Smith s Rule in Stochastic Scheduling

Size: px
Start display at page:

Download "Smith s Rule in Stochastic Scheduling"

Transcription

1 Smith s Rule In Stochastic Scheduling Caroline Jagtenberg Uwe Schwiegelshohn Utrecht University Dortmund University University of Twente Aussois 2011

2 The (classic) setting Problem n jobs, nonpreemptive, processing times p j and weights w j m identical, parallel machines C j = completion time of job j goal: minimize total weighted completion time, w j C j P w j C j (thanks JKL) Complexity The problem is (strongly) NP-hard [Bruno et al. 1974] PTAS exists [Skutella and Woeginger, 2000]

3 WSPT a.k.a. Smith s rule a.k.a. Photographer s Rule WSPT Schedule jobs in order of non-increasing ratios w j /p j Performance On 1 machine WSPT is optimal [Smith, 1956] For identical, parallel machines WSPT is a approximation; this is tight [Kawaguchi and Kyan, 1986]

4 Step to stochastic scheduling Stochastic Scheduling processing times P = (P 1,..., P n ) unknown in advance P j s are random variables, known distribution solution no schedule, but scheduling policy Π for any policy Π: w j C j (Π, P) is a random variable Minimize expected performance E( w j C j (Π, P))

5 Complexity of (general) stochastic scheduling In general, optimal policies are NP-hard to find Calculating the objective value of a given policy can be # P complete [Hagstrom 1988] Question Optimal policy may require deliberate idleness [U. 2003] Does it become (significantly) easier if we restrict e.g. to only exponentially distributed processing times, i.e., P j exp(λ j )? i.e., P j s are memory-less, P[P j > x + t P j > t] = P[P j > x] Open Problem 1 Does there exist an optimal policy without deliberate idleness?

6 Intuition Quote Scheduling: Theory, Algorithms, and Systems [Pinedo, 2002] Example: P C max is NP-hard for deterministic scheduling, but for P j exp(λ j ), LEPT is optimal [Weiss and Pinedo, 1980]

7 Most natural & simple scheduling policy: WSEPT WSEPT or Smith s rule Greedily schedule jobs in order of decreasing w j /E(P j ) = w j λ j. Facts about WSEPT for minimizing E[ w j C j ] For one machine WSEPT is optimal [Rothkopf, 1966] For parallel machines WSEPT is optimal if ordering exists w. w 1... w n and w 1 λ 1... w n λ n [Kämpke, 1987] For parallel machines WSEPT is a (2 1 m )-approximation [Möhring, Schulz, U. 1999]

8 Our (Counterintuitive?) Result Theorem Performance of WSEPT is not better than OPT. That is, instances where in expectation E[ w j Cj WSEPT ] > E[ w j Cj OPT ] Counterintuition: This is even worse than WSPT in deterministic scheduling, which is at most OPT. Proof Follows from analysis and adaptation of the instance given by Kawaguchi and Kyan.

9 Kawaguchi & Kyan (deterministic) example x m big jobs with p j = w j = p, n m small jobs with p j = w j = 1 n Left schedule: wj C j = (p 2 xm ) + ( x m ) + o(1) Right schedule: wj C j = ((1 + p)pxm ) + ( 1 2 m ) + o(1) p = and x = gives a maximal ratio of

10 Stochastic version of Kawaguchi & Kyan example x m i.i.d. big jobs each with P j exp(λ), and w j := E[P j ] = 1 λ := p n m i.i.d. small jobs each with P j exp(n), and w j := E[P j ] = 1 n

11 Scheduling m jobs with P j exp(λ) Lemma Say we start at time t = 0 m i.i.d. jobs with P j exp(λ), the expected number of available machines at time t is at least f (t) := m(1 e tλ ) 1. Interpretation

12 Behaviour of parallel jobs with P j exp(λ) When scheduling in parallel m jobs with i.i.d. processing times P j exp(λ), the first completion is expected at time 1/(mλ). As P j s are memory less, E[P j t P j > t] = E[P j ] = 1/λ, the second completion is expected time 1/((m 1)λ) later. etc., so j th completion is expected at time t j = Using H(m) = m i=1 1 i j i=1 1 (m i + 1)λ ln(m) , find that t j 1 λ ln( m m j ), so # free machines at t: m(1 e tλ ) m(1 e tλ ) 1

13 Stochastic version of (worst case) WSPT schedule Remember Kawaguchi and Kyan s (worst case) schedule Machines finish processing short jobs more or less at t = 1 E[difference] 1 m 1 n i=1 1 i 0 (as we have n > m) Each long job completes in expectation at time (1 + 1 λ ) Hence, E[ w j C j ] to the deterministic case.

14 Stochastic version of (optimal) WSPT schedule The expected optimal schedule of the stochastic variant: Contribution of long jobs is the same as in the deterministic case. What about the small jobs? Compute time T such that T 0 f (t)dt total expected processing volume of small jobs. How? Numerically, T = suffices.

15 We can now approximate location of small jobs. But how much do they contribute to the objective value E[ w j C j ]?

16 Contribution of Small Jobs Lemma Consider nt jobs with i.i.d. processing times P j exp(n) and weights w j = 1/n, scheduled on a single machine. Then for all ε > 0 there exists n large enough so that Proof. E[ j w jc j ] = 1 n E[ j w jc j ] T 0 t dt + ε. nt 1/n+T 2 = 1 2 T n T = T 0 t dt + 1 2n T

17 Contribution of Small Jobs Generalization We can generalize this lemma for parallel machines. Let m(t) be the number of machines available at time t, then E[ j w jc j ] T 0 m(t) t dt + ε

18 Comparing the objective values E[ w j C j ] Ingredients 1 long jobs contribution same as in deterministic case 2 machines w. small jobs finish at equal times ( sand ) { 3 # available machines f (t) = m(1 e tλ ) 1 for OPT small jobs contribute E[ j w jc j ] T 0 f (t) t dt Putting all that together, we get WSEPT is an α-approximation, with α E(P j w j C j [B]) E( P j w j C j [A]) (n, m )

19 The result Optimizing over # and length E[P j ] of the long jobs The result above was for m 0.29 m long jobs with E[P j] = Taking for example: yields α > m long jobs with E[P j ] 1.8 Theorem For jobs with exponentially distributed processing times, WSEPT is no better than a approximation.

20 Conclusions What we ve found With P j exp(λ j ), WSEPT can be factor > away from optimal policy (in expectation); worse than tight bound for deterministic scheduling, [ WAOA 2010 proceedings] Open Problems 2 Instance(s) where WSEPT performs even worse? 3 I d rather go and improve the upper bound (2 1/m)! 4 Stochastic scheduling for P j exp(λ j ), hard at all? 5 And the complexity of computing E[ j w jc WSEPT j ]?

21 Smith s Rule = Photographer s Rule Group photos... Put short and important people first Back

Lower Bounds for Smith s Rule in Stochastic Machine Scheduling

Lower Bounds for Smith s Rule in Stochastic Machine Scheduling ower Bounds for Smith s Rule in Stochastic Machine Scheduling Caroline Jagtenberg 1, Uwe Schwiegelshohn 2,andMarcUetz 3 1 Utrecht University, Dept. of Mathematics, P.O. Box 81, 358 TA Utrecht, The Netherlands

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies ROLF H. MÖHRING Technische Universität Berlin, Berlin, Germany ANDREAS S. SCHULZ Massachusetts Institute of Technology, Cambridge,

More information

Online Scheduling with QoS Constraints

Online Scheduling with QoS Constraints Online cheduling with Qo Constraints Uwe chwiegelshohn cheduling for large-scale systems Knoville, TN, UA May 4, 9 Problem Description Online scheduling r j,online Jobs are submitted over time. At its

More information

Stochastic Online Scheduling Revisited

Stochastic Online Scheduling Revisited Stochastic Online Scheduling Revisited Andreas S. Schulz Sloan School of Management, Massachusetts Institute of Technology, E53-361, 77 Massachusetts Avenue, Cambridge, MA 02139, USA Abstract. We consider

More information

SCHEDULING UNRELATED MACHINES BY RANDOMIZED ROUNDING

SCHEDULING UNRELATED MACHINES BY RANDOMIZED ROUNDING SIAM J. DISCRETE MATH. Vol. 15, No. 4, pp. 450 469 c 2002 Society for Industrial and Applied Mathematics SCHEDULING UNRELATED MACHINES BY RANDOMIZED ROUNDING ANDREAS S. SCHULZ AND MARTIN SKUTELLA Abstract.

More information

Unrelated Machine Scheduling with Stochastic Processing Times

Unrelated Machine Scheduling with Stochastic Processing Times Unrelated Machine Scheduling with Stochastic Processing Times Martin Skutella TU Berlin, Institut für Mathematik, MA 5- Straße des 17. Juni 136, 1063 Berlin, Germany, martin.skutella@tu-berlin.de Maxim

More information

Stochastic Scheduling History and Challenges

Stochastic Scheduling History and Challenges Stochastic Scheduling History and Challenges Rolf Möhring Eurandom Workshop on Scheduling under Uncertainty Eindhoven, 3 June 2015 DFG Research Center MATHEON mathematics for key technologies Overview

More information

Static Routing in Stochastic Scheduling: Performance Guarantees and Asymptotic Optimality

Static Routing in Stochastic Scheduling: Performance Guarantees and Asymptotic Optimality Static Routing in Stochastic Scheduling: Performance Guarantees and Asymptotic Optimality Santiago R. Balseiro 1, David B. Brown 2, and Chen Chen 2 1 Graduate School of Business, Columbia University 2

More information

Regular Performance Measures

Regular Performance Measures Chapter 2 Regular Performance Measures The scheduling field has undergone significant development since 195s. While there has been a large literature on scheduling problems, the majority, however, is devoted

More information

Models and Algorithms for Stochastic Online Scheduling 1

Models and Algorithms for Stochastic Online Scheduling 1 Models and Algorithms for Stochastic Online Scheduling 1 Nicole Megow Technische Universität Berlin, Institut für Mathematik, Strasse des 17. Juni 136, 10623 Berlin, Germany. email: nmegow@math.tu-berlin.de

More information

Approximation Algorithms (Load Balancing)

Approximation Algorithms (Load Balancing) July 6, 204 Problem Definition : We are given a set of n jobs {J, J 2,..., J n }. Each job J i has a processing time t i 0. We are given m identical machines. Problem Definition : We are given a set of

More information

A Framework for Scheduling with Online Availability

A Framework for Scheduling with Online Availability A Framework for Scheduling with Online Availability Florian Diedrich, and Ulrich M. Schwarz Institut für Informatik, Christian-Albrechts-Universität zu Kiel, Olshausenstr. 40, 24098 Kiel, Germany {fdi,ums}@informatik.uni-kiel.de

More information

Lecture 4 Scheduling 1

Lecture 4 Scheduling 1 Lecture 4 Scheduling 1 Single machine models: Number of Tardy Jobs -1- Problem 1 U j : Structure of an optimal schedule: set S 1 of jobs meeting their due dates set S 2 of jobs being late jobs of S 1 are

More information

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on

Algorithms. Outline! Approximation Algorithms. The class APX. The intelligence behind the hardware. ! Based on 6117CIT - Adv Topics in Computing Sci at Nathan 1 Algorithms The intelligence behind the hardware Outline! Approximation Algorithms The class APX! Some complexity classes, like PTAS and FPTAS! Illustration

More information

A PTAS for the Uncertain Capacity Knapsack Problem

A PTAS for the Uncertain Capacity Knapsack Problem Clemson University TigerPrints All Theses Theses 12-20 A PTAS for the Uncertain Capacity Knapsack Problem Matthew Dabney Clemson University, mdabney@clemson.edu Follow this and additional works at: https://tigerprints.clemson.edu/all_theses

More information

Approximation algorithms for scheduling problems with a modified total weighted tardiness objective

Approximation algorithms for scheduling problems with a modified total weighted tardiness objective Approximation algorithms for scheduling problems with a modified total weighted tardiness objective Stavros G. Kolliopoulos George Steiner December 2, 2005 Abstract Minimizing the total weighted tardiness

More information

Scheduling under Uncertainty: Optimizing against a Randomizing Adversary

Scheduling under Uncertainty: Optimizing against a Randomizing Adversary Scheduling under Uncertainty: Optimizing against a Randomizing Adversary Rolf H. Möhring Technische Universität Berlin, 0 Berlin, Germany moehring@math.tu-berlin.de http://www.math.tu-berlin.de/~moehring/

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

COSC 341: Lecture 25 Coping with NP-hardness (2)

COSC 341: Lecture 25 Coping with NP-hardness (2) 1 Introduction Figure 1: Famous cartoon by Garey and Johnson, 1979 We have seen the definition of a constant factor approximation algorithm. The following is something even better. 2 Approximation Schemes

More information

The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders

The Power of Preemption on Unrelated Machines and Applications to Scheduling Orders MATHEMATICS OF OPERATIONS RESEARCH Vol. 37, No. 2, May 2012, pp. 379 398 ISSN 0364-765X (print) ISSN 1526-5471 (online) http://dx.doi.org/10.1287/moor.1110.0520 2012 INFORMS The Power of Preemption on

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

Scheduling Parallel Jobs with Linear Speedup

Scheduling Parallel Jobs with Linear Speedup Scheduling Parallel Jobs with Linear Speedup Alexander Grigoriev and Marc Uetz Maastricht University, Quantitative Economics, P.O.Box 616, 6200 MD Maastricht, The Netherlands. Email: {a.grigoriev, m.uetz}@ke.unimaas.nl

More information

immediately, without knowledge of the jobs that arrive later The jobs cannot be preempted, ie, once a job is scheduled (assigned to a machine), it can

immediately, without knowledge of the jobs that arrive later The jobs cannot be preempted, ie, once a job is scheduled (assigned to a machine), it can A Lower Bound for Randomized On-Line Multiprocessor Scheduling Jir Sgall Abstract We signicantly improve the previous lower bounds on the performance of randomized algorithms for on-line scheduling jobs

More information

Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time

Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time Select and Permute: An Improved Online Framework for Scheduling to Minimize Weighted Completion Time Samir Khuller 1, Jingling Li 1, Pascal Sturmfels 2, Kevin Sun 3, and Prayaag Venkat 1 1 University of

More information

Simple Dispatch Rules

Simple Dispatch Rules Simple Dispatch Rules We will first look at some simple dispatch rules: algorithms for which the decision about which job to run next is made based on the jobs and the time (but not on the history of jobs

More information

Completion Time Scheduling and the WSRPT Algorithm

Completion Time Scheduling and the WSRPT Algorithm Connecticut College Digital Commons @ Connecticut College Computer Science Faculty Publications Computer Science Department Spring 4-2012 Completion Time Scheduling and the WSRPT Algorithm Christine Chung

More information

showed that the SMAT algorithm generates shelf based schedules with an approximation factor of 8.53 [10]. Turek et al. [14] proved that a generalizati

showed that the SMAT algorithm generates shelf based schedules with an approximation factor of 8.53 [10]. Turek et al. [14] proved that a generalizati Preemptive Weighted Completion Time Scheduling of Parallel Jobs? Uwe Schwiegelshohn Computer Engineering Institute, University Dortmund, 441 Dortmund, Germany, uwe@carla.e-technik.uni-dortmund.de Abstract.

More information

Convex Quadratic and Semidefinite Programming Relaxations in Scheduling

Convex Quadratic and Semidefinite Programming Relaxations in Scheduling Convex Quadratic and Semidefinite Programming Relaxations in Scheduling MARTIN SKUTELLA Technische Universität Berlin, Berlin, Germany Abstract. We consider the problem of scheduling unrelated parallel

More information

Online Scheduling with Bounded Migration

Online Scheduling with Bounded Migration Online Scheduling with Bounded Migration Peter Sanders Universität Karlsruhe (TH), Fakultät für Informatik, Postfach 6980, 76128 Karlsruhe, Germany email: sanders@ira.uka.de http://algo2.iti.uni-karlsruhe.de/sanders.php

More information

Poisson Processes. Stochastic Processes. Feb UC3M

Poisson Processes. Stochastic Processes. Feb UC3M Poisson Processes Stochastic Processes UC3M Feb. 2012 Exponential random variables A random variable T has exponential distribution with rate λ > 0 if its probability density function can been written

More information

2 Martin Skutella modeled by machine-dependent release dates r i 0 which denote the earliest point in time when ob may be processed on machine i. Toge

2 Martin Skutella modeled by machine-dependent release dates r i 0 which denote the earliest point in time when ob may be processed on machine i. Toge Convex Quadratic Programming Relaxations for Network Scheduling Problems? Martin Skutella?? Technische Universitat Berlin skutella@math.tu-berlin.de http://www.math.tu-berlin.de/~skutella/ Abstract. In

More information

Single Machine Models

Single Machine Models Outline DM87 SCHEDULING, TIMETABLING AND ROUTING Lecture 8 Single Machine Models 1. Dispatching Rules 2. Single Machine Models Marco Chiarandini DM87 Scheduling, Timetabling and Routing 2 Outline Dispatching

More information

Approximation Schemes for Parallel Machine Scheduling Problems with Controllable Processing Times

Approximation Schemes for Parallel Machine Scheduling Problems with Controllable Processing Times Approximation Schemes for Parallel Machine Scheduling Problems with Controllable Processing Times Klaus Jansen 1 and Monaldo Mastrolilli 2 1 Institut für Informatik und Praktische Mathematik, Universität

More information

Minimizing the total flow-time on a single machine with an unavailability period

Minimizing the total flow-time on a single machine with an unavailability period Minimizing the total flow-time on a single machine with an unavailability period Julien Moncel (LAAS-CNRS, Toulouse France) Jérémie Thiery (DIAGMA Supply Chain, Paris France) Ariel Waserhole (G-SCOP, Grenoble

More information

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling.

Algorithm Design. Scheduling Algorithms. Part 2. Parallel machines. Open-shop Scheduling. Job-shop Scheduling. Algorithm Design Scheduling Algorithms Part 2 Parallel machines. Open-shop Scheduling. Job-shop Scheduling. 1 Parallel Machines n jobs need to be scheduled on m machines, M 1,M 2,,M m. Each machine can

More information

This lecture is expanded from:

This lecture is expanded from: This lecture is expanded from: HIGH VOLUME JOB SHOP SCHEDULING AND MULTICLASS QUEUING NETWORKS WITH INFINITE VIRTUAL BUFFERS INFORMS, MIAMI Nov 2, 2001 Gideon Weiss Haifa University (visiting MS&E, Stanford)

More information

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity

Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity MATHEMATICS OF OPERATIONS RESEARCH Vol. 33, No. 4, November 2008, pp. 945 964 issn 0364-765X eissn 1526-5471 08 3304 0945 informs doi 10.1287/moor.1080.0330 2008 INFORMS Approximating the Stochastic Knapsack

More information

bound of (1 + p 37)=6 1: Finally, we present a randomized non-preemptive 8 -competitive algorithm for m = 2 7 machines and prove that this is op

bound of (1 + p 37)=6 1: Finally, we present a randomized non-preemptive 8 -competitive algorithm for m = 2 7 machines and prove that this is op Semi-online scheduling with decreasing job sizes Steve Seiden Jir Sgall y Gerhard Woeginger z October 27, 1998 Abstract We investigate the problem of semi-online scheduling jobs on m identical parallel

More information

ARobustPTASforMachineCoveringand Packing

ARobustPTASforMachineCoveringand Packing ARobustPTASforMachineCoveringand Packing Martin Skutella and José Verschae Institute of Mathematics, TU Berlin, Germany {skutella,verschae}@math.tu-berlin.de Abstract. Minimizing the makespan or maximizing

More information

A Robust APTAS for the Classical Bin Packing Problem

A Robust APTAS for the Classical Bin Packing Problem A Robust APTAS for the Classical Bin Packing Problem Leah Epstein 1 and Asaf Levin 2 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il 2 Department of Statistics,

More information

Bin packing and scheduling

Bin packing and scheduling Sanders/van Stee: Approximations- und Online-Algorithmen 1 Bin packing and scheduling Overview Bin packing: problem definition Simple 2-approximation (Next Fit) Better than 3/2 is not possible Asymptotic

More information

Minimizing the weighted completion time on a single machine with periodic maintenance

Minimizing the weighted completion time on a single machine with periodic maintenance Minimizing the weighted completion time on a single machine with periodic maintenance KRIM Hanane University of Valenciennes and Hainaut-Cambrésis LAMIH UMR CNRS 8201 1st year Phd Student February 12,

More information

Combinatorial Algorithms for Minimizing the Weighted Sum of Completion Times on a Single Machine

Combinatorial Algorithms for Minimizing the Weighted Sum of Completion Times on a Single Machine Combinatorial Algorithms for Minimizing the Weighted Sum of Completion Times on a Single Machine James M. Davis 1, Rajiv Gandhi, and Vijay Kothari 1 Department of Computer Science, Rutgers University-Camden,

More information

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1

Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Scheduling Linear Deteriorating Jobs with an Availability Constraint on a Single Machine 1 Min Ji a, b, 2 Yong He b, 3 T.C.E. Cheng c, 4 a College of Computer Science & Information Engineering, Zhejiang

More information

Scheduling Online Algorithms. Tim Nieberg

Scheduling Online Algorithms. Tim Nieberg Scheduling Online Algorithms Tim Nieberg General Introduction on-line scheduling can be seen as scheduling with incomplete information at certain points, decisions have to be made without knowing the complete

More information

All-norm Approximation Algorithms

All-norm Approximation Algorithms All-norm Approximation Algorithms Yossi Azar Leah Epstein Yossi Richter Gerhard J. Woeginger Abstract A major drawback in optimization problems and in particular in scheduling problems is that for every

More information

APTAS for Bin Packing

APTAS for Bin Packing APTAS for Bin Packing Bin Packing has an asymptotic PTAS (APTAS) [de la Vega and Leuker, 1980] For every fixed ε > 0 algorithm outputs a solution of size (1+ε)OPT + 1 in time polynomial in n APTAS for

More information

A note on semi-online machine covering

A note on semi-online machine covering A note on semi-online machine covering Tomáš Ebenlendr 1, John Noga 2, Jiří Sgall 1, and Gerhard Woeginger 3 1 Mathematical Institute, AS CR, Žitná 25, CZ-11567 Praha 1, The Czech Republic. Email: ebik,sgall@math.cas.cz.

More information

Minimizing Average Completion Time in the. Presence of Release Dates. September 4, Abstract

Minimizing Average Completion Time in the. Presence of Release Dates. September 4, Abstract Minimizing Average Completion Time in the Presence of Release Dates Cynthia Phillips Cliord Stein y Joel Wein z September 4, 1996 Abstract A natural and basic problem in scheduling theory is to provide

More information

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned.

LPT rule: Whenever a machine becomes free for assignment, assign that job whose. processing time is the largest among those jobs not yet assigned. LPT rule Whenever a machine becomes free for assignment, assign that job whose processing time is the largest among those jobs not yet assigned. Example m1 m2 m3 J3 Ji J1 J2 J3 J4 J5 J6 6 5 3 3 2 1 3 5

More information

SPT is Optimally Competitive for Uniprocessor Flow

SPT is Optimally Competitive for Uniprocessor Flow SPT is Optimally Competitive for Uniprocessor Flow David P. Bunde Abstract We show that the Shortest Processing Time (SPT) algorithm is ( + 1)/2-competitive for nonpreemptive uniprocessor total flow time

More information

Machine scheduling with resource dependent processing times

Machine scheduling with resource dependent processing times Mathematical Programming manuscript No. (will be inserted by the editor) Alexander Grigoriev Maxim Sviridenko Marc Uetz Machine scheduling with resource dependent processing times Received: date / Revised

More information

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1

CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY. E. Amaldi Foundations of Operations Research Politecnico di Milano 1 CHAPTER 3 FUNDAMENTALS OF COMPUTATIONAL COMPLEXITY E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Goal: Evaluate the computational requirements (this course s focus: time) to solve

More information

BRANCH-AND-BOUND ALGORITHMS FOR STOCHASTIC RESOURCE-CONSTRAINED PROJECT SCHEDULING

BRANCH-AND-BOUND ALGORITHMS FOR STOCHASTIC RESOURCE-CONSTRAINED PROJECT SCHEDULING FACHBEREICH 3 MATHEMATIK BRANCH-AND-BOUND ALGORITHMS FOR STOCHASTIC RESOURCE-CONSTRAINED PROJECT SCHEDULING by FREDERIK STORK No. 702/2000 Branch-and-Bound Algorithms for Stochastic Resource-Constrained

More information

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines?

P C max. NP-complete from partition. Example j p j What is the makespan on 2 machines? 3 machines? 4 machines? Multiple Machines Model Multiple Available resources people time slots queues networks of computers Now concerned with both allocation to a machine and ordering on that machine. P C max NP-complete from

More information

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies

Approximation in Stochastic Scheduling: The Power of LP-Based Priority Policies Approxiation in Stochastic Scheduling: The Power of -Based Priority Policies Rolf Möhring, Andreas Schulz, Marc Uetz Setting (A P p stoch, r E( w and (B P p stoch E( w We will assue that the processing

More information

On bilevel machine scheduling problems

On bilevel machine scheduling problems Noname manuscript No. (will be inserted by the editor) On bilevel machine scheduling problems Tamás Kis András Kovács Abstract Bilevel scheduling problems constitute a hardly studied area of scheduling

More information

Approximation Schemes for Scheduling on Parallel Machines

Approximation Schemes for Scheduling on Parallel Machines Approximation Schemes for Scheduling on Parallel Machines Noga Alon Yossi Azar Gerhard J. Woeginger Tal Yadid Abstract We discuss scheduling problems with m identical machines and n jobs where each job

More information

Partition is reducible to P2 C max. c. P2 Pj = 1, prec Cmax is solvable in polynomial time. P Pj = 1, prec Cmax is NP-hard

Partition is reducible to P2 C max. c. P2 Pj = 1, prec Cmax is solvable in polynomial time. P Pj = 1, prec Cmax is NP-hard I. Minimizing Cmax (Nonpreemptive) a. P2 C max is NP-hard. Partition is reducible to P2 C max b. P Pj = 1, intree Cmax P Pj = 1, outtree Cmax are both solvable in polynomial time. c. P2 Pj = 1, prec Cmax

More information

Colored Bin Packing: Online Algorithms and Lower Bounds

Colored Bin Packing: Online Algorithms and Lower Bounds Noname manuscript No. (will be inserted by the editor) Colored Bin Packing: Online Algorithms and Lower Bounds Martin Böhm György Dósa Leah Epstein Jiří Sgall Pavel Veselý Received: date / Accepted: date

More information

An approximation algorithm for the minimum latency set cover problem

An approximation algorithm for the minimum latency set cover problem An approximation algorithm for the minimum latency set cover problem Refael Hassin 1 and Asaf Levin 2 1 Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel. hassin@post.tau.ac.il

More information

The Constrained Minimum Weighted Sum of Job Completion Times Problem 1

The Constrained Minimum Weighted Sum of Job Completion Times Problem 1 The Constrained Minimum Weighted Sum of Job Completion Times Problem 1 Asaf Levin 2 and Gerhard J. Woeginger 34 Abstract We consider the problem of minimizing the weighted sum of job completion times on

More information

A lower bound on deterministic online algorithms for scheduling on related machines without preemption

A lower bound on deterministic online algorithms for scheduling on related machines without preemption Theory of Computing Systems manuscript No. (will be inserted by the editor) A lower bound on deterministic online algorithms for scheduling on related machines without preemption Tomáš Ebenlendr Jiří Sgall

More information

APPROXIMATION ALGORITHMS FOR SCHEDULING ORDERS ON PARALLEL MACHINES

APPROXIMATION ALGORITHMS FOR SCHEDULING ORDERS ON PARALLEL MACHINES UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA MATEMÁTICA APPROXIMATION ALGORITHMS FOR SCHEDULING ORDERS ON PARALLEL MACHINES SUBMITTED IN PARTIAL FULFILLMENT

More information

arxiv: v1 [cs.ds] 6 Jun 2018

arxiv: v1 [cs.ds] 6 Jun 2018 Online Makespan Minimization: The Power of Restart Zhiyi Huang Ning Kang Zhihao Gavin Tang Xiaowei Wu Yuhao Zhang arxiv:1806.02207v1 [cs.ds] 6 Jun 2018 Abstract We consider the online makespan minimization

More information

Final Examination December 16, 2009 MATH Suppose that we ask n randomly selected people whether they share your birthday.

Final Examination December 16, 2009 MATH Suppose that we ask n randomly selected people whether they share your birthday. 1. Suppose that we ask n randomly selected people whether they share your birthday. (a) Give an expression for the probability that no one shares your birthday (ignore leap years). (5 marks) Solution:

More information

SCHEDULING PARALLEL JOBS UNDER POWER CONSTRAINTS Kunal Agrawal Washington University in St. Louis

SCHEDULING PARALLEL JOBS UNDER POWER CONSTRAINTS Kunal Agrawal Washington University in St. Louis SCHEDULING PARALLEL JOBS UNDER POWER CONSTRAINTS Kunal Agrawal Washington University in St. Louis PARALLEL JOBS: DYNAMICALLY UNFOLDING DAG Node: Unit work task. Edge: Dependence between tasks. Executed

More information

1 Markov decision processes

1 Markov decision processes 2.997 Decision-Making in Large-Scale Systems February 4 MI, Spring 2004 Handout #1 Lecture Note 1 1 Markov decision processes In this class we will study discrete-time stochastic systems. We can describe

More information

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #15: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden November 5, 2014 1 Preamble Previous lectures on smoothed analysis sought a better

More information

The Multi-Armed Bandit Problem

The Multi-Armed Bandit Problem Università degli Studi di Milano The bandit problem [Robbins, 1952]... K slot machines Rewards X i,1, X i,2,... of machine i are i.i.d. [0, 1]-valued random variables An allocation policy prescribes which

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

arxiv: v2 [cs.ds] 27 Nov 2014

arxiv: v2 [cs.ds] 27 Nov 2014 Single machine scheduling problems with uncertain parameters and the OWA criterion arxiv:1405.5371v2 [cs.ds] 27 Nov 2014 Adam Kasperski Institute of Industrial Engineering and Management, Wroc law University

More information

Online Interval Coloring and Variants

Online Interval Coloring and Variants Online Interval Coloring and Variants Leah Epstein 1, and Meital Levy 1 Department of Mathematics, University of Haifa, 31905 Haifa, Israel. Email: lea@math.haifa.ac.il School of Computer Science, Tel-Aviv

More information

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College

Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Analysis of Algorithms [Reading: CLRS 2.2, 3] Laura Toma, csci2200, Bowdoin College Why analysis? We want to predict how the algorithm will behave (e.g. running time) on arbitrary inputs, and how it will

More information

APPROXIMATION BOUNDS FOR A GENERAL CLASS OF PRECEDENCE CONSTRAINED PARALLEL MACHINE SCHEDULING PROBLEMS

APPROXIMATION BOUNDS FOR A GENERAL CLASS OF PRECEDENCE CONSTRAINED PARALLEL MACHINE SCHEDULING PROBLEMS SIAM J. COMPUT. Vol. 35, No. 5, pp. 1241 1253 c 2006 Society for Industrial and Applied Mathematics APPROXIMATION BOUNDS FOR A GENERAL CLASS OF PRECEDENCE CONSTRAINED PARALLEL MACHINE SCHEDULING PROBLEMS

More information

Competitive Management of Non-Preemptive Queues with Multiple Values

Competitive Management of Non-Preemptive Queues with Multiple Values Competitive Management of Non-Preemptive Queues with Multiple Values Nir Andelman and Yishay Mansour School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel Abstract. We consider the online problem

More information

Scheduling Lecture 1: Scheduling on One Machine

Scheduling Lecture 1: Scheduling on One Machine Scheduling Lecture 1: Scheduling on One Machine Loris Marchal October 16, 2012 1 Generalities 1.1 Definition of scheduling allocation of limited resources to activities over time activities: tasks in computer

More information

CPU SCHEDULING RONG ZHENG

CPU SCHEDULING RONG ZHENG CPU SCHEDULING RONG ZHENG OVERVIEW Why scheduling? Non-preemptive vs Preemptive policies FCFS, SJF, Round robin, multilevel queues with feedback, guaranteed scheduling 2 SHORT-TERM, MID-TERM, LONG- TERM

More information

June 19, Abstract. We give a simple proof that, for any instance of a very general class of scheduling

June 19, Abstract. We give a simple proof that, for any instance of a very general class of scheduling On the Existence of Schedules that are Near-Optimal for both Makespan and Total Weighted Completion Time Cli Stein Joel Wein y June 19, 1996 Abstract We give a simple proof that, for any instance of a

More information

Online interval scheduling on uniformly related machines

Online interval scheduling on uniformly related machines Online interval scheduling on uniformly related machines Leah Epstein Lukasz Jeż Jiří Sgall Rob van Stee August 27, 2012 Abstract We consider online preemptive throughput scheduling of jobs with fixed

More information

A lower bound for scheduling of unit jobs with immediate decision on parallel machines

A lower bound for scheduling of unit jobs with immediate decision on parallel machines A lower bound for scheduling of unit jobs with immediate decision on parallel machines Tomáš Ebenlendr Jiří Sgall Abstract Consider scheduling of unit jobs with release times and deadlines on m identical

More information

New Utilization Criteria for Online Scheduling

New Utilization Criteria for Online Scheduling New Utilization Criteria for Online Scheduling Dissertation zur Erlangung des Grades eines D o k t o r s d e r N a t u r w i s s e n s c h a f t e n der Universität Dortmund am Fachbereich Informatik von

More information

Dynamic Programming( Weighted Interval Scheduling)

Dynamic Programming( Weighted Interval Scheduling) Dynamic Programming( Weighted Interval Scheduling) 17 November, 2016 Dynamic Programming 1 Dynamic programming algorithms are used for optimization (for example, finding the shortest path between two points,

More information

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i

Knapsack. Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Knapsack Bag/knapsack of integer capacity B n items item i has size s i and profit/weight w i Goal: find a subset of items of maximum profit such that the item subset fits in the bag Knapsack X: item set

More information

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint

A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint A polynomial-time approximation scheme for the two-machine flow shop scheduling problem with an availability constraint Joachim Breit Department of Information and Technology Management, Saarland University,

More information

A robust APTAS for the classical bin packing problem

A robust APTAS for the classical bin packing problem A robust APTAS for the classical bin packing problem Leah Epstein Asaf Levin Abstract Bin packing is a well studied problem which has many applications. In this paper we design a robust APTAS for the problem.

More information

Online Scheduling of Jobs with Fixed Start Times on Related Machines

Online Scheduling of Jobs with Fixed Start Times on Related Machines Algorithmica (2016) 74:156 176 DOI 10.1007/s00453-014-9940-2 Online Scheduling of Jobs with Fixed Start Times on Related Machines Leah Epstein Łukasz Jeż Jiří Sgall Rob van Stee Received: 10 June 2013

More information

The Power of Migration in Online Machine Minimization

The Power of Migration in Online Machine Minimization The Power of Migration in Online Machine Minimization Lin Chen Magyar Tudományos Akadémia (MTA SZTAKI) Budapest, Hungary chenlin198662@gmail.com Nicole Megow Technische Universität München Zentrum Mathematik

More information

ON THE OPTIMALITY OF LEPT AND µc RULES FOR PARALLEL PROCESSORS AND DEPENDENT ARRIVAL PROCESSES

ON THE OPTIMALITY OF LEPT AND µc RULES FOR PARALLEL PROCESSORS AND DEPENDENT ARRIVAL PROCESSES ON THE OPTIMALITY OF LEPT AND µc RULES FOR PARALLEL PROCESSORS AND DEPENDENT ARRIVAL PROCESSES Arie Hordijk & Ger Koole* Dept. of Mathematics and Computer Science, Universit of Leiden P.O. Box 9512, 2300

More information

On the Structure and Complexity of Worst-Case Equilibria

On the Structure and Complexity of Worst-Case Equilibria On the Structure and Complexity of Worst-Case Equilibria Simon Fischer and Berthold Vöcking RWTH Aachen, Computer Science 1 52056 Aachen, Germany {fischer,voecking}@cs.rwth-aachen.de Abstract. We study

More information

P,NP, NP-Hard and NP-Complete

P,NP, NP-Hard and NP-Complete P,NP, NP-Hard and NP-Complete We can categorize the problem space into two parts Solvable Problems Unsolvable problems 7/11/2011 1 Halting Problem Given a description of a program and a finite input, decide

More information

Scheduling linear deteriorating jobs with an availability constraint on a single machine

Scheduling linear deteriorating jobs with an availability constraint on a single machine Theoretical Computer Science 362 (2006 115 126 www.elsevier.com/locate/tcs Scheduling linear deteriorating jobs with an availability constraint on a single machine Min Ji a,b, Yong He b, T.C.E. Cheng c,

More information

CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms

CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms CS264: Beyond Worst-Case Analysis Lecture #18: Smoothed Complexity and Pseudopolynomial-Time Algorithms Tim Roughgarden March 9, 2017 1 Preamble Our first lecture on smoothed analysis sought a better theoretical

More information

NP-Completeness. Until now we have been designing algorithms for specific problems

NP-Completeness. Until now we have been designing algorithms for specific problems NP-Completeness 1 Introduction Until now we have been designing algorithms for specific problems We have seen running times O(log n), O(n), O(n log n), O(n 2 ), O(n 3 )... We have also discussed lower

More information

How much can lookahead help in online single machine scheduling

How much can lookahead help in online single machine scheduling JID:IPL AID:3753 /SCO [m3+; v 1.80; Prn:16/11/2007; 10:54] P.1 (1-5) Information Processing Letters ( ) www.elsevier.com/locate/ipl How much can lookahead help in online single machine scheduling Feifeng

More information

Optimal on-line algorithms for single-machine scheduling

Optimal on-line algorithms for single-machine scheduling Optimal on-line algorithms for single-machine scheduling J.A. Hoogeveen A.P.A. Vestjens Department of Mathematics and Computing Science, Eindhoven University of Technology, P.O.Box 513, 5600 MB, Eindhoven,

More information

ECE 5424: Introduction to Machine Learning

ECE 5424: Introduction to Machine Learning ECE 5424: Introduction to Machine Learning Topics: Ensemble Methods: Bagging, Boosting PAC Learning Readings: Murphy 16.4;; Hastie 16 Stefan Lee Virginia Tech Fighting the bias-variance tradeoff Simple

More information

Technische Universität Berlin Fachbereich Mathematik. Masterarbeit. Algorithmic Study of Bilevel Machine Scheduling Problems.

Technische Universität Berlin Fachbereich Mathematik. Masterarbeit. Algorithmic Study of Bilevel Machine Scheduling Problems. Technische Universität Berlin Fachbereich Mathematik Masterarbeit Algorithmic Study of Bilevel Machine Scheduling Problems Angefertigt von: Felix Paul Simon Betreuerin & Erstgutachterin: Zweitgutachter:

More information

A half-product based approximation scheme for agreeably weighted completion time variance

A half-product based approximation scheme for agreeably weighted completion time variance A half-product based approximation scheme for agreeably weighted completion time variance Jinliang Cheng a and Wieslaw Kubiak b Faculty of Business Administration Memorial University of Newfoundland St.

More information

CS 6901 (Applied Algorithms) Lecture 3

CS 6901 (Applied Algorithms) Lecture 3 CS 6901 (Applied Algorithms) Lecture 3 Antonina Kolokolova September 16, 2014 1 Representative problems: brief overview In this lecture we will look at several problems which, although look somewhat similar

More information