By Tom Irvine December 27,

Size: px
Start display at page:

Download "By Tom Irvine December 27,"

Transcription

1 THE STEADY-STATE VIBRATION RESPONSE OF A BAFFED PATE SIMPY-SUPPORTED ON A SIDES SUBJECTED TO RANDOM PRESSURE PANE WAVE EXCITATION AT OBIQUE INCIDENCE Revisi A By T Irvie Deceber 7, 04 The rd ecii pper is very siilr Referece which cvered hric ecii. The bffled, siply-suppred ple i Figure is subjeced blique ple pressure wve e side. Oly side view lg he legh is shw becuse he pressure is ssued be uifr wih widh. This digr d he crrespdig pressure field equi re e fr Referece. Direci f Prpgi Wvefr Wvefr w(,y,) Figure. is he cusic wvelegh. is he rce wvelegh. / ()

2 The gverig differeil equi fr Referece is w w w z D h P(, ) 4 4 y y () The ple siffess fcr D is give by where Eh 3 D (3) E H P is he dulus f elsiciy Piss s ri is he hicess is he ss desiy (ss/vlue) is he pplied pressure The ss-rlized de shpes re y b h b (4) y b h b (5) y b h b (6)

3 y y b h b b y y b h b b (7) (8) The url frequecies re c D h b (9) D h b (0) e b () Thus D h () c 4 D h (3) The geerlized frce is y b h b (4) e  (5) bh 3

4 4 b y  (6) b 0 0 ddy ) p(, b y  () (7) b 0 0 ddy b y  p () (8) b 0 0 ddy b y  p () (9) b 0 0 b y d  b p () (0) 0 d p  b () () 0 d p  b () () 0 0 d d p  b () (3)

5 Fr, () Â b p (4) Ne h fr ll vlues, 0 (5) () Â b p (6) Â b () p (7) () Â p b (8) 5

6 6 b  p () (9) b  p () (30) V (3) b  p () (3) The phse gle ε will be regrded s rbirry ce ly sedy-se slui is sugh. b  p () (33)

7 7 Ne he fllwig reliship fr he dl wvelegh. (34) (35) 4 b  p () (36) b  p () (37) b  p () (38) Fr rbirry phse gle, he equi y be rewrie s fr, b  p () (39)

8 Fr, Â p b () (40) Agi, ly he sedy-se slui is eeded. S defie pricipi fcr d represe he ie vryig er s hric ecii fuci. where () p() (4) p() p ep( j ) (4) Fr, Â b (43) Fr, Â b (44) 8

9 Defie ji ccepce fuci J. J  b (45) J (46)  b Fr, J (47) The equi f i fr he dl crdies is d u d du u p() (48) d d u d du u  J p() (49) d The eprl vrible respse he pplied frce rspsed he frequecy di is U P (50) j 9

10  b J U P (5) j Recll (5) w(, y, ) (, y)u Trspse he frequecy di. (, y) W, y, P (53) j  b J (, y) W, y, P (54) j The frequecy respse fuci relig he displcee he blique pressure field is W, y, P (, y) j (55) W, y, P  J (, y) j (56) The bedig es re M, y, D W, y, y (57) 0

11 Myy, y, D W, y, y (58) The bedig sresses fr Referece 3 re Ezˆ y, y, W, y, (59) Ezˆ yy y, y, W, y, (60) Ezˆ y, y, W, y, y (6) ẑ is he disce fr he ceerlie i he vericl is A eple is give i Appedi B. Refereces. T. Irvie, The Sedy-Se Vibri Respse f Bffled Ple Siply-Suppred All Sides Subjeced Hric Pressure Wve Ecii Oblique Icidece, Revisi E, Vibrid, 04.. T. Irvie, The Me Squre Frce Due Rd Frces Rigid Be, Revisi B, Vibrid, J.S. R, Dyics f Ples, Nrs, New Delhi, T. Irvie, Sedy-Se Vibri Respse f Ple Siply-Suppred All Sides Subjeced Uifr Pressure, Revisi C, Vibrid, E. Richrds & D. Med, Nise d Acusic Figue i Aeruics, Wiley, New Yr, 968.

12

13 APPENDIX A Mgiude f Cple Trigeric Ter V (A-) V (A-) V (A-3) V (A-4) V (A-5) V 4 (A-6) V (A-7) 3

14 APPENDIX B Eple Csider recgulr ple wih he fllwig prperies: Budry Cdiis Meril Siply Suppred All Sides Aluiu Thicess h = 0.5 ich egh = 0 ich Widh b = 8 ich Elsic Mdulus E = 0E+06 lbf/i^ Mss per Vlue v = 0. lb / i^3 ( lbf sec^/i^4 ) Mss per Are = 0.05 lb / i^ (3.4E-05 lbf sec^/i^3 ) Viscus Dpig Ri = 0.03 fr ll des The rl des d frequecy respse fuci lysis re perfred vi Mlb scrip. 4

15 The rl des resuls re: Tble B-. Nurl Frequecy Resuls, Ple Siply-Suppred ll Sides f (Hz) The fudel de shpe is shw i Figure B-. The crrespdig ji ccepce fuci is shw i Figure B-. Nw pply he sud pressure level fr Mil-Sd-540C i Figure B-3 gle f 45. The resulig displcee d sress he ceer f he ple re shw i Figures B-4 d B-5, respecively. 5

16 Figure B-. 6

17 Figure B-. 7

18 Figure B-3. 8

19 Figure B-4. Ceer f Ple, 45 degrees Icidece 9

20 Figure B-5. Ceer f Ple, 45 degrees Icidece 0

21 APPENDIX C iiig Cse, Uifr Pressure Recll Fr, Â b (C-) / (C-) The pressure field beces uifr d rl s I his cse, 0,. Â b (C-3) The fllwig equi is equivle (C-3) fr s ieger d igrig he plriy shif. Â b (C-4) Equi (C-4) is esseilly siilr he resul fr uifr, rl pressure i Referece 4, llwce fr differece i he wy h he ss desiy ws ccued fr.

Theoretical and Experimental Study of the Rheological Behaviour of Non-Newtonian Fluids Using Falling Cylinder Rheometer

Theoretical and Experimental Study of the Rheological Behaviour of Non-Newtonian Fluids Using Falling Cylinder Rheometer Thereical ad Experieal Sudy f he helgical Behaviur f N-Newia Fluids Usig Fallig Cylider heeer S.Gh. Eead,. Bagheri ad S.Zeiali. Heris Cheical Egieerig Depare Isfaha Uiversiy f Techlgy 8454 Isfaha, Ira

More information

RESPONSE OF A RECTANGULAR PLATE TO BASE EXCITATION Revision E W( )

RESPONSE OF A RECTANGULAR PLATE TO BASE EXCITATION Revision E W( ) RESPONSE OF A RECTANGULAR PLATE TO BASE EXCITATION Revisio E B To Ivie Eil: o@viiod.co Apil, 3 Viles A pliude coefficie E k leg id ple siffess fco elsic odulus ple ickess veue ple ss edig oe,, u, v ode

More information

Free Flapping Vibration of Rotating Inclined Euler Beams

Free Flapping Vibration of Rotating Inclined Euler Beams World cdemy of Sciece, Egieerig d Techology 56 009 Free Flppig Vibrio of Roig Iclied Euler Bems Chih-ig Hug, We-Yi i, d Kuo-Mo Hsio bsrc mehod bsed o he power series soluio is proposed o solve he url frequecy

More information

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking

Transient Solution of the M/M/C 1 Queue with Additional C 2 Servers for Longer Queues and Balking Jourl of Mhemics d Sisics 4 (): 2-25, 28 ISSN 549-3644 28 Sciece ublicios Trsie Soluio of he M/M/C Queue wih Addiiol C 2 Servers for Loger Queues d Blkig R. O. Al-Seedy, A. A. El-Sherbiy,,2 S. A. EL-Shehwy

More information

Electromechanical System Dynamics, energy Conversion, and Electromechanical Analogies. Modeling of Dynamic Systems

Electromechanical System Dynamics, energy Conversion, and Electromechanical Analogies. Modeling of Dynamic Systems Elecroecicl Syse Dyics, eergy Coersio, d Elecroecicl Alogies Modelig of Dyic Syses Modelig of dyic syses y e doe i seerl wys: Use e sdrd equio of oio Newo s Lw for ecicl syses Use circuis eores O s lw

More information

A new approach to Kudryashov s method for solving some nonlinear physical models

A new approach to Kudryashov s method for solving some nonlinear physical models Ieriol Jourl of Physicl Scieces Vol. 7() pp. 860-866 0 My 0 Avilble olie hp://www.cdeicourls.org/ijps DOI: 0.897/IJPS.07 ISS 99-90 0 Acdeic Jourls Full Legh Reserch Pper A ew pproch o Kudryshov s ehod

More information

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead)

Week 8 Lecture 3: Problems 49, 50 Fourier analysis Courseware pp (don t look at French very confusing look in the Courseware instead) Week 8 Lecure 3: Problems 49, 5 Fourier lysis Coursewre pp 6-7 (do look Frech very cofusig look i he Coursewre ised) Fourier lysis ivolves ddig wves d heir hrmoics, so i would hve urlly followed fer he

More information

TEST-12 TOPIC : SHM and WAVES

TEST-12 TOPIC : SHM and WAVES Q. Four sprig coec wih ss s show i figure. Fid frequecy of S.H.. TEST- TOPIC : SH d WVES 4 7 (D) These wo coeced i series. So = = Now ll re i prllel so eq = 4 so freq. = 4 4 7 Q. sll ss execue S.H.. bou

More information

Signals & Systems - Chapter 3

Signals & Systems - Chapter 3 .EgrCS.cm, i Sigls d Sysms pg 9 Sigls & Sysms - Chpr S. Ciuus-im pridic sigl is rl vlud d hs fudml prid 8. h zr Furir sris cfficis r -, - *. Eprss i h m. cs A φ Slui: 8cs cs 8 8si cs si cs Eulrs Apply

More information

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY

UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY UNIQUENESS THEOREMS FOR ORDINARY DIFFERENTIAL EQUATIONS WITH HÖLDER CONTINUITY YIFEI PAN, MEI WANG, AND YU YAN ABSTRACT We estblish soe uniqueness results ner 0 for ordinry differentil equtions of the

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3

ONE RANDOM VARIABLE F ( ) [ ] x P X x x x 3 The Cumulive Disribuio Fucio (cd) ONE RANDOM VARIABLE cd is deied s he probbiliy o he eve { x}: F ( ) [ ] x P x x - Applies o discree s well s coiuous RV. Exmple: hree osses o coi x 8 3 x 8 8 F 3 3 7 x

More information

MATRIX ALGEBRA, Systems Linear Equations

MATRIX ALGEBRA, Systems Linear Equations MATRIX ALGEBRA, Systes Lier Equtios Now we chge to the LINEAR ALGEBRA perspective o vectors d trices to reforulte systes of lier equtios. If you fid the discussio i ters of geerl d gets lost i geerlity,

More information

Research & Reviews: Journal of Statistics and Mathematical Sciences

Research & Reviews: Journal of Statistics and Mathematical Sciences Research & Reviews: Jural f Saisics ad Mahemaical Scieces iuus Depedece f he Slui f A Schasic Differeial Equai Wih Nlcal diis El-Sayed AMA, Abd-El-Rahma RO, El-Gedy M Faculy f Sciece, Alexadria Uiversiy,

More information

International Journal of Mathematical Archive-3(1), 2012, Page: Available online through

International Journal of Mathematical Archive-3(1), 2012, Page: Available online through eril Jrl f Mhemicl rchive-3 Pge: 33-39 vilble lie hrgh wwwijmif NTE N UNFRM MTRX SUMMBLTY Shym Ll Mrdl Veer Sigh d Srbh Prwl 3* Deprme f Mhemics Fcly f Sciece Brs Hid Uiversiy Vrsi UP - ND E-mil: shym_ll@rediffmilcm

More information

Distribution of Mass and Energy in Five General Cosmic Models

Distribution of Mass and Energy in Five General Cosmic Models Inerninl Jurnl f Asrnmy nd Asrpysics 05 5 0-7 Publised Online Mrc 05 in SciRes p://wwwscirprg/jurnl/ij p://dxdirg/0436/ij055004 Disribuin f Mss nd Energy in Five Generl Csmic Mdels Fdel A Bukri Deprmen

More information

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10

Chapter 10. Simple Harmonic Motion and Elasticity. Goals for Chapter 10 Chper 0 Siple Hronic Moion nd Elsiciy Gols or Chper 0 o ollow periodic oion o sudy o siple hronic oion. o sole equions o siple hronic oion. o use he pendulu s prooypicl syse undergoing siple hronic oion.

More information

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved.

OXFORD H i g h e r E d u c a t i o n Oxford University Press, All rights reserved. Renshw: Mths for Econoics nswers to dditionl exercises Exercise.. Given: nd B 5 Find: () + B + B 7 8 (b) (c) (d) (e) B B B + B T B (where 8 B 6 B 6 8 B + B T denotes the trnspose of ) T 8 B 5 (f) (g) B

More information

r = cos θ + 1. dt ) dt. (1)

r = cos θ + 1. dt ) dt. (1) MTHE 7 Proble Set 5 Solutions (A Crdioid). Let C be the closed curve in R whose polr coordintes (r, θ) stisfy () Sketch the curve C. r = cos θ +. (b) Find pretriztion t (r(t), θ(t)), t [, b], of C in polr

More information

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root

Summer MA Lesson 4 Section P.3. such that =, denoted by =, is the principal square root Suer MA 00 Lesso Sectio P. I Squre Roots If b, the b is squre root of. If is oegtive rel uber, the oegtive uber b b b such tht, deoted by, is the pricipl squre root of. rdicl sig rdicl expressio rdicd

More information

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,...

Students must always use correct mathematical notation, not calculator notation. the set of positive integers and zero, {0,1, 2, 3,... Appedices Of the vrious ottios i use, the IB hs chose to dopt system of ottio bsed o the recommedtios of the Itertiol Orgiztio for Stdrdiztio (ISO). This ottio is used i the emitio ppers for this course

More information

Schrödinger Equation Via Laplace-Beltrami Operator

Schrödinger Equation Via Laplace-Beltrami Operator IOSR Jourl of Mthemtics (IOSR-JM) e-issn: 78-578, p-issn: 39-765X. Volume 3, Issue 6 Ver. III (Nov. - Dec. 7), PP 9-95 www.iosrjourls.org Schrödiger Equtio Vi Lplce-Beltrmi Opertor Esi İ Eskitşçioğlu,

More information

20 MATHEMATICS POLYNOMIALS

20 MATHEMATICS POLYNOMIALS 0 MATHEMATICS POLYNOMIALS.1 Introduction In Clss IX, you hve studied polynomils in one vrible nd their degrees. Recll tht if p(x) is polynomil in x, the highest power of x in p(x) is clled the degree of

More information

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case

In an algebraic expression of the form (1), like terms are terms with the same power of the variables (in this case Chpter : Algebr: A. Bckgroud lgebr: A. Like ters: I lgebric expressio of the for: () x b y c z x y o z d x... p x.. we cosider x, y, z to be vribles d, b, c, d,,, o,.. to be costts. I lgebric expressio

More information

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION

ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION ERROR ESTIMATES FOR APPROXIMATING THE FOURIER TRANSFORM OF FUNCTIONS OF BOUNDED VARIATION N.S. BARNETT, S.S. DRAGOMIR, AND G. HANNA Absrc. I his pper we poi ou pproximio for he Fourier rsform for fucios

More information

Reinforcement Learning

Reinforcement Learning Reiforceme Corol lerig Corol polices h choose opiml cios Q lerig Covergece Chper 13 Reiforceme 1 Corol Cosider lerig o choose cios, e.g., Robo lerig o dock o bery chrger o choose cios o opimize fcory oupu

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill

In-Class Problems 2 and 3: Projectile Motion Solutions. In-Class Problem 2: Throwing a Stone Down a Hill MASSACHUSETTS INSTITUTE OF TECHNOLOGY Deprtment of Physics Physics 8T Fll Term 4 In-Clss Problems nd 3: Projectile Motion Solutions We would like ech group to pply the problem solving strtegy with the

More information

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1 Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

More information

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir

For convenience, we rewrite m2 s m2 = m m m ; where m is repeted m times. Since xyz = m m m nd jxyj»m, we hve tht the string y is substring of the fir CSCI 2400 Models of Computtion, Section 3 Solutions to Homework 4 Problem 1. ll the solutions below refer to the Pumping Lemm of Theorem 4.8, pge 119. () L = f n b l k : k n + lg Let's ssume for contrdiction

More information

Contraction Mapping Principle Approach to Differential Equations

Contraction Mapping Principle Approach to Differential Equations epl Journl of Science echnology 0 (009) 49-53 Conrcion pping Principle pproch o Differenil Equions Bishnu P. Dhungn Deprmen of hemics, hendr Rn Cmpus ribhuvn Universiy, Khmu epl bsrc Using n eension of

More information

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y

Solutions to Midterm II. of the following equation consistent with the boundary condition stated u. y u x y Sltis t Midterm II Prblem : (pts) Fid the mst geeral slti ( f the fllwig eqati csistet with the bdary cditi stated y 3 y the lie y () Slti : Sice the system () is liear the slti is give as a sperpsiti

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4) Liford 1 Kyle Liford Mth 211 Hoors Project Theorems to Alyze: Theorem 2.4 The Limit of Fuctio Ivolvig Rdicl (A4) Theorem 2.8 The Squeeze Theorem (A5) Theorem 2.9 The Limit of Si(x)/x = 1 (p. 85) Theorem

More information

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r

NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA. B r = [m = 0] r NOTES ON BERNOULLI NUMBERS AND EULER S SUMMATION FORMULA MARK WILDON. Beroulli umbers.. Defiiio. We defie he Beroulli umbers B m for m by m ( m + ( B r [m ] r r Beroulli umbers re med fer Joh Beroulli

More information

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE

ON SOME FRACTIONAL PARABOLIC EQUATIONS DRIVEN BY FRACTIONAL GAUSSIAN NOISE IJRRAS 6 3) Februry www.rppress.com/volumes/vol6issue3/ijrras_6_3_.pdf ON SOME FRACIONAL ARABOLIC EQUAIONS RIVEN BY FRACIONAL GAUSSIAN NOISE Mhmoud M. El-Bori & hiri El-Sid El-Ndi Fculy of Sciece Alexdri

More information

Name: Period: Date: 2.1 Rules of Exponents

Name: Period: Date: 2.1 Rules of Exponents SM NOTES Ne: Period: Dte:.1 Rules of Epoets The followig properties re true for ll rel ubers d b d ll itegers d, provided tht o deoitors re 0 d tht 0 0 is ot cosidered. 1 s epoet: 1 1 1 = e.g.) 7 = 7,

More information

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE

MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE MATH 118 HW 7 KELLY DOUGAN, ANDREW KOMAR, MARIA SIMBIRSKY, BRANDEN LASKE Prt 1. Let be odd rime d let Z such tht gcd(, 1. Show tht if is qudrtic residue mod, the is qudrtic residue mod for y ositive iteger.

More information

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018 DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS Assoc. Prof. Dr. Bur Kelleci Sprig 8 OUTLINE The Z-Trsform The Regio of covergece for the Z-trsform The Iverse Z-Trsform Geometric

More information

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a

Duration Notes 1. To motivate this measure, observe that the duration may also be expressed as. a a T a Duio Noes Mculy defied he duio of sse i 938. 2 Le he sem of pymes cosiuig he sse be,,..., d le /( + ) deoe he discou fco. he Mculy's defiiio of he duio of he sse is 3 2 D + 2 2 +... + 2 + + + + 2... o

More information

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 1: Working with the Number System Instruction

UNIT 4 EXTENDING THE NUMBER SYSTEM Lesson 1: Working with the Number System Instruction Lesso : Workig with the Nuber Syste Istructio Prerequisite Skills This lesso requires the use of the followig skills: evlutig expressios usig the order of opertios evlutig expoetil expressios ivolvig iteger

More information

Dynamic response under moving concentrated loads of non uniform rayleigh beam resting on pasternak foundation

Dynamic response under moving concentrated loads of non uniform rayleigh beam resting on pasternak foundation Avilble olie www.pelgireserchlibrry.co Pelgi Reserch ibrry Advces i Applied Sciece Reserch :-8 ISSN: 976-86 ODEN SA: AASRF Dyic respose uder ovig cocered lods o o uior ryleigh be resig o pser oudio P.

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

fractions Let s Learn to

fractions Let s Learn to 5 simple lgebric frctions corne lens pupil retin Norml vision light focused on the retin concve lens Shortsightedness (myopi) light focused in front of the retin Corrected myopi light focused on the retin

More information

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J.

Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers Roy D. Yates and David J. Probbility d Stochstic Processes: A Friedly Itroductio for Electricl d Computer Egieers Roy D. Ytes d Dvid J. Goodm Problem Solutios : Ytes d Goodm,4..4 4..4 4..7 4.4. 4.4. 4..6 4.6.8 4.6.9 4.7.4 4.7.

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

2013/5/22 ( ) ( ) ( ) 10.1 Crocco s equation for entropy. 10 Multi-dimensional compressible flows. Consdier inviscid flows with no body force.

2013/5/22 ( ) ( ) ( ) 10.1 Crocco s equation for entropy. 10 Multi-dimensional compressible flows. Consdier inviscid flows with no body force. lti-dimesiol ompressible flows Assme: irrottiol d ivisid. roo s etio for etropy. Goverig etios for flid motio.3 Smll pertrbtio theory (for stedy d slightly ompressible flow.3. Prdtl-Glert rle (for sbsoi

More information

Anonymous Math 361: Homework 5. x i = 1 (1 u i )

Anonymous Math 361: Homework 5. x i = 1 (1 u i ) Anonymous Mth 36: Homewor 5 Rudin. Let I be the set of ll u (u,..., u ) R with u i for ll i; let Q be the set of ll x (x,..., x ) R with x i, x i. (I is the unit cube; Q is the stndrd simplex in R ). Define

More information

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table.

Objective of curve fitting is to represent a set of discrete data by a function (curve). Consider a set of discrete data as given in table. CURVE FITTING Obectve curve ttg s t represet set dscrete dt b uct curve. Csder set dscrete dt s gve tble. 3 3 = T use the dt eectvel, curve epress s tted t the gve dt set, s = + = + + = e b ler uct plml

More information

Longitudinal Strength Standard. S11 (cont) S11

Longitudinal Strength Standard. S11 (cont) S11 (1989) (Rev.1 199) (Rev. Nov 001) (Rev. June 00) (Rev.4 July 004) (Rev.5 Jn 006) (Rev.6 My 0) Longiudinl Srengh Sndrd.1 Applicion This requiremen pplies only o seel ships of lengh 90 m nd greer in unresriced

More information

Overview of Calculus I

Overview of Calculus I Overview of Clculus I Prof. Jim Swift Northern Arizon University There re three key concepts in clculus: The limit, the derivtive, nd the integrl. You need to understnd the definitions of these three things,

More information

NEIGHBOURHOODS OF A CERTAIN SUBCLASS OF STARLIKE FUNCTIONS. P. Thirupathi Reddy. E. mail:

NEIGHBOURHOODS OF A CERTAIN SUBCLASS OF STARLIKE FUNCTIONS. P. Thirupathi Reddy. E. mail: NEIGHOURHOOD OF CERTIN UCL OF TRLIKE FUNCTION P Tirupi Reddy E mil: reddyp@yooom sr: Te im o is pper is o rodue e lss ( sulss o ( sisyig e odio wi is ( ) p < 0< E We sudy eigouroods o is lss d lso prove

More information

Physics 232 Exam I Feb. 14, 2005

Physics 232 Exam I Feb. 14, 2005 Phsics I Fe., 5 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio wih gul eloci o dissec. gie is i ie i is oud o e 8 c o he igh o he equiliiu posiio d oig o he le wih eloci o.5 sec..

More information

Cosmological Distances in Closed Model of the Universe

Cosmological Distances in Closed Model of the Universe Inerninl Jurnl f srnmy n srpysics 3 3 99-3 p://xirg/436/ij333 Publise Online June 3 (p://wwwscirprg/jurnl/ij) Csmlgicl Disnces in Clse el f e Universe Fel Bukri Deprmen f srnmy Fculy f Science King bulziz

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS) Mthemtics Revisio Guides Itegrtig Trig, Log d Ep Fuctios Pge of MK HOME TUITION Mthemtics Revisio Guides Level: AS / A Level AQA : C Edecel: C OCR: C OCR MEI: C INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

More information

DIFFERENCE EQUATIONS

DIFFERENCE EQUATIONS DIFFERECE EQUATIOS Lier Cos-Coeffiie Differee Eqios Differee Eqios I disree-ime ssems, esseil feres of ip d op sigls pper ol speifi iss of ime, d he m o e defied ewee disree ime seps or he m e os. These

More information

Student Activity 3: Single Factor ANOVA

Student Activity 3: Single Factor ANOVA MATH 40 Student Activity 3: Single Fctor ANOVA Some Bsic Concepts In designed experiment, two or more tretments, or combintions of tretments, is pplied to experimentl units The number of tretments, whether

More information

Graphing Review Part 3: Polynomials

Graphing Review Part 3: Polynomials Grphig Review Prt : Polomils Prbols Recll, tht the grph of f ( ) is prbol. It is eve fuctio, hece it is smmetric bout the bout the -is. This mes tht f ( ) f ( ). Its grph is show below. The poit ( 0,0)

More information

Convergence rates of approximate sums of Riemann integrals

Convergence rates of approximate sums of Riemann integrals Jourl of Approximtio Theory 6 (9 477 49 www.elsevier.com/locte/jt Covergece rtes of pproximte sums of Riem itegrls Hiroyuki Tski Grdute School of Pure d Applied Sciece, Uiversity of Tsukub, Tsukub Ibrki

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Explain shortly the meaning of the following eight words in relation to shells structures.

Explain shortly the meaning of the following eight words in relation to shells structures. Delft University of Technology Fculty of Civil Engineering nd Geosciences Structurl Mechnics Section Write your nme nd study number t the top right-hnd of your work. Exm CIE4143 Shell Anlysis Tuesdy 15

More information

This UR does not apply to CSR Bulk Carriers and Oil Tankers or to container ships to which UR S11A is applicable.

This UR does not apply to CSR Bulk Carriers and Oil Tankers or to container ships to which UR S11A is applicable. (1989) (Rev.1 199) (Rev. Nov 001) (Rev. June 00) (Rev.4 July 004) (Rev.5 Jn 006) (Rev.6 My 0) (Rev.7 Nov 0) (Rev.8 June 015) Longiudinl Srengh Sndrd.1 Applicion This requiremen pplies only o seel ships

More information

Lumped-Element Modeling

Lumped-Element Modeling EE55: Principles o MEMS Trnsducers (Fll 003) Instructor: Dr. HuiKi Xie st lecture umpedelement Modeling Oneport elements Generlized Cpcitor Generlized Inertnce Kirchho s ws Exmple Tody: Singleport element

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS

50. Use symmetry to evaluate xx D is the region bounded by the square with vertices 5, Prove Property 11. y y CAS 68 CHAPTE MULTIPLE INTEGALS 46. e da, 49. Evlute tn 3 4 da, where,. [Hint: Eploit the fct tht is the disk with center the origin nd rdius is smmetric with respect to both es.] 5. Use smmetr to evlute 3

More information

Hung problem # 3 April 10, 2011 () [4 pts.] The electric field points rdilly inwrd [1 pt.]. Since the chrge distribution is cylindriclly symmetric, we pick cylinder of rdius r for our Gussin surfce S.

More information

4. Runge-Kutta Formula For Differential Equations

4. Runge-Kutta Formula For Differential Equations NCTU Deprme o Elecrcl d Compuer Egeerg 5 Sprg Course by Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos To solve e derel equos umerclly e mos useul ormul s clled Ruge-Ku ormul

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

PROGRESSIONS AND SERIES

PROGRESSIONS AND SERIES PROGRESSIONS AND SERIES A sequece is lso clled progressio. We ow study three importt types of sequeces: () The Arithmetic Progressio, () The Geometric Progressio, () The Hrmoic Progressio. Arithmetic Progressio.

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 9: The High Beta Tokamak .65, MHD Theory of Fusion Sysems Prof. Freidberg Lecure 9: The High e Tokmk Summry of he Properies of n Ohmic Tokmk. Advnges:. good euilibrium (smll shif) b. good sbiliy ( ) c. good confinemen ( τ nr )

More information

Fourier Series and Applications

Fourier Series and Applications 9/7/9 Fourier Series d Applictios Fuctios epsio is doe to uderstd the better i powers o etc. My iportt probles ivolvig prtil dieretil equtios c be solved provided give uctio c be epressed s iiite su o

More information

Angle of incidence estimation for converted-waves

Angle of incidence estimation for converted-waves Agle of icidece estimtio for coverted-wves Crlos E. Nieto d Robert R. tewrt Agle of icidece estimtio ABTRACT Amplitude-versus-gle AA lysis represets li betwee te geologicl properties of roc iterfces d

More information

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions

AQA Further Pure 2. Hyperbolic Functions. Section 2: The inverse hyperbolic functions Hperbolic Functions Section : The inverse hperbolic functions Notes nd Emples These notes contin subsections on The inverse hperbolic functions Integrtion using the inverse hperbolic functions Logrithmic

More information

Frequency-domain Characteristics of Discrete-time LTI Systems

Frequency-domain Characteristics of Discrete-time LTI Systems requecy-domi Chrcteristics of Discrete-time LTI Systems Prof. Siripog Potisuk LTI System descriptio Previous bsis fuctio: uit smple or DT impulse The iput sequece is represeted s lier combitio of shifted

More information

ODE: Existence and Uniqueness of a Solution

ODE: Existence and Uniqueness of a Solution Mth 22 Fll 213 Jerry Kzdn ODE: Existence nd Uniqueness of Solution The Fundmentl Theorem of Clculus tells us how to solve the ordinry differentil eqution (ODE) du = f(t) dt with initil condition u() =

More information

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula

4. Runge-Kutta Formula For Differential Equations. A. Euler Formula B. Runge-Kutta Formula C. An Example for Fourth-Order Runge-Kutta Formula NCTU Deprme o Elecrcl d Compuer Egeerg Seor Course By Pro. Yo-Pg Ce. Ruge-Ku Formul For Derel Equos A. Euler Formul B. Ruge-Ku Formul C. A Emple or Four-Order Ruge-Ku Formul

More information

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower

ENSC 461 Tutorial, Week#9 Non-Reacting Mixtures Psychrometrics Applied to a Cooling Tower ENSC 61 Tutoril, Week#9 Non-Recting Mixtures Psychroetrics Applied to Cooling Toer Wter exiting the condenser of poer plnt t 5C enters cooling toer ith ss flo rte of 15000 kg/s. A stre of cooled ter is

More information

Lecture 3: Resistive forces, and Energy

Lecture 3: Resistive forces, and Energy Lecure 3: Resisive frces, and Energy Las ie we fund he velciy f a prjecile ving wih air resisance: g g vx ( ) = vx, e vy ( ) = + v + e One re inegrain gives us he psiin as a funcin f ie: dx dy g g = vx,

More information

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of

One of the common descriptions of curvilinear motion uses path variables, which are measurements made along the tangent t and normal n to the path of Oe of he commo descipios of cuilie moio uses ph ibles, which e mesuemes mde log he ge d oml o he ph of he picles. d e wo ohogol xes cosideed sepely fo eey is of moio. These coodies poide ul descipio fo

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

An Extension of Hermite Polynomials

An Extension of Hermite Polynomials I J Coemp Mh Scieces, Vol 9, 014, o 10, 455-459 HIKARI Ld, wwwm-hikricom hp://dxdoiorg/101988/ijcms0144663 A Exesio of Hermie Polyomils Ghulm Frid Globl Isiue Lhore New Grde Tow, Lhore, Pkis G M Hbibullh

More information

Hints for Exercise 1 on: Current and Resistance

Hints for Exercise 1 on: Current and Resistance Hints for Exercise 1 on: Current nd Resistnce Review the concepts of: electric current, conventionl current flow direction, current density, crrier drift velocity, crrier numer density, Ohm s lw, electric

More information

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions

Existence Of Solutions For Nonlinear Fractional Differential Equation With Integral Boundary Conditions Reserch Ivey: Ieriol Jourl Of Egieerig Ad Sciece Vol., Issue (April 3), Pp 8- Iss(e): 78-47, Iss(p):39-6483, Www.Reserchivey.Com Exisece Of Soluios For Nolier Frciol Differeil Equio Wih Iegrl Boudry Codiios,

More information

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k. . Computtio of Fourier Series I this sectio, we compute the Fourier coefficiets, f ( x) cos( x) b si( x) d b, i the Fourier series To do this, we eed the followig result o the orthogolity of the trigoometric

More information

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an

9-1 (a) A weak electrolyte only partially ionizes when dissolved in water. NaHCO 3 is an Chpter 9 9- ( A ek electrolyte only prtilly ionizes hen dissolved in ter. NC is n exmple of ek electrolyte. (b A Brønsted-ory cid is cule tht dontes proton hen it encounters bse (proton cceptor. By this

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Prior distributions. July 29, 2002

Prior distributions. July 29, 2002 Prior distributios Aledre Tchourbov PKI 357, UNOmh, South 67th St. Omh, NE 688-694, USA Phoe: 4554-64 E-mil: tchourb@cse.ul.edu July 9, Abstrct This documet itroduces prior distributios for the purposes

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

OKANOGAN COUNTY COMMISSIONERS RESOLUTION

OKANOGAN COUNTY COMMISSIONERS RESOLUTION KG T MMISSIRS RSTI 43-16 WHRS, pusu RW 36. 1. 11, he egislie uhi f eh u, wih he ie ssise f he u R giee, pusu e e publi heigs hee, shll pepe p pehesie pg iluig ppse, bige, ph il sui pjes, he speifie pil

More information

PH2200 Practice Exam I Summer 2003

PH2200 Practice Exam I Summer 2003 PH00 Prctice Exm I Summer 003 INSTRUCTIONS. Write yur nme nd student identifictin number n the nswer sheet.. Plese cver yur nswer sheet t ll times. 3. This is clsed bk exm. Yu my use the PH00 frmul sheet

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM

SOLUTION OF DIFFERENTIAL EQUATION FOR THE EULER-BERNOULLI BEAM Jourl of Applied Mthemtics d Computtiol Mechics () 57-6 SOUION O DIERENIA EQUAION OR HE EUER-ERNOUI EAM Izbel Zmorsk Istitute of Mthemtics Czestochow Uiversit of echolog Częstochow Pold izbel.zmorsk@im.pcz.pl

More information

Chapter #2 EEE Subsea Control and Communication Systems

Chapter #2 EEE Subsea Control and Communication Systems EEE 87 Chpter # EEE 87 Sube Cotrol d Commuictio Sytem Trfer fuctio Pole loctio d -ple Time domi chrcteritic Extr pole d zero Chpter /8 EEE 87 Trfer fuctio Lplce Trform Ued oly o LTI ytem Differetil expreio

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information