Z Pol Pτ A l 1 = 3 16π 3 =+ 1 1π α em cos θ W log Λ m Z α em 4 sin θ W log Λ m Z 0,b A FB c V a Ciuchini, Franco, Silvestrini, Mishima, arxiv: Barbieri et al. PRD 76 (007) See talk by S. Mishima on Thursday

40 Constraints on c V from EW Precision Tests , 95, 99 CL m h = 16 GeV W, Z h W, Z c V =1 c V Λ =4πv/ 1 c V Ε M W c V = Ε 3 fit from: GFitter coll. Eur. Phys. J. C 7 (01) 05 Γ Z Pol Pτ A l 19 Precision on cv at the level of ~5%! Contribution from resonances REQUIRED to relax the bound 0,b A FB c V a Ciuchini, Franco, Silvestrini, Mishima, arxiv: See talk by S. Mishima on Thursday

41 S parameter Ŝ = ŜIR + ŜUV Ŝ IR v g Λ f 16π log m Z Ŝ UV g v f 1 g 1 Λ + N c N F 16π log m

42 S parameter Ŝ = ŜIR + ŜUV IR contribution from NG bosons Ŝ IR v g Λ f 16π log m Z Ŝ UV g v f 1 g 1 Λ + N c N F 16π log m

43 S parameter Ŝ = ŜIR + ŜUV IR contribution from NG bosons Ŝ IR v g Λ f 16π log m Z Ŝ UV g v f 1 g 1 Λ + N c N F 16π log m +... tree-level (rho) 0

44 S parameter Ŝ = ŜIR + ŜUV IR contribution from NG bosons Ŝ IR v g Λ f 16π log m Z Ŝ UV g v f 1 g 1 Λ + N c N F 16π log m +... tree-level (rho) 1-loop (fermions) 0

45 S parameter Ŝ = ŜIR + ŜUV IR contribution from NG bosons Ŝ IR v g Λ f 16π log m Z Ŝ UV g v f 1 g 1 Λ + N c N F 16π log m +... tree-level (rho) 1-loop (fermions) 1-loop contribution from fermions can be large (!) Golden, Randall, NPB 361 (1991) 3... Barbieri, Isidori, Pappadopulo, JHEP 090 (009) 09 Grojean, Matsedonskyi, Panico, arxiv: Azatov, RC, Di Iura, Galloway, arxiv:

46 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) 1

47 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] negative contribution from spectral function of broken SO(5)/SO(4) currents i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) 1

48 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] negative contribution from spectral function of broken SO(5)/SO(4) currents i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) Example: [ Azatov, RC, Di Iura, Galloway, arxiv: ] ψ 5 =(1, 1) + (, ) L = ψ 1 i /D m 1 ψ1 + ψ 4 i / m 4 ψ4 ζ ψ 4 γ µ d µ ψ 1 + h.c. ψ (,) ψ (,) J a µ J âµ + ψ (,) ψ (1,1) 1 ρ LL,RR ρ BB

49 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] negative contribution from spectral function of broken SO(5)/SO(4) currents i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) Example: [ Azatov, RC, Di Iura, Galloway, arxiv: ] A + i π / π f +... ψ 5 =(1, 1) + (, ) L = ψ 1 i /D m 1 ψ1 + ψ 4 i / m 4 ψ4 ζ ψ 4 γ µ d µ ψ 1 + h.c. ψ (,) ψ (,) J a µ J âµ + ψ (,) ψ (1,1) 1 ρ LL,RR ρ BB

50 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] negative contribution from spectral function of broken SO(5)/SO(4) currents i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) Example: [ Azatov, RC, Di Iura, Galloway, arxiv: ] A + i π / π f +... µ π f +... ψ 5 =(1, 1) + (, ) L = ψ 1 i /D m 1 ψ1 + ψ 4 i / m 4 ψ4 ζ ψ 4 γ µ d µ ψ 1 + h.c. ψ (,) ψ (,) J a µ J âµ + ψ (,) ψ (1,1) 1 ρ LL,RR ρ BB

51 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] negative contribution from spectral function of broken SO(5)/SO(4) currents i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) Example: [ Azatov, RC, Di Iura, Galloway, arxiv: ] A + i π / π f +... µ π f +... ψ 5 =(1, 1) + (, ) L = ψ 1 i /D m 1 ψ1 + ψ 4 i / m 4 ψ4 ζ ψ 4 γ µ d µ ψ 1 + h.c. ψ (,) ζ ζ ψ (,) J a µ J âµ + ψ (,) ψ (1,1) 1 ρ LL,RR ρ BB

52 fermion contribution can be negative Best seen using a dispertion relation: Orgogozo and Rychkov, JHEP 1306 (013) 014 Ŝ UV = g ds 4 sin θ s [ρ LL(s)+ρ RR (s) ρ BB (s)] negative contribution from spectral function of broken SO(5)/SO(4) currents i d 4 xe iq (x y) 0 T (J µ (x)j ν (y)) 0 =(q η µν q µ q ν )Π(q ) ρ(s) = 1 π Im(Π(s)) Example: [ Azatov, RC, Di Iura, Galloway, arxiv: ] A + i π / π f +... µ π f +... ψ 5 =(1, 1) + (, ) L = ψ 1 i /D m 1 ψ1 + ψ 4 i / m 4 ψ4 ζ ψ 4 γ µ d µ ψ 1 + h.c. Ŝ UV = 8 3 m W 16π f N cn F 1 ζ Λ log m +finiteterms (,)

53 SO(5)/SO(4) model: ψ 5 =(1, 1) /3 +(, ) / m 3,1 3.4 TeV 5 TeV m 1,3 1.0 N fχ N c 9=9 m 1,1 1.5 m,.0 ψ 10 =(, ) 1/3 +(1, 3) 1/3 +(3, 1) 1/ AA SM 0.5 ζ Ζ1.1 = SM ζ Ζ0 =0 ζ Ζ1 =1 f100 f800 f S from: Azatov, RC, Di Iura, Galloway arxiv:

54 SO(5)/SO(4) model: ψ 5 =(1, 1) /3 +(, ) / m 3,1 3.4 TeV 5 TeV m 1,3 1.0 N fχ N c 9=9 m 1,1 1.5 m,.0 ψ 10 =(, ) 1/3 +(1, 3) 1/3 +(3, 1) 1/ AA SM 0.5 ζ Ζ1.1 = SM ζ Ζ0 =0 ζ Ζ1 =1 f100 f800 f S from: Azatov, RC, Di Iura, Galloway arxiv: Ex: for f = 800 GeV g ρ =3 S ρ 0.13 S ψ 0.8 (1 ζ ) strong sensitivity on ζ tuning ~10% required to go back into the exp. ellipse 3

55 T parameter ˆT = ˆT IR + ˆT UV ˆT IR v f g Λ 16π log m Z ˆT UV v f g Λ 16π log m ρ + N c λ L 16π λ L g

56 T parameter ˆT = ˆT IR + ˆT UV IR contribution from NG bosons ˆT IR v f g Λ 16π log m Z ˆT UV v f g Λ 16π log m ρ + N c λ L 16π λ L g

57 T parameter ˆT = ˆT IR + ˆT UV IR contribution from NG bosons ˆT IR v f g Λ 16π log m Z ˆT UV v f g Λ 16π log m ρ + N c λ L 16π λ L g loop (rho) 4

58 T parameter ˆT = ˆT IR + ˆT UV IR contribution from NG bosons ˆT IR v f g Λ 16π log m Z ˆT UV v f g Λ 16π log m ρ + N c λ L 16π λ L g loop (rho) 1-loop (fermions) 4

59 T parameter ˆT = ˆT IR + ˆT UV IR contribution from NG bosons ˆT IR v f g Λ 16π log m Z ˆT UV v f g Λ 16π log m ρ + N c λ L 16π λ L g loop (rho) 1-loop (fermions) Custodial symmetry implies: 1. No ˆT at tree-level W a y L y L W a. fermion correction is finite and starts at O(λ 4 L) y L y L (only top partners contribute) 4

60 ˆT >0 possible though not fully generic Carena, et al. NPB 759 (006) 0; PRD 76 (007) Barbieri et al. PRD 76 (007) Lodone JHEP 081 (008) 09 Pomarol, Serra, PRD 78 (008) Example: model with + composite ψ 4 =(, ) /3 L = q L idq L + t R idt R + ψ 4 (i m 4 )ψ 4 + iζ ψ i 4γ µ d i µt R + y Lt f q L U(π)t R + y L4 f q L U(π)ψ 4 + h.c. t R Gillioz PRD 80 (009) Grojean, Matsedonskyi, Panico arxiv: ζ Grojean, Matsedonskyi, Panico arxiv: T Ξ 0.1 m 4 1 TeV y L4

61 ˆT >0 possible though not fully generic Carena, et al. NPB 759 (006) 0; PRD 76 (007) Barbieri et al. PRD 76 (007) Lodone JHEP 081 (008) 09 Pomarol, Serra, PRD 78 (008) Example: model with + composite ψ 4 =(, ) /3 L = q L idq L + t R idt R + ψ 4 (i m 4 )ψ 4 + iζ ψ i 4γ µ d i µt R + y Lt f q L U(π)t R + y L4 f q L U(π)ψ 4 + h.c. t R Gillioz PRD 80 (009) Grojean, Matsedonskyi, Panico arxiv: ζ Grojean, Matsedonskyi, Panico arxiv: blue region allowed by EWPT at 68% (95%) 1 T Ξ 0.1 m 4 1 TeV y L4

62 Searches of top partners

63 Typical spectrum of top partners E m λ L v X /3 X 5/3 B T m λ L f T t 7

64 Typical spectrum of top partners E m λ L v X /3 X 5/3 B T m λ L f T Two main production modes: g from: De Simone, Matsedonskyi, Rattazzi, Wulzer JHEP 1304 (013) 004 t 1000 g pair production 100 pp T b + j pp X 5/3 t + j Σ fb 10 q V L q 1 pp T T g EW single production t/ b M GeV

65 Typical spectrum of top partners E m λ L v X /3 X 5/3 B T m λ L f T Two main production modes: g from: De Simone, Matsedonskyi, Rattazzi, Wulzer JHEP 1304 (013) 004 t 1000 g pair production 100 pp T b + j pp X 5/3 t + j Σ fb 10 mainly set by ζ q V L q pp T T 7 g t/ b EW single production M GeV

66 Two-body decay modes: W + /Z,h W /Z,h W + T,X /3, T b/t B X 5/3 t/b t 8

67 Two-body decay modes: W + /Z,h W /Z,h W + T,X /3, T b/t B X 5/3 t/b t ev ev Current experimental status in a nutshell 1. Almost all decays looked for. Analyses optimized on pair production ATLAS Preliminary Status: Lepton-Photon 013 s = 8 TeV, Forbidden -1 L dt = 14.3 fb 95% CL exp. excl. 95% CL obs. excl. Ht+X [ATLAS-CONF ] Same-Sign [ATLAS-CONF ] Zb/t+X [ATLAS-CONF ] Wb+X [ATLAS-CONF ] SU() (T,B) doub. m T SU() singlet = 650 GeV BR(T ht) Forbidden Forbidden m T m T = 450 GeV = 600 GeV BR(T Wb) ATLAS Preliminary Status: Lepton-Photon 013 s = 8 TeV, 95% CL exp. excl. 95% CL obs. excl. 1 BR(tZ) CMS preliminary SU() (T,B) doub. 0-1 L dt = 14.3 fb Ht+X [ATLAS-CONF ] Same-Sign [ATLAS-CONF ] Zb/t+X [ATLAS-CONF ] BR(bW) SU() singlet s = 8 TeV 19.6 fb Wb+X [ATLAS-CONF ] CMS BG CMS BG BR(tH) T Observed T Quark Mass Limit [GeV]

68 Two-body decay modes: W + /Z,h W /Z,h W + T,X /3, T b/t B X 5/3 t/b t ev ev Current experimental status in a nutshell 1. Almost all decays looked for. Analyses optimized on pair production ATLAS Preliminary Status: Lepton-Photon 013 s = 8 TeV, Forbidden -1 L dt = 14.3 fb 95% CL exp. excl. 95% CL obs. excl. Ht+X [ATLAS-CONF ] Same-Sign [ATLAS-CONF ] Zb/t+X [ATLAS-CONF ] Wb+X [ATLAS-CONF ] SU() (T,B) doub. m T SU() singlet = 650 GeV BR(T ht) Forbidden Forbidden m T m T = 450 GeV = 600 GeV BR(T Wb) ATLAS Preliminary Status: Lepton-Photon 013 s = 8 TeV, 95% CL exp. excl. 95% CL obs. excl. Limits in the GeV range 1 BR(tZ) CMS preliminary SU() (T,B) doub. 0-1 L dt = 14.3 fb Ht+X [ATLAS-CONF ] Same-Sign [ATLAS-CONF ] Zb/t+X [ATLAS-CONF ] BR(bW) SU() singlet s = 8 TeV 19.6 fb Wb+X [ATLAS-CONF ] CMS BG CMS BG BR(tH) T Observed T Quark Mass Limit [GeV]

69 Two-body decay modes: W + /Z,h W /Z,h W + T,X /3, T b/t B X 5/3 t/b t ev ev Current experimental status in a nutshell 1. Almost all decays looked for. Analyses optimized on pair production ATLAS Preliminary Status: Lepton-Photon 013 s = 8 TeV, Forbidden -1 L dt = 14.3 fb 95% CL exp. excl. 95% CL obs. excl. Ht+X [ATLAS-CONF ] Same-Sign [ATLAS-CONF ] Zb/t+X [ATLAS-CONF ] Wb+X [ATLAS-CONF ] SU() (T,B) doub. m T SU() singlet = 650 GeV BR(T ht) Forbidden Forbidden m T m T = 450 GeV = 600 GeV BR(T Wb) ATLAS Preliminary See talks by I.Vorobiev and R.Groeber on Friday Status: Lepton-Photon 013 s = 8 TeV, 95% CL exp. excl. 95% CL obs. excl. Limits in the GeV range 1 BR(tZ) CMS preliminary SU() (T,B) doub. 0-1 L dt = 14.3 fb Ht+X [ATLAS-CONF ] Same-Sign [ATLAS-CONF ] Zb/t+X [ATLAS-CONF ] BR(bW) SU() singlet s = 8 TeV 19.6 fb Wb+X [ATLAS-CONF ] CMS BG CMS BG BR(tH) T Observed T Quark Mass Limit [GeV]

70 Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region De Simone et al. JHEP 1304 (013) M4 5 ξ = v f =0. 3 Blue region: ζ y L4 =3 (m B m X5/3 ) 1 Green region: y L4 =0.3 (m B m X5/3 ) m X5/3 9

71 Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region De Simone et al. JHEP 1304 (013) M4 5 ξ = v f =0. Effect of single production is NOT negligible Stronger sensitivity from optimizing exp. analyses to include single production 3 Blue region: ζ y L4 =3 (m B m X5/3 ) 1 Green region: y L4 =0.3 (m B m X5/3 ) m X5/3 9

72 Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region De Simone et al. JHEP 1304 (013) M4 5 ξ = v f =0. Effect of single production is NOT negligible Stronger sensitivity from optimizing exp. analyses to include single production 3 Blue region: ζ y L4 =3 (m B m X5/3 ) 1 Green region: y L4 =0.3 (m B m X5/3 ) m X5/3 limits for ξ =0.1, ζ =1, y L4 =1 Multiplicity of states, connection among masses and inclusion of single production amplify limits on individual particles T B X X T M GeV

73 Once recast on (simplified) theory space exp. bounds already exclude a big portion of the natural region De Simone et al. JHEP 1304 (013) M4 5 ξ = v f =0. Effect of single production is NOT negligible Stronger sensitivity from optimizing exp. analyses to include single production 3 Blue region: ζ y L4 =3 (m B m X5/3 ) 1 Green region: y L4 =0.3 (m B m X5/3 ) m X5/3 limits for ξ =0.1, ζ =1, y L4 =1 Multiplicity of states, connection among masses and inclusion of single production amplify limits on individual particles T B X TeV masses typically excluded LHC has already eaten up a big part of the natural region X 3 T M GeV

74 Higgs couplings

75 LHC data currently set limits on modifications of the Higgs couplings at the 0-30% level v c V =1+F f v gg + O f g c ψ =1+F ψ v f, m i m j v λ + O f g

76 LHC data currently set limits on modifications of the Higgs couplings at the 0-30% level O(v /f ) from Higgs nlσm v c V =1+F f v gg + O f g c ψ =1+F ψ v f, m i m j v λ + O f g

77 LHC data currently set limits on modifications of the Higgs couplings at the 0-30% level O(v /f ) from Higgs nlσm v c V =1+F f v gg + O f g from heavy resonances h h c ψ =1+F ψ v f, m i m j v λ + O f g

78 LHC data currently set limits on modifications of the Higgs couplings at the 0-30% level O(v /f ) from Higgs nlσm v c V =1+F f v gg + O f g from heavy resonances h h c ψ =1+F ψ v f, m i m j v λ + O f g ψ L ψ R ψ L ψ R

79 LHC data currently set limits on modifications of the Higgs couplings at the 0-30% level O(v /f ) from Higgs nlσm v c V =1+F f v gg + O f g from heavy resonances h h c ψ =1+F ψ v in the simplest models f, m i m j v λ + O f g ψ L ψ R ψ L ψ R

80 LHC data currently set limits on modifications of the Higgs couplings at the 0-30% level O(v /f ) from Higgs nlσm v c V =1+F f v gg + O f g from heavy resonances h h c ψ =1+F ψ v in the simplest models f, m i m j v λ + O f g from wave-function renormalization ψ ψ ψ L ψ R ψ L ψ R

81 ξ v f MCHM4: MCHM5: c V = c ψ = 1 ξ c V = 1 ξ c ψ = 1 ξ 1 ξ Agashe, RC, Pomarol, NPB 719 (005) 165 RC, DaRold, Pomarol, PRD 75 (007) Carena, Ponton, Santiago, Wagner, PRD 76 (007) c ψ.0 CMS Preliminary -1-1 s = 7 TeV, L " 5.1 fb s = 8 TeV, L " 19.6 fb MCHM4! V,! f c ψ 3 1 ATLAS Preliminary -1 s = 7 TeV, Ldt = fb -1 s = 8 TeV, Ldt = fb MCHM4 SM Best fit 68% CL 95% CL MCHM5 0 MCHM ! c V Red points at c V ξ (v/f) =0., 0.5, 0.8 3

82 ξ v c V = c ψ = MCHM4: 1 ξ f MCHM5: c V = 1 ξ c ψ = 1 ξ 1 ξ Agashe, RC, Pomarol, NPB 719 (005) 165 RC, DaRold, Pomarol, PRD 75 (007) Carena, Ponton, Santiago, Wagner, PRD 76 (007) Minimal Composite Higgs MCHM5 c ψ.0 CMS Preliminary -1-1 s = 7 TeV, L " 5.1 fb s = 8 TeV, L " 19.6 fb MCHM4! V,! f MCHM5 Likelihood from arxiv: c ψ 1 0 ATLAS Preliminary ATLAS s = 7 TeV, Ldt Combined = fb -1 s = 8 TeV, Ldt = fb MCHM4 MCHM5 m h 16 GeV CMS -1 SM Best fit 68% CL 95% CL ! c V v f ξ =(v/f) < 0. at 95% m new 1.6 TeV c V g 3 33

83 ξ v c V = c ψ = MCHM4: 1 ξ f MCHM5: c V = 1 ξ c ψ = 1 ξ 1 ξ Agashe, RC, Pomarol, NPB 719 (005) 165 RC, DaRold, Pomarol, PRD 75 (007) Carena, Ponton, Santiago, Wagner, PRD 76 (007) Minimal Composite Higgs MCHM5 c ψ.0 CMS Preliminary -1-1 s = 7 TeV, L " 5.1 fb s = 8 TeV, L " 19.6 fb MCHM4! V,! f MCHM5 Likelihood from arxiv: c ψ 1 0 ATLAS Preliminary ATLAS s = 7 TeV, Ldt Combined = fb -1 s = 8 TeV, Ldt = fb MCHM4 MCHM5 m h 16 GeV CMS -1 SM Best fit 68% CL 95% CL ! c V v f ξ =(v/f) < 0. at 95% m new 1.6 TeV c V g 3 Sensitivity comparable to direct searches

84 Modifications to loop-level couplings ggh, γγh suppressed due to the Goldstone symmetry h γ γ B µνh H Effective operators violate the Higgs shift symmetry: g g h G µνh H H i H i + ζ i 34

85 Modifications to loop-level couplings ggh, γγh suppressed due to the Goldstone symmetry h γ γ B µνh H Effective operators violate the Higgs shift symmetry: g g h G µνh H H i H i + ζ i δγ v =1+O Γ SM f g + O v m λ g long-distance SM loops with modified couplings short-distance loops of top partners 34

86 Large modifications possible in Azatov, RC, Di Iura, Galloway, arxiv: Γ(h Zγ) δγ(zγ) v Γ SM (Zγ) = O f g + O v m Relevant operator is O HW O HB O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)Wµν i h Z γ 1. Invariant under Higgs shift symmetry. Odd under LR exchange 35

87 Large modifications possible in Azatov, RC, Di Iura, Galloway, arxiv: Γ(h Zγ) δγ(zγ) v Γ SM (Zγ) = O f g + O v m Relevant operator is O HW O HB O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)Wµν i h Z γ 1. Invariant under Higgs shift symmetry. Odd under LR exchange Strong dynamics MUST break LR 35

88 Large modifications possible in Azatov, RC, Di Iura, Galloway, arxiv: Γ(h Zγ) δγ(zγ) v Γ SM (Zγ) = O f g + O v m Relevant operator is O HW O HB O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)Wµν i h Z γ 1. Invariant under Higgs shift symmetry. Odd under LR exchange Strong dynamics MUST break LR A(h Zγ) =A SM F (ξ)+δa δa A SM N c N F g v v N c N F m f m m 35

89 Large modifications possible in Azatov, RC, Di Iura, Galloway, arxiv: Γ(h Zγ) δγ(zγ) v Γ SM (Zγ) = O f g + O v m Relevant operator is O HW O HB O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)Wµν i h Z γ 1. Invariant under Higgs shift symmetry. Odd under LR exchange Strong dynamics MUST break LR A(h Zγ) =A SM F (ξ)+δa δa A SM N c N F g v v N c N F m f m m 35 shift of tree-level Higgs couplings from nlσm v 1+O f

90 Large modifications possible in Azatov, RC, Di Iura, Galloway, arxiv: Γ(h Zγ) δγ(zγ) v Γ SM (Zγ) = O f g + O v m Relevant operator is O HW O HB O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)Wµν i h Z γ 1. Invariant under Higgs shift symmetry. Odd under LR exchange Strong dynamics MUST break LR A(h Zγ) =A SM F (ξ)+δa δa A SM N c N F g v v N c N F m f m m 35 shift of tree-level Higgs couplings from nlσm v 1+O f multiplicity of composite states

91 Large modifications possible in Γ(h Zγ) Azatov, RC, Di Iura, Galloway, arxiv: Relevant operator is O HW O HB hzγ SM f 500 GeV 0.1 r.5 f 800 GeV 0.1 r.5 O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)W i µν 0.5 Rescaling treelevel couplings nlσm δg g hvv =v /f v f mm Rescaling from 1. Invariant under Higgs shift symmetry. Odd under LR exchange A(h Zγ) =A SM F (ξ)+δa δa A SM N c N F g v v N c N F m f m m 36 shift of tree-level Higgs couplings from nlσm v 1+O f multiplicity of composite states

92 Large modifications possible in Γ(h Zγ) Azatov, RC, Di Iura, Galloway, arxiv: Relevant operator is O HW O HB hzγ SM f 500 GeV 0.1 r.5 f 800 GeV 0.1 r.5 O HB =(D µ H) (D ν H)B µν O HW =(D µ H) σ i (D ν H)W i µν 0.5 Rescaling treelevel couplings nlσm δg g hvv =v /f v f mm Rescaling from 1. Invariant under Higgs shift symmetry. Odd under LR exchange See talk by A. Azatov on Friday A(h Zγ) =A SM F (ξ)+δa δa A SM N c N F g v v N c N F m f m m 36 shift of tree-level Higgs couplings from nlσm v 1+O f multiplicity of composite states

93 37 Summary: CH vs SUSY

94 Summary: CH vs SUSY Higgs mass term (FT) Finite in CH m H 3λ 8π m Log divergent in SUSY m H u 3y t Λ 4π m t log m t 37

95 Summary: CH vs SUSY Higgs mass term (FT) Finite in CH m H 3λ 8π m Log divergent in SUSY m H u 3y t Λ 4π m t log m t Higgs quartic coupling CH: tends to be too large λ 4 3 8π g3 y t SUSY: tends to be too small λ 4 g + g 4 + 3y4 t m t log 8π m t 37

96 Summary: CH vs SUSY Bounds on top partners from direct searches SUSY: stops 700 GeV CH: heavy tops/bottoms 1 TeV 38

97 Summary: CH vs SUSY Bounds on top partners from direct searches SUSY: stops 700 GeV CH: heavy tops/bottoms 1 TeV Corrections to EW precision observables SUSY: CH: bound on Higgs compositeness / tree-level UV large shifts in Higgs couplings allowed / loop-level UV 38

98 Summary: CH vs SUSY Bounds on top partners from direct searches SUSY: stops 700 GeV CH: heavy tops/bottoms 1 TeV Corrections to EW precision observables SUSY: CH: bound on Higgs compositeness / tree-level UV large shifts in Higgs couplings allowed / loop-level UV Largest effects in Higgs sector expected in: 38 SUSY: CH: coupling to bottom (cb); γγ and gg rates; production of Heavy Higgses tree-level couplings; h Zγ rate; double Higgs production (gg hh)

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN Teoria e fenomenologia dei modelli di Higgs composto Roberto Contino - CERN Part I: Quick review of the Composite Higgs Composite Higgs models [Georgi & Kaplan, `80s] EWSB sector H G G _ _ Aµ (G SM ) ψ

More information

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN The Higgs as a composite pseudo-goldstone boson Roberto Contino - CERN Part I: The need for an EWSB sector...... and how this could be strongly interacting The physics discovered so far: L = L 0 + L mass

More information

Double Higgs production via gluon fusion (gg hh) in composite models

Double Higgs production via gluon fusion (gg hh) in composite models Double Higgs production via gluon fusion (gg hh) in composite models Ennio Salvioni CERN and University of Padova based on work in collaboration with C.Grojean (CERN), M.Gillioz (Zürich), R.Gröber and

More information

Naturalness & Compositeness Riccardo Rattazzi, EPFL

Naturalness & Compositeness Riccardo Rattazzi, EPFL Naturalness & Compositeness 2014 Riccardo Rattazzi, EPFL In QM whatever is possible is also compulsory selection rules O = i O i O i = c i λ n 1i 1...λ n ki k dim = dim = If O exp max O i it seems we are

More information

Flavor, Minimality and Naturalness in Composite Higgs Models

Flavor, Minimality and Naturalness in Composite Higgs Models eth zurich Flavor, Minimality and Naturalness in Composite Higgs Models Adrián Carmona Bermúdez Institute for Theoretical Physics, ETH Zurich In collaboration with F. Goertz A naturally light Higgs without

More information

Higgs couplings in the Composite Higgs Models

Higgs couplings in the Composite Higgs Models Higgs couplings in the Composite Higgs Models Aleksandr Azatov Dipartimento di Fisica, Università di Roma La Sapienza and INFN Sezione di Roma University of Padova 6/12/2012 Composite Higgs setup Models

More information

Light generations partners at the LHC

Light generations partners at the LHC Light generations partners at the LHC Giuliano Panico CERN IPNL Lyon 21 March 2014 based on C. Delaunay, T. Flacke, J. Gonzales, S. Lee, G. P. and G. Perez 1311.2072 [hep-ph] Introduction Introduction

More information

Composite Higgs/ Extra Dimensions

Composite Higgs/ Extra Dimensions Composite Higgs/ Extra Dimensions Eduardo Pontón Instituto de Física Teórica -UNESP & ICTP-SAIFR Snowmass on the Pacific, KITP May 30, 2013 Fundamental Question raised by the SM How and why is the Electroweak

More information

Phenomenology for Higgs Searches at the LHC

Phenomenology for Higgs Searches at the LHC Phenomenology for Higgs Searches at the LHC in Composite Higgs Models Margherita Ghezzi Supervisor: dott. Roberto Contino Roma, 21/02/2012 Introduction Standard Model: SU(2) L U(1) Y U(1) Q Higgs mechanism

More information

Composite Higgs and Flavor

Composite Higgs and Flavor Composite Higgs and Flavor Xiaohong Wu East China University of Science and Technology Seminar @ ICTS, Jun. 6, 2013 125GeV SM-like Higgs Discovered p 0 5 3-3 -5-7 -9 1 3 Combined observed γγ observed llll

More information

New Higgs Production Mechanism in Composite Higgs Models

New Higgs Production Mechanism in Composite Higgs Models The Zürich Phenomenology Workshop Zürich, Jan 9-11, 2012 New Higgs Production Mechanism in Composite Higgs Models José Santiago Física Teórica y del Cosmos Universidad de Granada A. Carmona, M. Chala,

More information

Oblique corrections from Light Composite Higgs

Oblique corrections from Light Composite Higgs Oblique corrections from Light Composite Higgs Slava Rychkov (ENS Paris & CERN) with Axel Orgogozo 1111.3534 & work in progress EWPT in Standard Model M H 0.0 M W -1.2 % W 0.2 M Z 0.2 % Z 0.1 0! had 0

More information

General Composite Higgs Models

General Composite Higgs Models General Composite Higgs Models Marco Serone, SISSA, Trieste In collaboration with David Marzocca and Jing Shu, based on 1205.0770 1 The Higgs hunt at the LHC is quickly coming to an end A SM Higgs is ruled

More information

Scalar Heavy WIMPs from Composite Dynamics

Scalar Heavy WIMPs from Composite Dynamics eth zurich Scalar Heavy WIMPs from Composite Dynamics Adrián Carmona In collaboration with Mikael Chala, arxiv:1504.00332 JHEP 1506 (2015) 105 Supported by a Marie Sklodowska-Curie Individual Fellowship

More information

Composite Higgs Phenomenology at the LHC and Future Colliders

Composite Higgs Phenomenology at the LHC and Future Colliders Composite Higgs Phenomenology at the LHC and Future Colliders Stefania De Curtis and Dept. of Physics and Astronomy, Florence University, Italy Based on: DC, Redi,Tesi, JHEP 1204,042 (2012); Barducci et

More information

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza

The Higgs boson. as a window to Beyond the Standard Model Physics. Roberto Contino. Università di Roma La Sapienza The Higgs boson as a window to Beyond the Standard Model Physics Roberto Contino Università di Roma La Sapienza 1. what have we discovered so far...... and why we need an EWSB sector The physics discovered

More information

Composite Higgs Overview

Composite Higgs Overview Composite Higgs Overview Tony Gherghetta Fundamental Composite Dynamics, IBS CTPU, Daejeon, Korea, December 6, 2017 1 IBS Daejeon - 6 December 2017 Composite Higgs New strong force with coupling, g s g

More information

Gauge-Higgs Unification on Flat Space Revised

Gauge-Higgs Unification on Flat Space Revised Outline Gauge-Higgs Unification on Flat Space Revised Giuliano Panico ISAS-SISSA Trieste, Italy The 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions Irvine,

More information

Light KK modes in Custodially Symmetric Randall-Sundrum

Light KK modes in Custodially Symmetric Randall-Sundrum Light KK modes in Custodially Symmetric Randall-Sundrum José Santiago Theory Group (FNAL) hep-ph/0607106, with M. Carena (FNAL), E. Pontón (Columbia) and C. Wagner (ANL) Motivation Randall-Sundrum like

More information

Top quark effects in composite vector pair production at the LHC

Top quark effects in composite vector pair production at the LHC Top quark effects in composite vector pair production at the LHC Antonio Enrique Cárcamo Hernández. Universidad Tecnica Federico Santa Maria. SILAFAE 01, 10th-14th of December of 01. Based on: A. E. Cárcamo

More information

From Higgsless to Composite Higgs Models

From Higgsless to Composite Higgs Models From Higgsless to Composite Higgs Models E = mc 2 based on works in collaboration with E = hν G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP062007)045 R. Contino, M. Moretti, F. Puccinini

More information

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS

DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS DARK MATTER CANDIDATES IN COMPOSITE HIGGS MODELS Daniel Murnane University of Adelaide, University of Southern Denmark Supervisors: Anthony G. Williams, Martin White, Francesco Sannino A NATURAL DM PARTICLE

More information

Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider

Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider Sensitivity to the Single Production of Vector-Like Quarks at an Upgraded Large Hadron Collider arxiv:1309.1888v [hep-ph] Oct 013 T. Andeen 1, C. Bernard, K. Black, T. Childers 3, L. Dell Asta, and N.

More information

From Higgsless to Composite Higgs Models

From Higgsless to Composite Higgs Models From Higgsless to Composite Higgs Models E = mc 2 based on works in collaboration with E = hν G. Giudice, A. Pomarol and R. Rattazzi hep-ph/0703164 = JHEP062007)045 R. Contino, M. Moretti, F. Puccinini

More information

LISHEP The Composite Higgs. Andrea Wulzer. Zürich

LISHEP The Composite Higgs. Andrea Wulzer. Zürich LISHEP 2011 The Composite Higgs Andrea Wulzer Zürich Introduction: Main Goal of the LHC: Unveil the Nature of EWSB mechanism To achieve this, develop and test hypothetical models Introduction: From theory

More information

Hidden two-higgs doublet model

Hidden two-higgs doublet model Hidden two-higgs doublet model C, Uppsala and Lund University SUSY10, Bonn, 2010-08-26 1 Two Higgs doublet models () 2 3 4 Phenomenological consequences 5 Two Higgs doublet models () Work together with

More information

Partial Compositeness and

Partial Compositeness and Partial Compositeness and its implications for the LHC Roberto Contino Università Roma La Sapienza & INFN In collaboration with: Raman Sundrum Thomas Kramer Minho Son Motivation: Solving the Hierarchy

More information

A not so elementary Higgs boson

A not so elementary Higgs boson A not so elementary Higgs boson Corfu Summer Institute Workshop on Fields and Strings Sept. 14-18 2o11 Ch!"ophe Grojean CERN-TH & CEA-Saclay/IPhT ( christophe.grojean@cern.ch ) A not so elementary Higgs

More information

LHC resonance searches in tt Z final state

LHC resonance searches in tt Z final state LHC resonance searches in tt Z final state Bithika Jain Work in progress with Mihailo Backovic (CP3 Louvain), Thomas Flacke (IBS -CTPU), Seung Lee (Korea University) KIAS Workshop, 2016 1 The name of the

More information

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs

Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs Top Seesaw, Custodial Symmetry and the 126 GeV (Composite) Higgs IAS Program on the Future of High Energy Physics Jan 21, 2015 based on arxiv:1311.5928, Hsin-Chia Cheng, Bogdan A. Dobrescu, JG JHEP 1408

More information

Little Higgs at the LHC: Status and Prospects

Little Higgs at the LHC: Status and Prospects Little Higgs at the LHC: Status and Prospects Marco Tonini DESY Theory Group (Hamburg) based on: Reuter/MT, JHEP 1302, 077 (2013) Reuter/MT/de Vries, hep-ph/1307.5010 Reuter/MT/de Vries, DESY-13-123 (in

More information

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012

How to tell apart non-standard EWSB mechanisms. Veronica Sanz CERN and YORK Moriond 2012 How to tell apart non-standard EWSB mechanisms Veronica Sanz CERN and YORK Moriond 2012 In this talk What is standard? EWSB by elementary scalar(s) includes SM and SUSY What is non-standard? EWSB by -composite

More information

BSM Higgs Searches at ATLAS

BSM Higgs Searches at ATLAS BSM Higgs Searches at ATLAS Martin zur Nedden Humboldt-Universität zu Berlin for the ATLAS Collaboration SUSY Conference 2014 Manchester July 20 th July 25 th, 2014 Introduction Discovery of a scalar Boson

More information

A Minimal Composite Goldstone Higgs model

A Minimal Composite Goldstone Higgs model A Minimal Composite Goldstone Higgs model Lattice for BSM Physics 2017, Boston University Plan of the talk Introduction to composite Goldstone Higgs models Lattice results for the SU(2) Goldstone Higgs

More information

Effective field theory approach to the Higgs boson phenomenology

Effective field theory approach to the Higgs boson phenomenology Effective field theory approach to the Higgs boson phenoenology Supervisor: Dr. Roberto Contino Roa, October 8th, 013 Introduction After the discovery of the Higgs boson, we are looking for New Physics

More information

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March

EW Naturalness in Light of the LHC Data. Maxim Perelstein, Cornell U. ACP Winter Conference, March EW Naturalness in Light of the LHC Data Maxim Perelstein, Cornell U. ACP Winter Conference, March 3 SM Higgs: Lagrangian and Physical Parameters The SM Higgs potential has two terms two parameters: Higgs

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011 OUTLINE How can Extra Dimensions explain the electroweak

More information

Theory of the ElectroWeak Interactions

Theory of the ElectroWeak Interactions Theory of the ElectroWeak Interactions Riccardo Barbieri 1st Summer School of ITN Corfu, September 4-15, 2011 1. The Standard Model: the indirect informations 2. Higgsless Grojean 3. The Higgs boson as

More information

Little Higgs Models Theory & Phenomenology

Little Higgs Models Theory & Phenomenology Little Higgs Models Theory Phenomenology Wolfgang Kilian (Karlsruhe) Karlsruhe January 2003 How to make a light Higgs (without SUSY) Minimal models The Littlest Higgs and the Minimal Moose Phenomenology

More information

UV Completions of Composite Higgs Models with Partial Compositeness

UV Completions of Composite Higgs Models with Partial Compositeness UV Completions of Composite Higgs Models with Partial Compositeness Marco Serone, SISSA, Trieste Based on 1211.7290, in collaboration with Francesco Caracciolo and Alberto Parolini and work in progress

More information

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV Radovan Dermíšek Institute for Advanced Study, Princeton R.D. and J. F. Gunion, hep-ph/0502105 R.D. and J. F. Gunion, hep-ph/0510322

More information

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Properties of the Higgs Boson, and its interpretation in Supersymmetry Properties of the Higgs Boson, and its interpretation in Supersymmetry U. Ellwanger, LPT Orsay The quartic Higgs self coupling and Supersymmetry The Next-to-Minimal Supersymmetric Standard Model Higgs

More information

(Non-degenerate) light generation compositeness in composite Higgs models

(Non-degenerate) light generation compositeness in composite Higgs models (Non-degenerate) light generation compositeness in composite Higgs models Seung J. Lee In collaboration with C. Delaunay, T. Flacke, J. Fraile, G. Panico, G. Perez (to appear soon; arxiv:1208.xxxx) 1 Outline

More information

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France

Florencia Canelli On behalf of the ATLAS and CMS collaborations. University of Zürich TOP2014 Cannes, France Florencia Canelli On behalf of the ATLAS and CMS collaborations University of Zürich TOP2014 Cannes, France Prepared with help from James Ferrando from ATLAS F. Canelli, University of Zürich TOP24 2 Largest

More information

Beyond the Higgs. new ideas on electroweak symmetry breaking

Beyond the Higgs. new ideas on electroweak symmetry breaking E = mc 2 Beyond the Higgs new ideas on electroweak symmetry breaking Higgs mechanism. The Higgs as a UV moderator of EW interactions. Needs for New Physics beyond the Higgs. Dynamics of EW symmetry breaking

More information

The Dilaton/Radion and the 125 GeV Resonance

The Dilaton/Radion and the 125 GeV Resonance The Dilaton/Radion and the 125 GeV Resonance Zackaria Chacko University of Maryland, College Park Introduction The discovery of a new Higgs-like particle with mass close to 125 GeV is a watershed in high

More information

Gauge-Higgs Unification and the LHC

Gauge-Higgs Unification and the LHC Gauge-Higgs Unification and the LHC If the Higgs boson is 124 or 126 or? GeV with SM couplings, Explain SM Higgs. with non-sm couplings, is not seen at LHC, Higgs is stable. Higgs does not exist. 2 If

More information

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

LHC Higgs Signatures from Extended Electroweak Guage Symmetry LHC Higgs Signatures from Extended Electroweak Guage Symmetry Tomohiro Abe Tsinghua U. based on JHEP 1301 (013) 08 In collabollations with Ning Chen, Hong-Jian He Tsinghua U. HPNP013, February 15th 1.

More information

Composite Higgs, Quarks and Leptons, a contemporary view

Composite Higgs, Quarks and Leptons, a contemporary view Composite Higgs, Quarks and Leptons, a contemporary view 1 Thanks to Sid Drell Always be positive, curious, constructive Α others will think your questions are dumb 2 3 Brodsky-Drell anomalous magnetic

More information

Bin Yan Peking University

Bin Yan Peking University Determining V tb at e + e Colliders Bin Yan Peking University Aug. 08, 2015 @10th TeV Physics Workshop In collaboration with Qing-Hong Cao, arxiv: 1507.06204 V tb measurements V tb 1 R V tb 2 Vtq 2 q=d,s,b

More information

Beyond the Standard Model Physics and implications from recent high-pt LHC data

Beyond the Standard Model Physics and implications from recent high-pt LHC data XLII International Meeting on Fundamental Physics Benasque, January 27-31, 2014 Beyond the Standard Model Physics and implications from recent high-pt LHC data José Santiago (CAFPE and U. Granada) 1 What

More information

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait Theory Perspective of Top Production: Top Resonances Tim M.P. Tait APS April Meeting May 3 2009 Outline Top Resonances are EVERYWHERE! Models, Models, and more Models High Mass Resonances and Boosted Tops

More information

Modification of Higgs Couplings in Minimal Composite Models

Modification of Higgs Couplings in Minimal Composite Models Modification of Higgs Couplings in Minimal Composite Models Da Liu Argonne National Laboratory With Ian Low, Carlos E. M. Wagner, arxiv:173.xxxx Motivation LHC data prefer κ t > κ g! Composite Higgs model

More information

Viability of strongly coupled scenarios with a light Higgs like boson

Viability of strongly coupled scenarios with a light Higgs like boson Beijing IHEP, January 8 th 2013 Viability of strongly coupled scenarios with a light Higgs like boson J.J. Sanz Cillero (PKU visitor) A. Pich, I. Rosell and JJ SC [arxiv:1212.6769 [hep ph]] OUTLINE 1)

More information

Boundary Conditions in AdS Life Without a Higgs

Boundary Conditions in AdS Life Without a Higgs Boundary Conditions in AdS Life Without a Higgs Csáki, Grojean, Murayama, Pilo, JT hep-ph/0305237 Csáki, Grojean, Pilo, JT hep-ph/0308038 Csáki, Grojean, Hubisz, Shirman, JT hep-ph/0310355 Cacciapaglia,

More information

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN) Rutgers University, December 8, 2009 Preview Found a SUSY model, where: Weird higgs decays

More information

Supersymmetry Breaking

Supersymmetry Breaking Supersymmetry Breaking LHC Search of SUSY: Part II Kai Wang Phenomenology Institute Department of Physics University of Wisconsin Madison Collider Phemonology Gauge Hierarchy and Low Energy SUSY Gauge

More information

Higgs: Interpretation and Implications. Marco Farina April 19, 2013

Higgs: Interpretation and Implications. Marco Farina April 19, 2013 Higgs: Interpretation and Implications Marco Farina April 19, 2013 Discovery! ATLAS coll. ATLAS-CONF-2013-034. CMS coll. CMS-PAS-HIG-13-002 Data Giardino et al. 1303.3570 Giardino et al. 1303.3570 Higgs

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

E 6 inspired composite Higgs model and 750 GeV diphoton excess

E 6 inspired composite Higgs model and 750 GeV diphoton excess E 6 inspired composite Higgs model and 750 GeV diphoton excess Roman Nevzorov 1,2, and Anthony Thomas 1 1 ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, Department of Physics,

More information

PoS(CHARGED2018)026. Composite Higgs bosons

PoS(CHARGED2018)026. Composite Higgs bosons Department of Physics, Chalmers University of Technology, Fysikgården 1, 41296 Göteborg, Sweden E-mail: ferretti@chalmers.se I discuss work done in the last few years, together with my collaborators, in

More information

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Higgs Searches and Properties Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University LHEP, Hainan, China, January 11-14, 2013 Outline Introduction of SM Higgs Searches

More information

Triplet Higgs Scenarios

Triplet Higgs Scenarios Triplet Higgs Scenarios Jack Gunion U.C. Davis Grenoble Higgs Workshop, March 2, 203 Higgs-like LHC Signal Fits with MVA CMS suggest we are heading towards the SM, but it could simply be a decoupling limit

More information

Higgs Boson Phenomenology Lecture I

Higgs Boson Phenomenology Lecture I iggs Boson Phenomenology Lecture I Laura Reina TASI 2011, CU-Boulder, June 2011 Outline of Lecture I Understanding the Electroweak Symmetry Breaking as a first step towards a more fundamental theory of

More information

Higgs Signals and Implications for MSSM

Higgs Signals and Implications for MSSM Higgs Signals and Implications for MSSM Shaaban Khalil Center for Theoretical Physics Zewail City of Science and Technology SM Higgs at the LHC In the SM there is a single neutral Higgs boson, a weak isospin

More information

FLAVOUR IN WARPED EXTRA DIMENSIONS

FLAVOUR IN WARPED EXTRA DIMENSIONS FLAVOUR IN WARPED EXTRA DIMENSIONS G. CACCIAPAGLIA Institut de Physique Nucléaire de Lyon, Université Lyon, CNRS/IN2P3, F-69622 Villeurbanne Cedex, France Models in warped extra dimensions are very attractive

More information

S = 2 decay in Warped Extra Dimensions

S = 2 decay in Warped Extra Dimensions S = 2 decay in Warped Extra Dimensions Faisal Munir IHEP, Beijing Supervisor: Cai-Dian Lü HFCPV CCNU, Wuhan October 28, 2017 based on: Chin. Phys. C41 (2017) 053106 [arxiv:1607.07713] F. Munir (IHEP) New

More information

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses UCRHEP-T565 April 2016 arxiv:1604.01148v1 [hep-ph] 5 Apr 2016 Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses Corey Kownacki 1 and Ernest Ma 1,2,3 1 Department of Physics and Astronomy, University

More information

Probing Two Higgs Doublet Models with LHC and EDMs

Probing Two Higgs Doublet Models with LHC and EDMs Probing Two Higgs Doublet Models with LHC and EDMs Satoru Inoue, w/ M. Ramsey-Musolf and Y. Zhang (Caltech) ACFI LHC Lunch, March 13, 2014 Outline 1 Motivation for 2HDM w/ CPV 2 Introduction to 2HDM 3

More information

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki

Charged Higgs Beyond the MSSM at the LHC. Katri Huitu University of Helsinki Charged Higgs Beyond the MSSM at the LHC Katri Huitu University of Helsinki Outline: Mo;va;on Charged Higgs in MSSM Charged Higgs in singlet extensions H ± à aw ± Charged Higgs in triplet extensions H

More information

The Higgs discovery - a portal to new physics

The Higgs discovery - a portal to new physics The Higgs discovery - a portal to new physics Department of astronomy and theoretical physics, 2012-10-17 1 / 1 The Higgs discovery 2 / 1 July 4th 2012 - a historic day in many ways... 3 / 1 July 4th 2012

More information

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge Searching for Extra Space Dimensions at the LHC M.A.Parker Cavendish Laboratory Cambridge I shall use ATLAS to illustrate LHC physics, because it is the experiment I know best. Both general purpose detectors

More information

Scenarios with Composite Higgs Bosons

Scenarios with Composite Higgs Bosons Scenarios with Composite Higgs Bosons 2013.2.15 Michio Hashimoto (Chubu U.) Introduction Let us consider scenarios that Some strong dynamics generate Composite particles, vectors, Pseudo-scalars, Scalars

More information

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ.

Decoupling and Alignment in Light of the Higgs Data. Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Decoupling and Alignment in Light of the Higgs Data Howard E. Haber Pi Day, 2014 Bay Area ParCcle Physics Seminar San Francisco State Univ. Outline I. IntroducCon Ø Snapshot of the LHC Higgs data Ø SuggesCons

More information

Higgs boson(s) in the NMSSM

Higgs boson(s) in the NMSSM Higgs boson(s) in the NMSSM U. Ellwanger, LPT Orsay Supersymmetry had a bad press recently: No signs for squarks/gluino/charginos/neutralinos... at the LHC Conflict (?) between naturalness and the Higgs

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

What the Higgs is going on? (beyond the SM)

What the Higgs is going on? (beyond the SM) What the Higgs is going on? (beyond the SM) Cédric Delaunay LAPTH Annecy-le-vieux, France enigmass@lpsc.fr November 8th 2013 ~Menu~ a SM Higgs discovery: good and bad news new physics in Higgs phenomenology

More information

Higgs Property Measurement with ATLAS

Higgs Property Measurement with ATLAS Higgs Property Measurement with ATLAS Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University Hadron Collider Physics Symposium HCP 2012, Kyoto University, Japan November 12-16, 2012 Observation

More information

Search strategies for vector-like quark partners at LHC run-ii

Search strategies for vector-like quark partners at LHC run-ii EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 26 Search strategies for vector-like quark partners at LHC run-ii

More information

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector (University of Hong Kong) Topical Mini-Workshop of the New Physics at the TeraScale @ Tsung-Dao Lee Institute, SJTU Introduction

More information

The bestest little Higgs

The bestest little Higgs The bestest little Higgs The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Schmaltz, Martin, Daniel

More information

Low Scale Flavor Gauge Symmetries

Low Scale Flavor Gauge Symmetries Low Scale Flavor Gauge Symmetries Michele Redi CERN in collaboration with Benjamin Grinstein and Giovanni Villadoro arxiv:1009.2049[hep-ph] Padova, 20 October Outline Flavor Problem Gauging the Flavor

More information

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University

Supersymmetry, Baryon Number Violation and a Hidden Higgs. David E Kaplan Johns Hopkins University Supersymmetry, Baryon Number Violation and a Hidden Higgs David E Kaplan Johns Hopkins University Summary LEP looked for a SM Higgs and didn t find it. Both electroweak precision measurements and supersymmetric

More information

Baryonic LHC

Baryonic LHC Baryonic Higgs @ LHC Juri Smirnov Florence division INFN Many thanks to: Michael Dürr and Pavel Fileviez Perez arxiv:1704.03811 Why is the Proton stable? SM accidental symmetry What about BSM? Can stability

More information

Physics of the Interplay Between the Top Quark and the Higgs Boson

Physics of the Interplay Between the Top Quark and the Higgs Boson Journal of Physics: Conference Series OPEN ACCESS Physics of the Interplay Between the Top Quark and the Higgs Boson To cite this article: Mikael Chala and José Santiago 2013 J. Phys.: Conf. Ser. 452 012008

More information

Composite Higgs models with the works

Composite Higgs models with the works Composite Higgs models with the works James Barnard with Tony Gherghetta, Tirtha Sankar Ray, Andrew Spray and Callum Jones With the recent discovery of the Higgs boson, all elementary particles predicted

More information

Heavy Electroweak Resonances at the LHC

Heavy Electroweak Resonances at the LHC Heavy Electroweak Resonances at the LHC (arxiv:0709.0007 + Ongoing work) Brookhaven National Lab with Agashe, Davoudiasl, Han, Huang, Perez, Si, Soni...... LHC-08, KITP, Santa Barbara Apr. 2008 Motivation

More information

Beyond the Standard Model Higgs boson searches using the ATLAS etector

Beyond the Standard Model Higgs boson searches using the ATLAS etector EPJ Web of Conferences 95, 47 (5) DOI:.5/ epjconf/ 5947 C Owned by the authors, published by EDP Sciences, 5 Beyond the Standard Model Higgs boson searches using the ATLAS etector I.I. Tsukerman the ATLAS

More information

Implications et perspectives theoriques

Implications et perspectives theoriques Implications et perspectives theoriques Riccardo Barbieri SNS and INFN, Pisa 1/26 Particle Physics in one page L ST L SM = 1 4 Fa µnf aµn + iȳ 6Dy + D µ h 2 V (h) +y i l ij y j h + h.c. The gauge sector

More information

New physics in top pair production

New physics in top pair production New physics in top pair production Roman Lysák on behalf of the ATLAS and CMS Collaborations Institute of physics of the AS CR, Na Slovance 999/2, 82 2 Praha 8, Czech Republic DOI: http://dx.doi.org/.324/desy-proc-24-2/32

More information

Vector boson scattering and triboson studies at ATLAS. Junjie Zhu University of Michigan May 25, 2017

Vector boson scattering and triboson studies at ATLAS. Junjie Zhu University of Michigan May 25, 2017 Vector boson scattering and triboson studies at ATLAS Junjie Zhu University of Michigan Periodic Table of SM Particles Particle physics: study fundamental particles and their interactions Particles in

More information

Theories with Compact Extra Dimensions

Theories with Compact Extra Dimensions Instituto de Física USP PASI 2012 UBA Theories with Compact Extra dimensions Part II Generating Large Hierarchies with ED Theories Warped Extra Dimensions Warped Extra Dimensions One compact extra dimension.

More information

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015

Precision Top Quark Measurements at Linear Colliders. M. E. Peskin LCWS 2015 November 2015 Precision Top Quark Measurements at Linear Colliders M. E. Peskin LCWS 2015 November 2015 In discussion of the physics case for future e+e- colliders, the top quark is often unappreciated. Some people

More information

BSM physics at the LHC. Akimasa Ishikawa (Kobe University)

BSM physics at the LHC. Akimasa Ishikawa (Kobe University) BSM physics at the LHC Akimasa Ishikawa (Kobe University) 7 Jan. 2011 If SM Higgs exists Why BSM? To solve the hierarchy and naturalness problems O(1 TeV) Quadratic divergence of Higgs mass If SM Higgs

More information

Naturalizing Supersymmetry with the Relaxion

Naturalizing Supersymmetry with the Relaxion Naturalizing Supersymmetry with the Relaxion Tony Gherghetta University of Minnesota Beyond the Standard Model OIST Workshop, Okinawa, Japan, March 4, 2016 Jason Evans, TG, Natsumi Nagata, Zach Thomas

More information

Probing New Physics of Cubic Higgs Interaction

Probing New Physics of Cubic Higgs Interaction Probing New Physics of Cubic Higgs Interaction Jing Ren University of Toronto ACFI Workhop September 19, 2015 Based on H.J. He (Tsinghua), JR, W. Yao (LBNL), 1506.03302 1 Outline Motivation New physics

More information

The Physics of Heavy Z-prime Gauge Bosons

The Physics of Heavy Z-prime Gauge Bosons The Physics of Heavy Z-prime Gauge Bosons Tevatron LHC LHC LC LC 15fb -1 100fb -1 14TeV 1ab -1 14TeV 0.5TeV 1ab -1 P - =0.8 P + =0.6 0.8TeV 1ab -1 P - =0.8 P + =0.6 χ ψ η LR SSM 0 2 4 6 8 10 12 2σ m Z'

More information

Partnerium at the LHC

Partnerium at the LHC Peking University Quarkonium 2017 10 Nov 2017 Partnerium at the LHC Yevgeny Kats JHEP 1004, 016 (2010) [arxiv:0912.0526] w/schwartz JHEP 1109, 099 (2011) [arxiv:1103.3503] w/kahawala JHEP 1211, 097 (2012)

More information

arxiv: v2 [hep-ph] 12 Apr 2017

arxiv: v2 [hep-ph] 12 Apr 2017 Classification of simple heavy vector triplet models Tomohiro Abe 1, 2 and Ryo Nagai 1 Institute for Advanced Research, Nagoya University, uro-cho Chikusa-ku, Nagoya, Aichi, 6-8602 Japan 2 Kobayashi-Maskawa

More information