Online Scheduling with QoS Constraints

Size: px
Start display at page:

Download "Online Scheduling with QoS Constraints"

Transcription

1 Online cheduling with Qo Constraints Uwe chwiegelshohn cheduling for large-scale systems Knoville, TN, UA May 4, 9

2 Problem Description Online scheduling r j,online Jobs are submitted over time. At its submission r j, job J j is immediately allocated to an eligible machine. Parallel identical machines P m Each job J j has the same processing time p j on each eligible machine. Ordered machine eligibility There is a fied order of the machines:,,,m Using this order, the first machine eligible to eecute job J j is machine k j. Every machine i with i k j is also eligible to eecute job J j : M j ={i i k j } Makespan C ma It is the goal to minimize the makespan of the schedule. P m r j,online,m j C ma

3 Previous Results P m M j C ma with no restrictions on M j. The problem is NP-hard as P m C ma is already NP-hard. P m p j =,M j C ma with nested machine eligibility constraints. M j = M k, M j M k,m j M k, or M j M k = ø. The Least Fleible Job First (LFJ) rule optimally solves this problem. M. Pinedo: cheduling: Theory, Algorithms, and ystems, Prentice Hall,. P m M j C ma with ordered eligibility. Least eligibility longest processing time order guarantees the approimation factor -/(m-). H-C. Hwang,.Y. Chang, K. Lee. Parallel machine scheduling under a grade of service provision, Computer & Operations Research 3, 55-6 (4). P m r j,online,m j C ma with no restrictions on M j. Competitive ratio log n for deterministic and randomized cases. Y. Azar, J. Naor, R. Ron. The Competitiveness of On-Line Assignments, Journal of Algorithms 8, -37 (995). 3

4 Relevance of the Problem hall I allocate my precious resources to somebody not paying enough for them or run the risk that these resources are not used at all? In practice, this is a fied capacity problem with customer rejection. This problem is different from the utilization of a fied number of machines. There is a close connection with utilization if there ins no rejection. The makespan can represent this objective. 4

5 Application Eamples Packaging in lattice boes The granularity of the material determines the required size of the lattice. ervers with different amount of main memory The storage requirement of a job determines the eligibility of a server. Class of transportation The ticket determines the class of transportation. 5

6 Continuous Model for Large-scale ystems We allow fractional machines and normalize the machine space. The machine space is represented by the interval [,] of real numbers. Job J j can only be allocated to the interval [k j,] with k j. Each job has a very short processing time. Job allocation does not need to consider individual processing times. Machine eligibility is represented by the job density function p() p(): [,] R : Total processing time of jobs with k j =. Release dates are not considered within the job density function. There is a completion time function that determines the makespan. c (): [,] R : Completion time function of schedule C ma ()=ma{c () }: Makespan of schedule Idle times are included. 6

7 Long and hort Processing times time machines machines 7

8 Job Density and Completion Time Functions idle areas in the schedule p() C ma () c s () Job density function Completion time function p()d c () d if there are no intermediate idle areas in the schedule. 8

9 imple Approaches with Bad Results Constant interval approach: A new job J j is allocated such that the maimum of the function c s () is increased the least in the interval [k j, ma{k j +ε,}). The competitive factor is ε -. Constant interval schedule Optimal schedule ε Greedy approach: A new job J j is allocated such that the maimum of the function c s () is increased the least in the interval [k j,). p()=, jobs are submitted in quick succession in order of k j. The competitive factor is not constant. 9

10 Greedy Approach c (t)dt ( ) c () dc() c() c() ( ) d dc() c d () Cln c ()d C ( ) ln( ) C ln Cln C lim c( )

11 Interval Approach A job J j is only eecuted in the interval [k j, k j +(-k j )/α) with α>. In this approach, additional jobs cannot decrease the makespan of a schedule. Eample: Assume that a group of jobs with k = is released at time and immediately followed by another group of jobs with k =δ δ α+δ (-α)

12 Making a chedule Worse Jobs are added until c opt ()=const for all and the schedule contains no idle areas. The ratio ma {c ()} to ma {c opt ()} cannot decrease. We normalize the job density function such that c opt ()=. C ma () c opt ()

13 Worst Case: Job ubmission Order The jobs are submitted in quick succession in increasing order of k j. The difference between the starting values of two intervals k -k is larger than the difference between the ending values of these intervals (-/α) (k -k ). An increasing order of k j produces larger C ma values than a decreasing order. Increasing order of k j Decreasing order of k j Eample with α= 3

14 Worse Case Input Data Assume y=arg{ma {c ()}}. y: Every job with that eecutes in the optimal schedule on a machine with a number greater than y is changed to a job with k j =y. The makespan of the optimal schedule remains unchanged. C ma () cannot decrease as jobs with k j >y do not contribute to c s (y). <y: If the eligibility bound k j of a job J j is less than the machine number at which it is eecuted in the optimal schedule then k j is increased to. The makespan of the optimal schedule remains unchanged. C ma () cannot decrease as this transformation can only increase the machine number on which a job is eecuted in schedule. The job density function of worst case input data is for <y and a Dirac pulse for =y such that the area of the pulse is (-y). 4

15 Job Density Function of Worst Case Input Data y 5

16 Differential Equation of the Interval Approach c (t)dt ( ) c () c s () (-) c s ()/α 6

17 Differential Equation of the Interval Approach c (t)dt ( ) c () ( ) dc() c() c() d dc() d c () dc() d c () c () 7

18 olution of the Differential Equation h - c () ep d ep( ) ln( ) ( ) p c () ( ) d ( ) ( ) - ( ) c () Cc h () c p () C(- ) - c () C c () ( ) - 8

19 Interval chedule for α= and a Given y C ma ()=c s (y) c s () y 9

20 dortmund university Determination of the Optimal Value for α y) ( dy df(y) (y) c f(y) f(y) y ) ( ) ( ) ( d d 4 f(y) y

21 Transformation to the Discrete Case The interval allocation is approimated by allowing a job to be allocated to a machine if the continuous interval of the job would contain at least of fraction of this machine and afterwards applying list scheduling. ome machines may receive more total processing time than in the continuous case. The additional processing time is upper bounded by the processing time of the longest job. Due to the different processing times of the individual jobs, not all machines of an interval may achieve the same makespan although this might have happen in the continuous case. The difference between the makespan of such two machines is at most the processing time of the longest job (list scheduling). Altogether the approimation cannot increase the competitive factor by more than.

22 Consequence of the Approimation time machines of an interval

23 Conclusion For very large systems, online job scheduling on parallel identical machines with ordered machine eligibility achieves a competitive factors of 5. For the proof, we used a generalization to a continuous case and derived and solved a differential equation. We approimated the continuous case by simply applying list scheduling. For systems with few machines, the competitive factor is smaller as the value of y in the continuous case is bounded by m-. 3

Smith s Rule in Stochastic Scheduling

Smith s Rule in Stochastic Scheduling Smith s Rule In Stochastic Scheduling Caroline Jagtenberg Uwe Schwiegelshohn Utrecht University Dortmund University University of Twente Aussois 2011 The (classic) setting Problem n jobs, nonpreemptive,

More information

A lower bound on deterministic online algorithms for scheduling on related machines without preemption

A lower bound on deterministic online algorithms for scheduling on related machines without preemption Theory of Computing Systems manuscript No. (will be inserted by the editor) A lower bound on deterministic online algorithms for scheduling on related machines without preemption Tomáš Ebenlendr Jiří Sgall

More information

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Min Ji a, b, 2 Yong He b, 3 T.C.E. Cheng c, 4 a College of Computer Science & Information Engineering, Zhejiang

More information

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines?

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines? Multiple Machines Model Multiple Available resources people time slots queues networks of computers Now concerned with both allocation to a machine and ordering on that machine. P C max NP-complete from

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

Bin packing and scheduling

Bin packing and scheduling Sanders/van Stee: Approximations- und Online-Algorithmen 1 Bin packing and scheduling Overview Bin packing: problem definition Simple 2-approximation (Next Fit) Better than 3/2 is not possible Asymptotic

More information

A note on semi-online machine covering

A note on semi-online machine covering A note on semi-online machine covering Tomáš Ebenlendr 1, John Noga 2, Jiří Sgall 1, and Gerhard Woeginger 3 1 Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, The Czech Republic. Email: ebik,sgall@math.cas.cz.

More information

Approximation Algorithms (Load Balancing)

Approximation Algorithms (Load Balancing) July 6, 204 Problem Definition : We are given a set of n jobs {J, J 2,..., J n }. Each job J i has a processing time t i 0. We are given m identical machines. Problem Definition : We are given a set of

More information

Scheduling linear deteriorating jobs with an availability constraint on a single machine

Scheduling linear deteriorating jobs with an availability constraint on a single machine Theoretical Computer Science 362 (2006 115 126 www.elsevier.com/locate/tcs Scheduling linear deteriorating jobs with an availability constraint on a single machine Min Ji a,b, Yong He b, T.C.E. Cheng c,

More information

To find the absolute extrema on a continuous function f defined over a closed interval,

To find the absolute extrema on a continuous function f defined over a closed interval, Question 4: How do you find the absolute etrema of a function? The absolute etrema of a function is the highest or lowest point over which a function is defined. In general, a function may or may not have

More information

hal , version 1-27 Mar 2014

hal , version 1-27 Mar 2014 Author manuscript, published in "2nd Multidisciplinary International Conference on Scheduling : Theory and Applications (MISTA 2005), New York, NY. : United States (2005)" 2 More formally, we denote by

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems Luca Abeni luca.abeni@unitn.it Interacting Tasks Until now, only independent tasks... A job never blocks or suspends A task only blocks on job termination In real world, jobs

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

On Two Class-Constrained Versions of the Multiple Knapsack Problem

On Two Class-Constrained Versions of the Multiple Knapsack Problem On Two Class-Constrained Versions of the Multiple Knapsack Problem Hadas Shachnai Tami Tamir Department of Computer Science The Technion, Haifa 32000, Israel Abstract We study two variants of the classic

More information

Competitive Analysis of M/GI/1 Queueing Policies

Competitive Analysis of M/GI/1 Queueing Policies Competitive Analysis of M/GI/1 Queueing Policies Nikhil Bansal Adam Wierman Abstract We propose a framework for comparing the performance of two queueing policies. Our framework is motivated by the notion

More information

A Framework for Scheduling with Online Availability

A Framework for Scheduling with Online Availability A Framework for Scheduling with Online Availability Florian Diedrich, and Ulrich M. Schwarz Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany {fdi,ums}@informatik.uni-kiel.de

More information

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned.

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned. LPT rule Whenever a machine becomes free for assignment, assign that job whose processing time is the largest among those jobs not yet assigned. Example m1 m2 m3 J3 Ji J1 J2 J3 J4 J5 J6 6 5 3 3 2 1 3 5

More information

Competitive Management of Non-Preemptive Queues with Multiple Values

Competitive Management of Non-Preemptive Queues with Multiple Values Competitive Management of Non-Preemptive Queues with Multiple Values Nir Andelman and Yishay Mansour School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel Abstract. We consider the online problem

More information

USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS

USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS USING THE RANDOM ITERATION ALGORITHM TO CREATE FRACTALS UNIVERSITY OF MARYLAND DIRECTED READING PROGRAM FALL 205 BY ADAM ANDERSON THE SIERPINSKI GASKET 2 Stage 0: A 0 = 2 22 A 0 = Stage : A = 2 = 4 A

More information

Lower Bounds for Smith s Rule in Stochastic Machine Scheduling

Lower Bounds for Smith s Rule in Stochastic Machine Scheduling ower Bounds for Smith s Rule in Stochastic Machine Scheduling Caroline Jagtenberg 1, Uwe Schwiegelshohn 2,andMarcUetz 3 1 Utrecht University, Dept. of Mathematics, P.O. Box 81, 358 TA Utrecht, The Netherlands

More information

An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan

An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan An FPTAS for parallel-machine scheduling under a grade of service provision to minimize makespan Min Ji 1 College of Computer Science & Information Engineering, Zhejiang Gongshang University, Hangzhou

More information

Combinatorial Structure of Single machine rescheduling problem

Combinatorial Structure of Single machine rescheduling problem Workshop on Combinatorics and Optimization Combinatorial Structure of Single machine rescheduling problem Yuan Jinjiang Department of mathematics, Zhengzhou University Zhengzhou, Henan 450052 Page 1 of

More information

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (1)

B. Maddah INDE 504 Discrete-Event Simulation. Output Analysis (1) B. Maddah INDE 504 Discrete-Event Simulation Output Analysis (1) Introduction The basic, most serious disadvantage of simulation is that we don t get exact answers. Two different runs of the same model

More information

arxiv: v1 [cs.ds] 6 Jun 2018

arxiv: v1 [cs.ds] 6 Jun 2018 Online Makespan Minimization: The Power of Restart Zhiyi Huang Ning Kang Zhihao Gavin Tang Xiaowei Wu Yuhao Zhang arxiv:1806.02207v1 [cs.ds] 6 Jun 2018 Abstract We consider the online makespan minimization

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Real Time Operating Systems

Real Time Operating Systems Real Time Operating ystems hared Resources Luca Abeni Credits: Luigi Palopoli, Giuseppe Lipari, and Marco Di Natale cuola uperiore ant Anna Pisa -Italy Real Time Operating ystems p. 1 Interacting Tasks

More information

Greedy Algorithms. Kleinberg and Tardos, Chapter 4

Greedy Algorithms. Kleinberg and Tardos, Chapter 4 Greedy Algorithms Kleinberg and Tardos, Chapter 4 1 Selecting breakpoints Road trip from Fort Collins to Durango on a given route. Fuel capacity = C. Goal: makes as few refueling stops as possible. Greedy

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer environment,

More information

A note on the complexity of the concurrent open shop problem

A note on the complexity of the concurrent open shop problem J Sched (2006) 9: 389 396 DOI 10.1007/s10951-006-7042-y A note on the complexity of the concurrent open shop problem Thomas A. Roemer C Science + Business Media, LLC 2006 Abstract The concurrent open shop

More information

Online Scheduling of Parallel Jobs on Two Machines is 2-Competitive

Online Scheduling of Parallel Jobs on Two Machines is 2-Competitive Online Scheduling of Parallel Jobs on Two Machines is 2-Competitive J.L. Hurink and J.J. Paulus University of Twente, P.O. box 217, 7500AE Enschede, The Netherlands Abstract We consider online scheduling

More information

CSE 421 Greedy Algorithms / Interval Scheduling

CSE 421 Greedy Algorithms / Interval Scheduling CSE 421 Greedy Algorithms / Interval Scheduling Yin Tat Lee 1 Interval Scheduling Job j starts at s(j) and finishes at f(j). Two jobs compatible if they don t overlap. Goal: find maximum subset of mutually

More information

Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of Parallel Tasks with Precedence Constraints

Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of Parallel Tasks with Precedence Constraints Average-Case Performance Analysis of Online Non-clairvoyant Scheduling of Parallel Tasks with Precedence Constraints Keqin Li Department of Computer Science State University of New York New Paltz, New

More information

On-line Scheduling of Two Parallel Machines. with a Single Server

On-line Scheduling of Two Parallel Machines. with a Single Server On-line Scheduling of Two Parallel Machines with a Single Server Lele Zhang, Andrew Wirth Department of Mechanical and Manufacturing Engineering, The University of Melbourne, VIC 3010, Australia Abstract

More information

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models

System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models System Simulation Part II: Mathematical and Statistical Models Chapter 5: Statistical Models Fatih Cavdur fatihcavdur@uludag.edu.tr March 29, 2014 Introduction Introduction The world of the model-builder

More information

CSEP 521 Applied Algorithms. Richard Anderson Winter 2013 Lecture 1

CSEP 521 Applied Algorithms. Richard Anderson Winter 2013 Lecture 1 CSEP 521 Applied Algorithms Richard Anderson Winter 2013 Lecture 1 CSEP 521 Course Introduction CSEP 521, Applied Algorithms Monday s, 6:30-9:20 pm CSE 305 and Microsoft Building 99 Instructor Richard

More information

Online Packet Buffering

Online Packet Buffering Online Packet Buffering Dissertation zur Erlangung des Doktorgrades der Fakultät für Angewandte Wissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau Markus Schmidt Freiburg im Breisgau Februar

More information

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

Chapter 4. Greedy Algorithms. Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. Chapter 4 Greedy Algorithms Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 4.1 Interval Scheduling Interval Scheduling Interval scheduling. Job j starts at s j and

More information

2001, Dennis Bricker Dept of Industrial Engineering The University of Iowa. DP: Producing 2 items page 1

2001, Dennis Bricker Dept of Industrial Engineering The University of Iowa. DP: Producing 2 items page 1 Consider a production facility which can be devoted in each period to one of two products. For simplicity, we assume that the production rate is deterministic and that production is always at full capacity.

More information

An on-line approach to hybrid flow shop scheduling with jobs arriving over time

An on-line approach to hybrid flow shop scheduling with jobs arriving over time An on-line approach to hybrid flow shop scheduling with jobs arriving over time Verena Gondek, University of Duisburg-Essen Abstract During the manufacturing process in a steel mill, the chemical composition

More information

Scheduling Coflows in Datacenter Networks: Improved Bound for Total Weighted Completion Time

Scheduling Coflows in Datacenter Networks: Improved Bound for Total Weighted Completion Time 1 1 2 Scheduling Coflows in Datacenter Networs: Improved Bound for Total Weighted Completion Time Mehrnoosh Shafiee and Javad Ghaderi Abstract Coflow is a recently proposed networing abstraction to capture

More information

Online algorithms for parallel job scheduling and strip packing Hurink, J.L.; Paulus, J.J.

Online algorithms for parallel job scheduling and strip packing Hurink, J.L.; Paulus, J.J. Online algorithms for parallel job scheduling and strip packing Hurink, J.L.; Paulus, J.J. Published: 01/01/007 Document Version Publisher s PDF, also known as Version of Record (includes final page, issue

More information

AP Calculus BC Summer Packet 2017

AP Calculus BC Summer Packet 2017 AP Calculus BC Summer Packet 7 o The attached packet is required for all FHS students who took AP Calculus AB in 6-7 and will be continuing on to AP Calculus BC in 7-8. o It is to be turned in to your

More information

On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm

On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm On-line Scheduling to Minimize Max Flow Time: An Optimal Preemptive Algorithm Christoph Ambühl and Monaldo Mastrolilli IDSIA Galleria 2, CH-6928 Manno, Switzerland October 22, 2004 Abstract We investigate

More information

Scheduling Online Algorithms. Tim Nieberg

Scheduling Online Algorithms. Tim Nieberg Scheduling Online Algorithms Tim Nieberg General Introduction on-line scheduling can be seen as scheduling with incomplete information at certain points, decisions have to be made without knowing the complete

More information

Today s Agenda: 1) Why Do We Need To Measure The Memory Component? 2) Machine Pool Memory / Best Practice Guidelines

Today s Agenda: 1) Why Do We Need To Measure The Memory Component? 2) Machine Pool Memory / Best Practice Guidelines Today s Agenda: 1) Why Do We Need To Measure The Memory Component? 2) Machine Pool Memory / Best Practice Guidelines 3) Techniques To Measure The Memory Component a) Understanding Your Current Environment

More information

Deterministic Models: Preliminaries

Deterministic Models: Preliminaries Chapter 2 Deterministic Models: Preliminaries 2.1 Framework and Notation......................... 13 2.2 Examples... 20 2.3 Classes of Schedules... 21 2.4 Complexity Hierarchy... 25 Over the last fifty

More information

Single Machine Models

Single Machine Models Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 8 Single Machine Models 1. Dispatching Rules 2. Single Machine Models Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Dispatching

More information

THÈSE présentée par. Ming LIU GRADE DE DOCTEUR

THÈSE présentée par. Ming LIU GRADE DE DOCTEUR ÉCOLE CENTRALE DES ARTS ET MANUFACTURES «ÉCOLE CENTRALE PARIS» Spécialité : Génie Industriel THÈSE présentée par Ming LIU pour l obtention du GRADE DE DOCTEUR Laboratoire d accueil : Laboratoire Génie

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal October 16, 2012 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Announcement: Homework 1 due soon! Due: January 25 th at midnight (Blackboard) Recap: Graphs Bipartite Graphs Definition

More information

Energy-Efficient Broadcast Scheduling. Speed-Controlled Transmission Channels

Energy-Efficient Broadcast Scheduling. Speed-Controlled Transmission Channels for Speed-Controlled Transmission Channels Joint work with Christian Gunia from Freiburg University in ISAAC 06. 25.10.07 Outline Problem Definition and Motivation 1 Problem Definition and Motivation 2

More information

Faculty of Computer Science, Electrical Engineering and Mathematics Algorithms and Complexity research group Jun.-Prof. Dr. Alexander Skopalik

Faculty of Computer Science, Electrical Engineering and Mathematics Algorithms and Complexity research group Jun.-Prof. Dr. Alexander Skopalik Faculty of Computer Science, Electrical Engineering and Mathematics Algorithms and Complexity research group Jun.-Prof. Dr. Alexander Skopalik Online Algorithms Notes of the lecture SS3 by Vanessa Petrausch

More information

Beyond Newton s method Thomas P. Minka

Beyond Newton s method Thomas P. Minka Beyond Newton s method Thomas P. Minka 2000 (revised 7/21/2017) Abstract Newton s method for optimization is equivalent to iteratively maimizing a local quadratic approimation to the objective function.

More information

This lecture is expanded from:

This lecture is expanded from: This lecture is expanded from: HIGH VOLUME JOB SHOP SCHEDULING AND MULTICLASS QUEUING NETWORKS WITH INFINITE VIRTUAL BUFFERS INFORMS, MIAMI Nov 2, 2001 Gideon Weiss Haifa University (visiting MS&E, Stanford)

More information

arxiv: v2 [cs.dm] 2 Mar 2017

arxiv: v2 [cs.dm] 2 Mar 2017 Shared multi-processor scheduling arxiv:607.060v [cs.dm] Mar 07 Dariusz Dereniowski Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, Gdańsk, Poland Abstract

More information

CS521 CSE IITG 11/23/2012

CS521 CSE IITG 11/23/2012 Today Scheduling: lassification Ref: Scheduling lgorithm Peter rukerook Multiprocessor Scheduling : List PTS Ref job scheduling, by uwe schweigelshohn Tomorrow istributed Scheduling ilk Programming and

More information

S. ABERS Vohra [3] then gave an algorithm that is.986-competitive, for all m 70. Karger, Phillips and Torng [] generalized the algorithm and proved a

S. ABERS Vohra [3] then gave an algorithm that is.986-competitive, for all m 70. Karger, Phillips and Torng [] generalized the algorithm and proved a BETTER BOUNDS FOR ONINE SCHEDUING SUSANNE ABERS y Abstract. We study a classical problem in online scheduling. A sequence of jobs must be scheduled on m identical parallel machines. As each job arrives,

More information

Approximation Schemes for Scheduling on Parallel Machines

Approximation Schemes for Scheduling on Parallel Machines Approximation Schemes for Scheduling on Parallel Machines Noga Alon Yossi Azar Gerhard J. Woeginger Tal Yadid Abstract We discuss scheduling problems with m identical machines and n jobs where each job

More information

New Utilization Criteria for Online Scheduling

New Utilization Criteria for Online Scheduling New Utilization Criteria for Online Scheduling Dissertation zur Erlangung des Grades eines D o k t o r s d e r N a t u r w i s s e n s c h a f t e n der Universität Dortmund am Fachbereich Informatik von

More information

Energy-efficient scheduling

Energy-efficient scheduling Energy-efficient scheduling Guillaume Aupy 1, Anne Benoit 1,2, Paul Renaud-Goud 1 and Yves Robert 1,2,3 1. Ecole Normale Supérieure de Lyon, France 2. Institut Universitaire de France 3. University of

More information

On-line Bin-Stretching. Yossi Azar y Oded Regev z. Abstract. We are given a sequence of items that can be packed into m unit size bins.

On-line Bin-Stretching. Yossi Azar y Oded Regev z. Abstract. We are given a sequence of items that can be packed into m unit size bins. On-line Bin-Stretching Yossi Azar y Oded Regev z Abstract We are given a sequence of items that can be packed into m unit size bins. In the classical bin packing problem we x the size of the bins and try

More information

CS 580: Algorithm Design and Analysis

CS 580: Algorithm Design and Analysis CS 580: Algorithm Design and Analysis Jeremiah Blocki Purdue University Spring 2018 Reminder: Homework 1 due tonight at 11:59PM! Recap: Greedy Algorithms Interval Scheduling Goal: Maximize number of meeting

More information

Online Interval Coloring and Variants

Online Interval Coloring and Variants Online Interval Coloring and Variants Leah Epstein 1, and Meital Levy 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il School of Computer Science, Tel-Aviv

More information

showed that the SMAT algorithm generates shelf based schedules with an approximation factor of 8.53 [10]. Turek et al. [14] proved that a generalizati

showed that the SMAT algorithm generates shelf based schedules with an approximation factor of 8.53 [10]. Turek et al. [14] proved that a generalizati Preemptive Weighted Completion Time Scheduling of Parallel Jobs? Uwe Schwiegelshohn Computer Engineering Institute, University Dortmund, 441 Dortmund, Germany, uwe@carla.e-technik.uni-dortmund.de Abstract.

More information

MINIMIZING SCHEDULE LENGTH OR MAKESPAN CRITERIA FOR PARALLEL PROCESSOR SCHEDULING

MINIMIZING SCHEDULE LENGTH OR MAKESPAN CRITERIA FOR PARALLEL PROCESSOR SCHEDULING MINIMIZING SCHEDULE LENGTH OR MAKESPAN CRITERIA FOR PARALLEL PROCESSOR SCHEDULING By Ali Derbala University of Blida, Faculty of science Mathematics Department BP 270, Route de Soumaa, Blida, Algeria.

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 P and NP P: The family of problems that can be solved quickly in polynomial time.

More information

The Relative Worst Order Ratio Applied to Paging

The Relative Worst Order Ratio Applied to Paging The Relative Worst Order Ratio Applied to Paging Joan Boyar, Lene M. Favrholdt, and Kim S. Larsen Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark, {joan,lenem,kslarsen}@imada.sdu.dk

More information

PMS 2012 April Leuven

PMS 2012 April Leuven The multiagent project scheduling problem: complexity of finding a minimum-makespan Nash equilibrium C. Briand A. Agnetis and J.-C Billaut (briand@laas.fr, agnetis@dii.unisi.it, billaut@univ-tours.fr)

More information

COSC 341: Lecture 25 Coping with NP-hardness (2)

COSC 341: Lecture 25 Coping with NP-hardness (2) 1 Introduction Figure 1: Famous cartoon by Garey and Johnson, 1979 We have seen the definition of a constant factor approximation algorithm. The following is something even better. 2 Approximation Schemes

More information

Single machine batch scheduling with release times

Single machine batch scheduling with release times Research Collection Report Single machine batch scheduling with release times uthor(s): Gfeller, Beat Publication Date: 2006 Permanent Link: https://doi.org/10.3929/ethz-a-006780781 Rights / License: In

More information

Single Machine Problems Polynomial Cases

Single Machine Problems Polynomial Cases DM204, 2011 SCHEDULING, TIMETABLING AND ROUTING Lecture 2 Single Machine Problems Polynomial Cases Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline

More information

The Relative Worst Order Ratio for On-Line Algorithms

The Relative Worst Order Ratio for On-Line Algorithms The Relative Worst Order Ratio for On-Line Algorithms JOAN BOYAR and LENE M. FAVRHOLDT We define a new measure for the quality of on-line algorithms, the relative worst order ratio, using ideas from the

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint

An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint An improved approximation algorithm for two-machine flow shop scheduling with an availability constraint J. Breit Department of Information and Technology Management, Saarland University, Saarbrcken, Germany

More information

Contents college 5 and 6 Branch and Bound; Beam Search (Chapter , book)! general introduction

Contents college 5 and 6 Branch and Bound; Beam Search (Chapter , book)! general introduction Contents college 5 and 6 Branch and Bound; Beam Search (Chapter 3.4-3.5, book)! general introduction Job Shop Scheduling (Chapter 5.1-5.3, book) ffl branch and bound (5.2) ffl shifting bottleneck heuristic

More information

Minimizing the total flow-time on a single machine with an unavailability period

Minimizing the total flow-time on a single machine with an unavailability period Minimizing the total flow-time on a single machine with an unavailability period Julien Moncel (LAAS-CNRS, Toulouse France) Jérémie Thiery (DIAGMA Supply Chain, Paris France) Ariel Waserhole (G-SCOP, Grenoble

More information

Research Article Semi-Online Scheduling on Two Machines with GoS Levels and Partial Information of Processing Time

Research Article Semi-Online Scheduling on Two Machines with GoS Levels and Partial Information of Processing Time e Scientific World Journal Volume 04, Article ID 57634, 6 pages http://dx.doi.org/0.55/04/57634 Research Article Semi-Online Scheduling on Two Machines with GoS Levels and Partial Information of Processing

More information

Recoverable Robustness in Scheduling Problems

Recoverable Robustness in Scheduling Problems Master Thesis Computing Science Recoverable Robustness in Scheduling Problems Author: J.M.J. Stoef (3470997) J.M.J.Stoef@uu.nl Supervisors: dr. J.A. Hoogeveen J.A.Hoogeveen@uu.nl dr. ir. J.M. van den Akker

More information

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint Joachim Breit Department of Information and Technology Management, Saarland University,

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev, m.uetz}@ke.unimaas.nl

More information

OPTIMAL CONTROL OF A FLEXIBLE SERVER

OPTIMAL CONTROL OF A FLEXIBLE SERVER Adv. Appl. Prob. 36, 139 170 (2004) Printed in Northern Ireland Applied Probability Trust 2004 OPTIMAL CONTROL OF A FLEXIBLE SERVER HYUN-SOO AHN, University of California, Berkeley IZAK DUENYAS, University

More information

Scheduling for Parallel Dedicated Machines with a Single Server

Scheduling for Parallel Dedicated Machines with a Single Server Scheduling for Parallel Dedicated Machines with a Single Server Celia A. Glass, 1 Yakov M. Shafransky, 2 Vitaly A. Strusevich 3 1 City University, London, United Kingdom 2 Institute of Engineering Cybernetics,

More information

Integrated Network Design and Scheduling Problems with Parallel Identical Machines: Complexity Results and Dispatching Rules

Integrated Network Design and Scheduling Problems with Parallel Identical Machines: Complexity Results and Dispatching Rules Integrated Network Design and Scheduling Problems with Parallel Identical Machines: Complexity Results and Dispatching Rules Sarah G. Nurre 1 and Thomas C. Sharkey 1 1 Department of Industrial and Systems

More information

RCPSP Single Machine Problems

RCPSP Single Machine Problems DM204 Spring 2011 Scheduling, Timetabling and Routing Lecture 3 Single Machine Problems Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline 1. Resource

More information

1998 AP Calculus AB: Section I, Part A

1998 AP Calculus AB: Section I, Part A 998 AP Calculus AB: 55 Minutes No Calculator Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number.. What is the -coordinate

More information

Lecture 2: Paging and AdWords

Lecture 2: Paging and AdWords Algoritmos e Incerteza (PUC-Rio INF2979, 2017.1) Lecture 2: Paging and AdWords March 20 2017 Lecturer: Marco Molinaro Scribe: Gabriel Homsi In this class we had a brief recap of the Ski Rental Problem

More information

Lecture 4 Scheduling 1

Lecture 4 Scheduling 1 Lecture 4 Scheduling 1 Single machine models: Number of Tardy Jobs -1- Problem 1 U j : Structure of an optimal schedule: set S 1 of jobs meeting their due dates set S 2 of jobs being late jobs of S 1 are

More information

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates

Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Online Supplement to Delay-Based Service Differentiation with Many Servers and Time-Varying Arrival Rates Xu Sun and Ward Whitt Department of Industrial Engineering and Operations Research, Columbia University

More information

Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time

Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time Samir Khuller 1, Jingling Li 1, Pascal Sturmfels 2, Kevin Sun 3, and Prayaag Venkat 1 1 University of

More information

Scheduling with Advanced Process Control Constraints

Scheduling with Advanced Process Control Constraints Scheduling with Advanced Process Control Constraints Yiwei Cai, Erhan Kutanoglu, John Hasenbein, Joe Qin July 2, 2009 Abstract With increasing worldwide competition, high technology manufacturing companies

More information

Machine Learning Lecture 3

Machine Learning Lecture 3 Announcements Machine Learning Lecture 3 Eam dates We re in the process of fiing the first eam date Probability Density Estimation II 9.0.207 Eercises The first eercise sheet is available on L2P now First

More information

SPT is Optimally Competitive for Uniprocessor Flow

SPT is Optimally Competitive for Uniprocessor Flow SPT is Optimally Competitive for Uniprocessor Flow David P. Bunde Abstract We show that the Shortest Processing Time (SPT) algorithm is ( + 1)/2-competitive for nonpreemptive uniprocessor total flow time

More information

Dynamic Bin Packing for On-Demand Cloud Resource Allocation

Dynamic Bin Packing for On-Demand Cloud Resource Allocation Dynamic Bin Pacing for On-Demand Cloud Resource Allocation Yusen Li, Xueyan Tang, Wentong Cai Abstract Dynamic Bin Pacing DBP is a variant of classical bin pacing, which assumes that items may arrive and

More information

Algorithms Design & Analysis. Approximation Algorithm

Algorithms Design & Analysis. Approximation Algorithm Algorithms Design & Analysis Approximation Algorithm Recap External memory model Merge sort Distribution sort 2 Today s Topics Hard problem Approximation algorithms Metric traveling salesman problem A

More information

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)?

Integration. 5.1 Antiderivatives and Indefinite Integration. Suppose that f(x) = 5x 4. Can we find a function F (x) whose derivative is f(x)? 5 Integration 5. Antiderivatives and Indefinite Integration Suppose that f() = 5 4. Can we find a function F () whose derivative is f()? Definition. A function F is an antiderivative of f on an interval

More information

Cloud Scheduling with Setup Cost

Cloud Scheduling with Setup Cost Cloud Scheduling with Setup Cost Yossi Azar Blavatnik School of Computer Science, Tel-Aviv University azar@tauacil Naama Ben-Aroya Blavatnik School of Computer Science, Tel-Aviv University Navendu Jain

More information

Online Scheduling with Bounded Migration

Online Scheduling with Bounded Migration Online Scheduling with Bounded Migration Peter Sanders Universität Karlsruhe (TH), Fakultät für Informatik, Postfach 6980, 76128 Karlsruhe, Germany email: sanders@ira.uka.de http://algo2.iti.uni-karlsruhe.de/sanders.php

More information

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013

Lecture 13. Real-Time Scheduling. Daniel Kästner AbsInt GmbH 2013 Lecture 3 Real-Time Scheduling Daniel Kästner AbsInt GmbH 203 Model-based Software Development 2 SCADE Suite Application Model in SCADE (data flow + SSM) System Model (tasks, interrupts, buses, ) SymTA/S

More information