Role of the Movie Maker program in Physics experiments

Size: px
Start display at page:

Download "Role of the Movie Maker program in Physics experiments"

Transcription

1 Role of the Movie Maker program in Physics experiments Cătălin ChiŃu 1,, Cătălin Măciucă, Ştefan Antohe 1 (1) University of Bucharest, Faculty of Physics, P.O.Box. MG-11, Bucharest, Romania () Energetic High School, Campina, Romania catalinchitumail@yahoo.com Abstract To be considered, a physical phenomenon can be reproduced in the laboratory. This process depends on many variables that make him the distinction in certain circumstances. Recording the experiment with webcam, especially when it involves the existence of mechanical movements, is important to help the analysis and interpretation of data acquired. This study presents the role of software computer programs Media Smart Webcam and Movie Maker to observe physical phenomena, to processing the film captures and interpretation of experimental data respectively. It is analyzing a real oscillation phenomenon to elastic oscillator. We appreciate the contribution made by using one computer during the training that is beneficial to increase the quality of the experiment and correctness of the interpretations in Physics discipline. Keywords: Laboratory experiments, Movie Maker program, Oscillation phenomenon, Physics discipline. Introduction Windows Movie Maker is video creating/editing software, included in Microsoft Windows Me, XP, and Vista. It contains features such as effects, transitions, titles/credits, audio track, timeline narration, and Auto Movie. New effects and transitions can be made and existing ones can be modified using XML code. Windows Movie Maker is also a basic audio track editing program. It can apply basic effects to audio tracks such as fade in or fade out. The audio tracks can then be exported in the form of a sound file instead of a video file ( The Windows Vista version of Windows Movie Maker support to importing video captures by webcam (video capture device) via Media Smart Webcam software program. This program stoked video-captures which are used to create the projects by Movie Maker program. Software is available to allow PC-connected cameras to watch for movement and sound, recording both when they are detected; these recordings can then be saved to the computer ( After capture, any clip can be dragged and dropped anywhere on the timeline. Once on the timeline, clips can be duplicated or split and any of the split sections deleted or copied using the standard Windows keyboard shortcuts or clicked and dragged to another position. Right-clicking any clip brings up the range of editing options. An Auto Movie feature offers predefined editing styles (titles, effects and transitions) for quickly creating movies (

2 The 5 th International Conference on Virtual Learning ICVL Edit video catches obtained during the laboratory experiment is, in some cases, very necessary. Thus, at certain times of the laboratory experiment, the evolutions of physical parameters deviate from the theoretical model accordingly. Therefore, to determine these parameters need to consider and analyze the parts of the phenomenon evolution which correspond and which verify the theoretical model. Experimenter will choose those portions of the video capture that meet these considerations. Deviations from the theoretical model will also be monitored and analyzed, providing interpretations of the limits of validity of that physical model. Training using video means necessary when certain phenomena and experiments are difficult to reproduced in laboratory conditions. Thus, after the video filming, these phenomena can be easily observed, analyzed and interpreted. In this way the teacher will choose and will edit those videos which are in accord with the objectives of the lesson (Malinovschi, 003). Can be determined, too, physical parameters which are impossible to measured in the absence of video capture. Considering that each student has a preferred learning style, training with video catches to experimental activities help students to develop video skills and digital skills. Training result in Physics discipline will be in accord with educational profile of students (Florian, 004; Gardner, 005; Gardner, 006, Miron 008). Training using the Movie Maker program can be completed using computer software. With them, users have to provide graphical interfaces (GUI) for the fast calculation of indirect experimental physical parameters. We estimate that this software is useful, too, to the evaluation studies of the efficiency of learning process. Theoretical contents Using to the physics lesson of audio and video files edited with Movie Maker program, enhance the quality of laboratory experiment. In this article we present stages of a publish project to the experimental theme: "The phenomenon of real oscillations. Elastic behaviour of an oscillator is analyzed in laboratory conditions. The article presents also the results obtained in laboratory experiment (A. V. SRL, 000). We made a video recording phase using a webcam, webcam with Media Smart software. Video Catches were stored in computer memory. For processing, the video file is accessed with the Windows Movie Maker - Vista version 6.0, using the button "IMPORT MEDIA. On computer screen will appear the project title and video capture imported (imported video file). Will select this file, and by the "drag and drop" method, the file is inserted in the "Timeline to begin its processing. When the video material is running, by pressing the "Split" button are cut sections of the project. Unnecessary sections will be eliminated using Remove" instruction. If the recording contains background noise, it can be eliminated by selecting the "Audio Levels" from the "Timeline". It will move the cursor to the right in this case. The operator can attach a sound comment to the video recording using the "Start narration" button. Also, using the "Import Media" button in the menu bar can be added to the project in progress, music videos and other files belonging. These files will appear on the home page of the project, and by the "drag and drop" method will attach them to the original file, in the following sections: "Video or "Audio / Music" of the editor ( Both the video and audio sequences can be attached to certain positions of the editing project.

3 16 University of Bucharest and University of Medicine and Pharmacy Târgu-Mureş After completing editing, audio video file must be saved. This is done by selecting the option "Publish Movie" from "File". At this point the operator has several options, depending on the chosen location to save the file created: Computers, DVD, Recordable CD, and digital video camera. After editing and saving the audio-video file, it can be used for educational purposes. Also, the whole project for editing audio and video file can be saved by selecting "Save Project" instruction from "File". Thus it will be possible to modify it later, depending on training requirements. Analysis of oscillatory phenomenon is based on the behaviour of small oscillations in laboratory conditions. Small oscillations phenomenon and the real oscillations phenomenon can be thoroughly studied using video. In the real oscillations phenomenon we have a friction force proportional and contrary to the direction of movement of the mass m of the oscillator. The friction force has the formula (Hristev, 1984; Yavorski, 1986): dy [1] F v = r = ry&, r = const dt The parameter r is called the proportionality constant of the friction force. By introducing the parameter named damping coefficient we obtained: [] r β = m dy [3] F = mβ = mβv dt This relationship shows that the amplitude of the damping oscillations decreases in time with the attenuation coefficientβ, according to the law: β t [4] A( t) = Ae Theoretically, this behaviour of the amplitude is an exponential decrease in time. The rate of decreasing in time of the damped oscillations amplitude is given by the dimension called logarithmic decrement of damping. The logarithmic decrement of damping (D) is defined by the natural logarithm of the ratio between the place at a period of time equal to the T period of elongations or the oscillation amplitude taking these oscillations (Hristev, 1984): y( t) A( t) [5] D = ln = ln = βt y( t+ T ) A( t+ T ) The formula of the energy of the really oscillator is: 1 β t = mω A = E0e = E0 [6] E e Energy is seen to exponentially decrease in time with the attenuation coefficient r β =. m Theoretically, the expression of the total energy at linear oscillator on elastic and gravitational fields is: k ( l+ A ) d ( n) ( n) [7] E( n) = + mg( A0 A( n) ) Using the energy sum up for the damped oscillatory motion made by the elastic oscillator, the following equation can be obtained: r t m

4 The 5 th International Conference on Virtual Learning ICVL E = E + W [8] i f dissipated The equation of the energy sum up will be the basis for the study of the free linear elastic oscillator. In fact, in the case of the real linear oscillations the variation of the total energy of the oscillator is equal to the mechanic work of the dissipative forces. The elastic constant measurement of the oscillator by a dynamic method means to take out the elastic pendulum from the equilibrium position. In this case an arbitrary number of complete oscillations are timed several times, writing down the paired values each time (Popescu et al., 006). The elastic dynamic constant of the spring is calculated for each case starting from the oscillator period in the situation of small oscillations: [9] T = t N = π m k d from which the value of the elastic constant is [5]: 4π mn [10] k d = t With Windows Movie Maker in Windows Vista 6.0 version, we edited the video capture file of the experiment. The oscillations occur with high frequency which does not allow direct measurement the data. However, analysis of video capture, sequence to sequence, made possible the extraction of experimental data. First, it was measured by the static method, the elastic constant of oscillator under conditions of static equilibrium (ks). The value of this parameter is required for the initial moment of the laboratory experiment. The dynamic elastic constant of oscillator was measured by dynamic experimental method. Certain parameters such as: variable amplitude of oscillations, duration of each set of oscillations, etc. are determined by the dynamics method. Consider mass m=40g. Video analysis allows for fine measurements: the period of oscillation, recovery times, and forces of inertia at the ends of elongations, movement speeds and accelerations (Panaiotu et al., 197). We determinate, using theoretical calculations, the total energies of oscillator and the dissipated energies by friction in the external environment. Experimental results This study characterized some of the physical parameters to real oscillations. A capture of screen about experimental measurement can be seeing in Figure 1. Figure 1. Screen capture from experimental work using edited file by Movie Maker program

5 18 University of Bucharest and University of Medicine and Pharmacy Târgu-Mureş The experimental data for representing the behaviours of the amplitude, the logarithmic decrement, energies and the dynamic elastic constant of real oscillator are in the Table 1. In this table, K S is the static elastic constant of the elastic oscillator. Table 1. The experimental data to real oscillations from elastic oscillator N A K (oscillations) S (N/m) 0 (cm) A (cm) t (s) 0,77,50 0,00 1,50 7, ,00 15,3 66 0,70, ,60 30,48, ,55 38, ,50 45, ,45 53, ,40 60, ,35 68,36 The measurement of the amplitude of the damped oscillations during teaching laboratory experiment, as a function of numerical groups of oscillations, shows an approximately exponential decrease of the amplitude (see Figure ) (A. V. SRL, 000; Origin Lab Corporation, 00). The evolution of the logarithmic decrement to the real elastic oscillator is presented in Figure 3. In this diagram it is applied fitting by a Boltzmann function. The evolution of the total energy to the real elastic oscillator is presented in Figure 4. In fact, with every oscillation, a part of the oscillator energy is dissipated outside as process energy (Popescu et al., 006). Figure. The evolution of the amplitude of oscillations Figure 3. The evolution of the logarithmic decrement of oscillations Figure 4. The evolution of the energy of the elastic oscillator In agreement with theory, the experimental graphic diagrams show a more pronounced decrease of the total energy of the real linear oscillator in comparison with the decrease of its amplitude during the time (Origin Lab Corporation, 00).

6 The 5 th International Conference on Virtual Learning ICVL The dissipative energy can be measured using the equation of balance energy. According to this value, the dissipative mechanic work is the result of the variation of the oscillator total energy for the initial and final states of oscillation (see Figure 5). In accordance with the graph from Figure 5, it can be seen that the rate of the energy dissipated outside by the linear elastic oscillator decreases with the increase of the number of oscillations. Decrease of the oscillator velocity correlates with the decrease in the dissipative force are contributes to the decrease of the dissipative energy exchange with the outside environment (Popescu et al., 006). The evolution of the dynamic elastic constant of the oscillator is presented in Figure 6. Figure 5. The evolution of the dissipative energy of the elastic oscillator Figure 6. The evolution of the dynamic elastic constant of the elastic oscillator The time dependent progress of the dynamic elastic constant shows its increase correlated with the increasing of the number of small oscillations (Figure 6). As the number of oscillations increased above 100 it is observed a slope change of dynamic elastic constant due to small plastic deformations of the elastic spring. Conclusions In cases when physical phenomena are difficult to be reproduced in laboratory conditions, the catches of image and sound are essential for understanding these phenomena. Using the files edited with Movie Maker program increases the number of physical parameters measured during teaching laboratory experiment. Are thus stimulated, knowledge transfer processes, directing the learning partners for scientific research. Also, training will increase efficiency, directing students learning by visual means. We estimate that programs use video and audio editing catches lead to useful projects to improve the quality of laboratory experiment. Students will be connected to those training activities that cover the entire spectrum of teaching-learning-assessment styles: visual, auditory and practical. References A. V. SRL. (000): Modul of Practical Laboratory Devices. Alfa Vega SRL, Satu Mare Florian, G. (004): Differentiated instruction to students in physics. Else Publishing, Craiova Gardner, H. (005): The Disciplined Mind. Sigma Publisher, Bucharest

7 0 University of Bucharest and University of Medicine and Pharmacy Târgu-Mureş Gardner, H. (006): Multiples Intelligences. Sigma Publisher, Bucharest Hristev, A. (1984): Mechanics and Acoustics. Didactic and Pedagogic Publishing House, Bucharest Malinovschi, V. (003): Teaching Physics. Didactic and Pedagogic Publishing House R.A., Bucharest Miron, C. (008): Teaching Physics. Bucharest University Publishing House, Bucharest Movie Maker, Panaiotu, L., Chelu, I., Petrescu-Prahova, M., Teodoru, E. A. (197): Experimental work in physics for high school. Didactic and Pedagogic Publishing House, Bucharest Popescu, M., Tomescu, V., Strazzaboschi, S., Sandu, M. (006): Physical-Manual 11th grade. LVS Crepuscul Publishing, Ploieşti Origin Lab - Corporation, (00): Scientific graphing and data analysis software products, Origin 7.0 Version. Massachusetts Webcam, Windows Movie Maker, Windows Vista, Yavorski, B., Detlaf, A. (1986): The Physical Dictionary. Mir Publishers, Moscow

Center of Mass. Evaluation copy

Center of Mass. Evaluation copy Center of Mass Experiment 19 INTRODUCTION In the most of the previous experiments you have examined the motion of a single object as it underwent a variety of motions. You learned that an object subject

More information

Multimedia Interactive Simulations of Physical Experiments

Multimedia Interactive Simulations of Physical Experiments Multimedia Interactive Simulations of Physical Experiments Alena KOVÁROVÁ Department of Computer Graphics and Image Processing Faculty of Mathematics, Physics and Informatics, Comenius University Mlynská

More information

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions

PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions PHY 221 Lab 3 Vectors and Motion in 1 and 2 Dimensions Print Your Name Print Your Partners' Names Instructions Before lab, read the Introduction, and answer the Pre-Lab Questions on the last page of this

More information

Figure 2.1 The Inclined Plane

Figure 2.1 The Inclined Plane PHYS-101 LAB-02 One and Two Dimensional Motion 1. Objectives The objectives of this experiment are: to measure the acceleration due to gravity using one-dimensional motion, i.e. the motion of an object

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Experiment 03: Work and Energy

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department. Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01 Fall Term 2010 Experiment 03: Work and Energy Purpose of the Experiment: In this experiment you allow a cart to roll down an inclined

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

More information

LAB 2 - ONE DIMENSIONAL MOTION

LAB 2 - ONE DIMENSIONAL MOTION Name Date Partners L02-1 LAB 2 - ONE DIMENSIONAL MOTION OBJECTIVES Slow and steady wins the race. Aesop s fable: The Hare and the Tortoise To learn how to use a motion detector and gain more familiarity

More information

Elastic pendulum. Observing changes in the elastic force exerted by a spring acting as a pendulum

Elastic pendulum. Observing changes in the elastic force exerted by a spring acting as a pendulum Objective The objective of this activity is to observe and analyze variations in periodicity in the elastic force of a spring over a suspended mass, while maintaining a harmonic movement. From a qualitative

More information

Experiment 5. Simple Harmonic Motion

Experiment 5. Simple Harmonic Motion Reading and Problems: Chapters 7,8 Problems 7., 8. Experiment 5 Simple Harmonic Motion Goals. To understand the properties of an oscillating system governed by Hooke s Law.. To study the effects of friction

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Bloomsburg University Weather Viewer Quick Start Guide. Software Version 1.2 Date 4/7/2014

Bloomsburg University Weather Viewer Quick Start Guide. Software Version 1.2 Date 4/7/2014 Bloomsburg University Weather Viewer Quick Start Guide Software Version 1.2 Date 4/7/2014 Program Background / Objectives: The Bloomsburg Weather Viewer is a weather visualization program that is designed

More information

Newton s Second Law. Sample

Newton s Second Law. Sample Newton s Second Law Experiment 4 INTRODUCTION In your discussion of Newton s first law, you learned that when the sum of the forces acting on an object is zero, its velocity does not change. However, when

More information

2: SIMPLE HARMONIC MOTION

2: SIMPLE HARMONIC MOTION 2: SIMPLE HARMONIC MOTION Motion of a mass hanging from a spring If you hang a mass from a spring, stretch it slightly, and let go, the mass will go up and down over and over again. That is, you will get

More information

Lab 1 Uniform Motion - Graphing and Analyzing Motion

Lab 1 Uniform Motion - Graphing and Analyzing Motion Lab 1 Uniform Motion - Graphing and Analyzing Motion Objectives: < To observe the distance-time relation for motion at constant velocity. < To make a straight line fit to the distance-time data. < To interpret

More information

Driven Harmonic Oscillator

Driven Harmonic Oscillator Driven Harmonic Oscillator Physics 6B Lab Experiment 1 APPARATUS Computer and interface Mechanical vibrator and spring holder Stands, etc. to hold vibrator Motion sensor C-209 spring Weight holder and

More information

Motion on a linear air track

Motion on a linear air track Motion on a linear air track Introduction During the early part of the 17 th century, Galileo experimentally examined the concept of acceleration. One of his goals was to learn more about freely falling

More information

Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket

Cart on a Ramp. Evaluation Copy. Figure 1. Vernier Dynamics Track. Motion Detector Bracket Cart on a Ramp Computer 3 This experiment uses an incline and a low-friction cart. If you give the cart a gentle push up the incline, the cart will roll upward, slow and stop, and then roll back down,

More information

PHYSICS 211 LAB #8: Periodic Motion

PHYSICS 211 LAB #8: Periodic Motion PHYSICS 211 LAB #8: Periodic Motion A Lab Consisting of 6 Activities Name: Section: TA: Date: Lab Partners: Circle the name of the person to whose report your group printouts will be attached. Individual

More information

AP Physics 1 Summer Assignment Packet

AP Physics 1 Summer Assignment Packet AP Physics 1 Summer Assignment Packet 2017-18 Welcome to AP Physics 1 at David Posnack Jewish Day School. The concepts of physics are the most fundamental found in the sciences. By the end of the year,

More information

Equipotential Lines and Electric Fields

Equipotential Lines and Electric Fields Physics Equipotential Lines and Electric Fields Plotting the Electric Field MATERIALS AND RESOURCES EACH GROUP 5 alligator clip leads 2 batteries, 9 V 2 binder clips, large computer LabQuest multimeter,

More information

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK

ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK ES205 Analysis and Design of Engineering Systems: Lab 1: An Introductory Tutorial: Getting Started with SIMULINK What is SIMULINK? SIMULINK is a software package for modeling, simulating, and analyzing

More information

Straight Line Motion (Motion Sensor)

Straight Line Motion (Motion Sensor) Straight Line Motion (Motion Sensor) Name Section Theory An object which moves along a straight path is said to be executing linear motion. Such motion can be described with the use of the physical quantities:

More information

LAB 3: WORK AND ENERGY

LAB 3: WORK AND ENERGY 1 Name Date Lab Day/Time Partner(s) Lab TA (CORRECTED /4/05) OBJECTIVES LAB 3: WORK AND ENERGY To understand the concept of work in physics as an extension of the intuitive understanding of effort. To

More information

The Coupled Pendulum Experiment

The Coupled Pendulum Experiment The Coupled Pendulum Experiment In this lab you will briefly study the motion of a simple pendulum, after which you will couple two pendulums and study the properties of this system. 1. Introduction to

More information

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE

Lab Partner(s) TA Initials (on completion) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE 117 Textbook Reference: Walker, Chapter 10-1,2, Chapter 11-1,3 SYNOPSIS

More information

Forced oscillation - Pohl s pendulum with measure Dynamics. Equipment TEP

Forced oscillation - Pohl s pendulum with measure Dynamics. Equipment TEP Forced oscillation - Pohl s pendulum TEP Related topics Angular velocity, characteristic frequency, resonance frequency, torsional pendulum, torsional oscillation, restoring torque, damped/undamped free

More information

Laboratory handouts, ME 340

Laboratory handouts, ME 340 Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 2014-2016 Harry Dankowicz, unless otherwise

More information

Visual Physics 218 Forces & Acceleration [Lab 3]

Visual Physics 218 Forces & Acceleration [Lab 3] In this experiment, you will be evaluating the vector nature of forces and Newton s 2 nd Law of Motion using a free-body diagram. You will accomplish this by performing experiments involving both static

More information

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1

Work and Energy. This sum can be determined graphically as the area under the plot of force vs. distance. 1 Work and Energy Experiment 18 Work is a measure of energy transfer. In the absence of friction, when positive work is done on an object, there will be an increase in its kinetic or potential energy. In

More information

first name (print) last name (print) brock id (ab17cd) (lab date)

first name (print) last name (print) brock id (ab17cd) (lab date) (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 2 Harmonic motion Prelab preparation Print a copy of this experiment to bring to your scheduled lab session. The

More information

Experiment: Oscillations of a Mass on a Spring

Experiment: Oscillations of a Mass on a Spring Physics NYC F17 Objective: Theory: Experiment: Oscillations of a Mass on a Spring A: to verify Hooke s law for a spring and measure its elasticity constant. B: to check the relationship between the period

More information

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE

TALLINN UNIVERSITY OF TECHNOLOGY, INSTITUTE OF PHYSICS 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE 6. THE TEMPERATURE DEPENDANCE OF RESISTANCE 1. Objective Determining temperature coefficient of metal and activation energy of self-conductance of semiconductor sample. 2. Equipment needed Metal and semiconductor

More information

Experiment: Momentum & Impulse in Collisions (Video)

Experiment: Momentum & Impulse in Collisions (Video) Phy201: General Physics I Laboratory 1 Experiment: Momentum & Impulse in Collisions (Video) Objectives: To utilize momentum carts to investigate the nature of different types of collisions To perform video

More information

A SHORT INTRODUCTION TO ADAMS

A SHORT INTRODUCTION TO ADAMS A. AHADI, P. LIDSTRÖM, K. NILSSON A SHORT INTRODUCTION TO ADAMS FOR MECHANICAL ENGINEERS DIVISION OF MECHANICS DEPARTMENT OF MECHANICAL ENGINEERING LUND INSTITUTE OF TECHNOLOGY 2017 1 FOREWORD THESE EXERCISES

More information

SCLPX - An Alternative Approach to Experiments in Physics Lessons at School

SCLPX - An Alternative Approach to Experiments in Physics Lessons at School Č. Kodejška et.al: An Alternative Approach to Experiments in Physics SCLPX - An Alternative Approach to Experiments in Physics Lessons Čeněk Kodejška, Roman Kubínek, Jan Říha Department of Experimental

More information

Teacher Name: John Borud District: Montello Class / Subject / Grade:

Teacher Name: John Borud District: Montello Class / Subject / Grade: Teacher Name: John Borud District: Montello Class / Subject / Grade: Physics Unit Topic: Investigating Magnetic fields Allocation of Time: 6 days Using Technology with Classroom Instruction That Works

More information

PHY 123 Lab 10-Simple Harmonic Motion

PHY 123 Lab 10-Simple Harmonic Motion 1 To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 123 Lab 10-Simple Harmonic Motion The purpose of this lab is to study simple harmonic

More information

Visual Physics Forces & Acceleration Lab 3

Visual Physics Forces & Acceleration Lab 3 In this experiment you will be evaluating the vector nature of forces and Newton s 2 nd Law of Motion using a free-body diagram. You will accomplish this by performing experiments involving both static

More information

Applications of Newton's Laws

Applications of Newton's Laws Applications of Newton's Laws Purpose: To apply Newton's Laws by applying forces to objects and observing their motion; directly measuring these forces that are applied. Apparatus: Pasco track, Pasco cart,

More information

Motion II. Goals and Introduction

Motion II. Goals and Introduction Motion II Goals and Introduction As you have probably already seen in lecture or homework, and if you ve performed the experiment Motion I, it is important to develop a strong understanding of how to model

More information

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE

SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE OUTLINE PHYS 195 CIC Approval: 04/27/2006 BOT APPROVAL: 05/25/2006 STATE APPROVAL: EFFECTIVE TERM: Fall 2006 SECTION I SAN DIEGO COMMUNITY COLLEGE DISTRICT CITY, MESA, AND MIRAMAR COLLEGES ASSOCIATE DEGREE COURSE

More information

Lab 01: Harmonic Motion I. Theory: Three experiments. The first we measure the oscillation of a spring, the second of a rubber band (non-linear).

Lab 01: Harmonic Motion I. Theory: Three experiments. The first we measure the oscillation of a spring, the second of a rubber band (non-linear). Dr. W. Pezzaglia Physics 8C Lab, Spring 04 Page Las Positas College Lab # Harmonic Motion 04Jan3 Lab 0: Harmonic Motion I. Theory: Three experiments. The first we measure the oscillation of a spring, the

More information

PHY 123 Lab 9 Simple Harmonic Motion

PHY 123 Lab 9 Simple Harmonic Motion PHY 123 Lab 9 Simple Harmonic Motion (updated 11/17/16) The purpose of this lab is to study simple harmonic motion of a system consisting of a mass attached to a spring. You will establish the relationship

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.01T Fall Term 2004 Experiment 06: Work, Energy and the Harmonic Oscillator Purpose of the Experiment: In this experiment you allow a cart

More information

Pine Hill Public Schools Curriculum

Pine Hill Public Schools Curriculum Content Area: Pine Hill Public Schools Curriculum Science Course Title/ Grade Level: Honors Physics / Gr. 11 & 12 Unit 1: Unit 2: Unit 3: Unit 4: Unit 4: Introduction, Measurement, Estimating Duration:

More information

Newton's 2 nd Law. . Your end results should only be interms of m

Newton's 2 nd Law. . Your end results should only be interms of m Newton's nd Law Introduction: In today's lab you will demonstrate the validity of Newton's Laws in predicting the motion of a simple mechanical system. The system that you will investigate consists of

More information

Experiment P-9 An Inclined Plane

Experiment P-9 An Inclined Plane 1 Experiment P-9 An Inclined Plane Objectives To understand the principles of forces on an inclined plane. To measure the parallel component of the gravitational force and compare it to the calculated

More information

Simple Harmonic Motion

Simple Harmonic Motion [International Campus Lab] Objective Investigate simple harmonic motion using an oscillating spring and a simple pendulum. Theory ----------------------------- Reference -------------------------- Young

More information

Experiment 4 Oscillations

Experiment 4 Oscillations Experiment 4 Oscillations "Physics is experience, arranged in economical order." E. Mach OBJECTIVES To study some simple oscillatory systems. THEORY Typical dictionary definitions of the verb "oscillate"

More information

Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface

Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface PAGE 1/13 Exp. #1-1 : Measurement of the Characteristics of the Centripetal Force by Using Springs and a Computer Interface Student ID Major Name Team No. Experiment Lecturer Student's Mentioned Items

More information

EXPLORING THE GRAPHIC FACILITIES OF EXCEL SPREADSHEETS IN THE INTERACTIVE TEACHING AND LEARNING OF DAMPED HARMONIC OSCILLATIONS

EXPLORING THE GRAPHIC FACILITIES OF EXCEL SPREADSHEETS IN THE INTERACTIVE TEACHING AND LEARNING OF DAMPED HARMONIC OSCILLATIONS EXPLORING THE GRAPHIC FACILITIES OF EXCEL SPREADSHEETS IN THE INTERACTIVE TEACHING AND LEARNING OF DAMPED HARMONIC OSCILLATIONS I. GRIGORE 1,2, CRISTINA MIRON 1*, E.S. BARNA 1 1 Faculty of Physics, University

More information

Course Name: AP Physics C Mechanics

Course Name: AP Physics C Mechanics Course Name: AP Physics C Mechanics Course Overview: This course covers Newtonian Mechanics with calculus methodology in depth. Content areas covered are listed in detail in the course outline below. In

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Inverted Pendulum System

Inverted Pendulum System Introduction Inverted Pendulum System This lab experiment consists of two experimental procedures, each with sub parts. Experiment 1 is used to determine the system parameters needed to implement a controller.

More information

Simple Harmonic Motion and Damping

Simple Harmonic Motion and Damping Simple Harmonic Motion and Damping Marie Johnson Cabrices Chamblee Charter High School Background: Atomic Force Microscopy, or AFM, is used to characterize materials. It is used to measure local properties,

More information

PreClass Notes: Chapter 13, Sections

PreClass Notes: Chapter 13, Sections PreClass Notes: Chapter 13, Sections 13.3-13.7 From Essential University Physics 3 rd Edition by Richard Wolfson, Middlebury College 2016 by Pearson Education, Inc. Narration and extra little notes by

More information

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body

Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,

More information

EXPERIMENT 4 ONE DIMENSIONAL MOTION

EXPERIMENT 4 ONE DIMENSIONAL MOTION EXPERIMENT 4 ONE DIMENSIONAL MOTION INTRODUCTION This experiment explores the meaning of displacement; velocity, acceleration and the relationship that exist between them. An understanding of these concepts

More information

Teacher s notes 19b An investigation into the energy changes occurring in a pendulum swing

Teacher s notes 19b An investigation into the energy changes occurring in a pendulum swing Sensors: Loggers: Rotary Motion Any EASYSENSE Physics Logging time: 5 seconds Teacher s notes 19b An investigation into the energy changes occurring in a pendulum swing Read The relationship between the

More information

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION

Partner s Name: EXPERIMENT MOTION PLOTS & FREE FALL ACCELERATION Name: Partner s Name: EXPERIMENT 500-2 MOTION PLOTS & FREE FALL ACCELERATION APPARATUS Track and cart, pole and crossbar, large ball, motion detector, LabPro interface. Software: Logger Pro 3.4 INTRODUCTION

More information

LivePhoto Physics Activity 3. Velocity Change. Motion Detector. Sample

LivePhoto Physics Activity 3. Velocity Change. Motion Detector. Sample LivePhoto Physics Activity 3 Name: Date: Analyzing Position vs. Time Graphs: The most fundamental measurements of motion involve the determination of an object s location at a series of times. A very effective

More information

Course Project. Physics I with Lab

Course Project. Physics I with Lab COURSE OBJECTIVES 1. Explain the fundamental laws of physics in both written and equation form 2. Describe the principles of motion, force, and energy 3. Predict the motion and behavior of objects based

More information

Appendix B Microsoft Office Specialist exam objectives maps

Appendix B Microsoft Office Specialist exam objectives maps B 1 Appendix B Microsoft Office Specialist exam objectives maps This appendix covers these additional topics: A Excel 2003 Specialist exam objectives with references to corresponding material in Course

More information

Air Resistance. Experiment OBJECTIVES MATERIALS

Air Resistance. Experiment OBJECTIVES MATERIALS Air Resistance Experiment 13 When you solve physics problems involving free fall, often you are told to ignore air resistance and to assume the acceleration is constant and unending. In the real world,

More information

EYE-TRACKING TESTING OF GIS INTERFACES

EYE-TRACKING TESTING OF GIS INTERFACES Geoinformatics EYE-TRACKING TESTING OF GIS INTERFACES Bc. Vaclav Kudelka Ing. Zdena Dobesova, Ph.D. Department of Geoinformatics, Palacký University, Olomouc, Czech Republic ABSTRACT Eye-tracking is currently

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 7 Energy Name: Lab Partner: Section: 7.1 Purpose In this experiment, energy and work will be explored. The relationship between total energy, kinetic energy and potential energy will be observed.

More information

Physics 2310 Lab #3 Driven Harmonic Oscillator

Physics 2310 Lab #3 Driven Harmonic Oscillator Physics 2310 Lab #3 Driven Harmonic Oscillator M. Pierce (adapted from a lab by the UCLA Physics & Astronomy Department) Objective: The objective of this experiment is to characterize the behavior of a

More information

Exploring Excel spreadsheets in the teaching and learning of certain concepts of Statistical physics and Thermodynamics

Exploring Excel spreadsheets in the teaching and learning of certain concepts of Statistical physics and Thermodynamics Exploring Excel spreadsheets in the teaching and learning of certain concepts of Statistical physics and Thermodynamics Ionel Grigore 1,2, Cristina Miron 1, Emil-Stefan Barna 1 (1) Faculty of Physics,

More information

FENG CHIA UNIVERSITY

FENG CHIA UNIVERSITY FENG CHIA UNIVERSITY Fundamentals of Physics I (With Lab) PHYS114, Summer 2018 (May14-Jun15) Lecturer: TBA E-mail: TBA Time: Monday through Friday Contact hours: 60 (50 minutes each) Credits: 4 Office

More information

Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate)

Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate) Activity P15: Simple Harmonic Oscillation (Force Sensor, Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Harmonic motion P15 Oscillation.DS P21 Harmonic Oscillation P21_HARM.SWS

More information

TEACHER NOTES SCIENCE NSPIRED

TEACHER NOTES SCIENCE NSPIRED Science Objectives Students will investigate the effects of mass, spring constant, and initial displacement on the motion of an object oscillating on a spring. Students will observe the relationships between

More information

_CH01_p qxd 1/20/10 8:35 PM Page 1 PURPOSE

_CH01_p qxd 1/20/10 8:35 PM Page 1 PURPOSE 9460218_CH01_p001-010.qxd 1/20/10 8:35 PM Page 1 1 GRAPHING AND ANALYSIS PURPOSE The purpose of this lab is to investigate the relationship between displacement and force in springs and to practice acquiring

More information

The Spring-Mass Oscillator

The Spring-Mass Oscillator The Spring-Mass Oscillator Goals and Introduction In this experiment, we will examine and quantify the behavior of the spring-mass oscillator. The spring-mass oscillator consists of an object that is free

More information

5-Sep-15 PHYS101-2 GRAPHING

5-Sep-15 PHYS101-2 GRAPHING GRAPHING Objectives 1- To plot and analyze a graph manually and using Microsoft Excel. 2- To find constants from a nonlinear relation. Exercise 1 - Using Excel to plot a graph Suppose you have measured

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate)

Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate) Name Class Date Activity P20: Conservation of Mechanical Energy (Force Sensor, Photogate) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energy P20 Mechanical Energy.DS P23 Cons. Mechanical

More information

a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules.

a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules. Lab #1 - Free Vibration Name: Date: Section / Group: Procedure Steps (from lab manual): a. Follow the Start-Up Procedure in the laboratory manual. Note the safety rules. b. Locate the various springs and

More information

Experiment P-5 Motion of a Cart on an Inclined Plane

Experiment P-5 Motion of a Cart on an Inclined Plane 1 Experiment P-5 Motion of a Cart on an Inclined Plane Objectives To learn about the four motion equations. To study the motion of a cart on an inclined plane. To study motion with constant acceleration.

More information

Transpiration. Evaluation copy

Transpiration. Evaluation copy Transpiration Computer 9 Water is transported in plants, from the roots to the leaves, following a decreasing water potential gradient. Transpiration, or loss of water from the leaves, helps to create

More information

Collisions and conservation laws

Collisions and conservation laws (ta initials) first name (print) last name (print) brock id (ab17cd) (lab date) Experiment 4 Collisions and conservation laws Prelab preparation Print a copy of this experiment to bring to your scheduled

More information

Experiment 1: The Same or Not The Same?

Experiment 1: The Same or Not The Same? Experiment 1: The Same or Not The Same? Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to collect data and calculate statistics (mean and standard deviation). 2. Explain

More information

Student Technology Standards Scope and Sequence

Student Technology Standards Scope and Sequence ntroduce- Skill is demonstrated, discussed, and practiced evelop-skill is practiced, reinforced, and enhanced 1. General Computer Knowledge 1.1 emonstrates basic operation (example: start up, log on, log

More information

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics

Dynamics. Newton s First Two Laws of Motion. A Core Learning Goals Activity for Science and Mathematics CoreModels Dynamics Newton s First Two Laws of Motion A Core Learning Goals Activity for Science and Mathematics Summary: Students will investigate the first and second laws of motion in laboratory activities.

More information

Laboratory handout 5 Mode shapes and resonance

Laboratory handout 5 Mode shapes and resonance laboratory handouts, me 34 82 Laboratory handout 5 Mode shapes and resonance In this handout, material and assignments marked as optional can be skipped when preparing for the lab, but may provide a useful

More information

SHM Simple Harmonic Motion revised May 23, 2017

SHM Simple Harmonic Motion revised May 23, 2017 SHM Simple Harmonic Motion revised May 3, 017 Learning Objectives: During this lab, you will 1. communicate scientific results in writing.. estimate the uncertainty in a quantity that is calculated from

More information

BASIC TECHNOLOGY Pre K starts and shuts down computer, monitor, and printer E E D D P P P P P P P P P P

BASIC TECHNOLOGY Pre K starts and shuts down computer, monitor, and printer E E D D P P P P P P P P P P BASIC TECHNOLOGY Pre K 1 2 3 4 5 6 7 8 9 10 11 12 starts and shuts down computer, monitor, and printer P P P P P P practices responsible use and care of technology devices P P P P P P opens and quits an

More information

Using Microsoft Excel

Using Microsoft Excel Using Microsoft Excel Objective: Students will gain familiarity with using Excel to record data, display data properly, use built-in formulae to do calculations, and plot and fit data with linear functions.

More information

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring

Simple Harmonic Motion Investigating a Mass Oscillating on a Spring 17 Investigating a Mass Oscillating on a Spring A spring that is hanging vertically from a support with no mass at the end of the spring has a length L (called its rest length). When a mass is added to

More information

General Physics Laboratory Experiment Report 1st Semester, Year 2018

General Physics Laboratory Experiment Report 1st Semester, Year 2018 PAGE 1/20 Exp. #1-2 : Measurement of the Motion of Objects by Using a Computer Interface and Understanding of Newton s Law of Motion Measurement of the Characteristics of the Frictional Force by Using

More information

Response of a Physical Mechanical System

Response of a Physical Mechanical System Response of a Physical Mechanical System Response of a Physical System Motivation The objective of this experiment is to familiarize you with the basic system modeling and concepts of analysis and control

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring

Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Lab 11 Simple Harmonic Motion A study of the kind of motion that results from the force applied to an object by a spring Print Your Name Print Your Partners' Names Instructions April 20, 2016 Before lab,

More information

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual)

PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual) Musical Acoustics Lab, C. Bertulani, 2012 PreLab 2 - Simple Harmonic Motion: Pendulum (adapted from PASCO- PS-2826 Manual) A body is said to be in a position of stable equilibrium if, after displacement

More information

AP Physics C : Mechanics Course Syllabus Instructor: Mr. Ronald J. Maniglia

AP Physics C : Mechanics Course Syllabus Instructor: Mr. Ronald J. Maniglia AP Physics C : Mechanics Course Syllabus 2014-2015 Instructor: Mr. Ronald J. Maniglia www.rjmaniglia.org Introduction AP Physics C: Mechanics is an 18-week calculus-based laboratory course concerning kinematics,

More information

Force vs time. IMPULSE AND MOMENTUM Pre Lab Exercise: Turn in with your lab report

Force vs time. IMPULSE AND MOMENTUM Pre Lab Exercise: Turn in with your lab report IMPULSE AND MOMENTUM Pre Lab Exercise: Turn in with your lab report Newton s second law may be written r r F dt = p where F is the force and p is the change in momentum. The area under the force vs. time

More information

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor)

Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Activity P08: Newton's Second Law - Constant Force (Force Sensor, Motion Sensor) Concept DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Newton s Laws P08 Constant Force.DS P11 Constant Force P11_CONF.SWS

More information

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley)

Experiment P09: Acceleration of a Dynamics Cart I (Smart Pulley) PASCO scientific Physics Lab Manual: P09-1 Experiment P09: (Smart Pulley) Concept Time SW Interface Macintosh file Windows file Newton s Laws 30 m 500 or 700 P09 Cart Acceleration 1 P09_CAR1.SWS EQUIPMENT

More information

Simple circuits - 3 hr

Simple circuits - 3 hr Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

More information

AP Physics 1. Course Overview

AP Physics 1. Course Overview Radnor High School Course Syllabus AP Physics 1 Credits: Grade Weighting: Yes Prerequisites: Co-requisites: Length: Format: 1.0 Credit, weighted Honors chemistry or Advanced Chemistry Honors Pre-calculus

More information

CONSERVATIVE FORCE SYSTEMS

CONSERVATIVE FORCE SYSTEMS Purpose Theory CONSERVATIVE FORCE SYSTEMS a. To investigate Hooke s law and determine the spring constant. b. To study the nature of conservative force systems using a spring-mass system as an example.

More information