HiRA: Science and Design Considerations

Size: px
Start display at page:

Download "HiRA: Science and Design Considerations"

Transcription

1 HiRA: Science and Design Considerations Scientific Program: Astrophysics: Transfer reactions Resonance spectroscopy Nuclear Structure: Inelastic scattering Transfer reactions Resonance spectroscopy Breakup reactions Complex Reactions: Fragmentation Correlations Design Considerations: Resolution issues Angular resolution Energy resolution Mass and charge resolution Timing resolution Angular coverage Dynamic range Flexibility Matching to other devices Cost

2 HiRA High Resolution Array 20 Telescopes 62.3 x 62.3 mm 2 Active Area δθ < ±0.16 ο deg (35 cm) δε < 50 kev 1.5 mm 4 cm Design supports many configurations 1024 pixels per telescope beam Target

3 LASSA: HiRA prototype LASSA- HiRA comparisons: characteristic LASSA HiRA # telescopes 9 20 area/telescope 25 cm 2 38 cm 2 design distance 20 cm cm pitch 3 mm (16) 1.9 mm (32) total # strips electronics CAMAC ASIC E thickness 75 µm 75 µm E thickness 0.5 mm 1.5 mm CsI(Tl) thickness 6 cm 4 cm

4 HiRA project IU: Silicon development: de Souza, Caraley, Davin, Viola WU/SIU: Electronics development: Sobotka, Elson, Engel MSU/Milano/IU: Mechanical design van Goethem, Morris, Moroni, Wallace MSU: CsI(Tl) van Goethem, Wallace, Nett DAQ: MSU/IU Fox, Elson Budget: 0.54MD 0.2MD silicon

5 First studies: masses relevant to the rp-process The rapid proton capture process is a process believed to occur on the surface of an accreting neutron star in a binary system X-ray burst With X-ray telescopes we observe x-ray bursts that are believed to be produced by the rp-process.

6 The rp-process Separation energy defines path S p =(M(Z,N)-M(Z-1,N)-M p )c 2 S α =(M(Z,N)-M(Z-2,N-2)-M α )c 2

7 Single nucleon transfer reactions (p,d),(d, 3 He) 12 Be(p,d) Typical angular distributions Kinematics are forward peaked Measurements are only possible for θ<40 Good angular and energy resolution are required. Can determine an unknown mass via two-body kinematics if other masses are known. Reactions are reasonably matched at fragmentation facilities. Much better matched than (d,p). Can typically measure past the first diffraction maximum. Can provide information about l- transfer.

8 Producing a beam Stable Beams are produced in the Ion Source and accelerated in the K500&K1200 Superconducting Cyclotrons The Primary beam is then incident on a production target producing secondary beams. These beams are then separated using the A1900 Fragment Separator

9 Secondary beams from Kr primary beam If we require a beam intensity of 1 x 10 4 then we could make mass measurements of all the nuclei in yellow here without changing the setting of the fragment separator. This can work to our advantage as we will be able to use some with known masses as calibrations.

10 Possible geometry Hira Strip Array Quadrupoles Focal plane detector S800 Spectrograph with Strip array having Θ <± 0.16 deg. at Θ = 5-28 deg. HiRA covers the solid angle with about 70% efficiency. S800 spectrometer is used to detect binary reaction partner. e.g. for p( 66 As,d) 65 As, 65 As would be detected with 100% efficiency in S800 focal plane. suppresses background from breakup reactions on 12 C in CH 2 target. Experiment can be finished in several days - week using 10 4 ions/s. Device must be able to fit into the S800 chamber.

11 Experimental Challenges for (p,d) mass meas. Need good energy resolution: δe cm 2 δe lab Stop particles in silicons, CsI(Tl) serves mainly to veto fast particles. Need good angular resolution if you want to take advantage of the full solid HiRA solid angle. kinematic broadening increases with angle, move backward angle telescopes away from the target. ~1.9 mm pitch is compromise between wanting good resolution and also low interstrip hit probabilities. Major challenges are good calibrations of the silicon energy and the beam energy. Particle identification via E-E is easy for (p,d). (For elastic, inelastic, you may need TOF.)

12 Silicon energy calibration 228 Th source Silicon detectors CsI(Tl) crystals Calibration with a 228 Th α source (8.7 MeV) and a precision pulser. Source can be mounted between the 75 µm and 1.5 mm silicon detectors. Scheme has been tested with LASSA silicon detectors. It merely requires that that the columns of detectors of the array can be moved apart, one side of each silicon mount be removed and the source inserted.

13 Secondary beam characteristics The Beam spot on the production target also has a finite width. The Beam energy is defined by the momentum acceptance of your fragment separator. Typically on the order of 1-3% p/p

14 Beam position, energy & angle determination One 2 dim. PPAC at the object determines the beam ion s position at the target image Two 2-dimensional PPAC s in the dispersive intermediate image of the the S800 beam line determine the ion s angle and energy. Two removeable PPAC s at the target can check the trajectory reconstruction using the upstream PPAC s

15 Final uncertainties Uncertainties needed to be considered Beam Energy Incident angle of beam on target Target thickness Distance to HiRA (angular resolution) Detector resolution

16 Resonance spectroscopy - Radiative Capture via Coulex High Resolution Strip detector Array p 7 Li E rel 1 2 µ v v ( v v ) Yield (2J+1) Resonances relevant to hot stellar environments. 20 Na, 23 Al, 24 Si, etc. Branching ratios, Spins E.g. 20 Na resonances Energies to 10 kev accuracy.

17 Correlation Technique Experimental correlation function: ( 1 R( E )) rel Y12( E1, E2) = C + Y1 ( E1) Y2 ( E2) Correlation function in thermodynamic limit (Boal, Jennings) R( E R decay rel ) = ( E ) rel R( E = rel ) (2s i 1 coul, background 2π + 1)(2s 2 ( hc) 3 + 1) µ 2µ E ( E ) i ( 2J + 1) exp( E / T ) i + dδ de rel R decay rel rel rel app

18 Radiative Capture via Coulex 0.1 Resolution requirements Resolution <(E rel -<E rel >) 2 > 1/ d=60 cm d=35 cm d=120 cm Uses same geometry Isolated resonances which decay to the g.s. are easiest cases. 14 O { e.g. 13 N(p,γ) } 23 Al {e.g. 22 Mg (p,γ) } Direct capture, e.g. 7 Be(p,γ) is harder E (MeV) rel Need: Excellent angular resolution. governs δe*, 40 kev FWHM has been achieved. Moderate energy resolution Excellent isotopic resolution Good multi-hit capability.

19 Complex Reactions Correlation functions: Imaging of nuclear collisions Resolution requirements identical to that for resonance spectroscopy Need multi-hit capability Fragmentation and L.G.P.T. Investigations of caloric curve Isospin dependence of fragmentation, L.G.P.T., EOS Science of rare isotope production Need excellent broadrange PID Counts Li C Before Correction Before Correction C After Correction A Li After Correction Excellent PID possible With non-planar 75 µm E

20 Scaling behavior ( N, Z ) Y2( N, Z) = CY1 exp( αn + βz) α and β are proportional to difference in isospin asymmetry Appears to be respected by all statistical production mechanisms.

Experimental Study of Stellar Reactions at CNS

Experimental Study of Stellar Reactions at CNS Experimental Study of Stellar Reactions at CNS Shigeru KUBONO ( 久保野茂 ) Center for Nuclear Study (CNS) University of Tokyo 1. Nucleosynthesis under Explosive Conditions + CNS-RIKEN AVF-Upgrade Project 2.

More information

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams

Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams Hirschegg 06-1 Experimental Approach to Explosive Hydrogen Burning with Low-Energy RI Beams S. Kubono Center for Nuclear Study (CNS) University of Tokyo 1. Low Energy RI Beam Production 2. Proton Resonance

More information

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering stochastic cooling Exotic nuclei from Super-FRS Degrader for fast slowing down The Ring Branch TOF Detector MCPs E anode ion B CR Electron cooler NESR secondary electrons Experiments: Mass- and Lifetime

More information

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV

Dedicated Arrays: MEDEA GDR studies (E γ = MeV) Highly excited CN E*~ MeV, 4 T 8 MeV Dedicated Arrays: MEDEA GDR studies (E γ = 10-25 MeV) Highly excited CN E*~ 250-350 MeV, 4 T 8 MeV γ-ray spectrum intermediate energy region 10 MeV/A E beam 100 MeV/A - large variety of emitted particles

More information

Reaction rates in the Laboratory

Reaction rates in the Laboratory Reaction rates in the Laboratory Example I: 14 N(p,γ) 15 O slowest reaction in the CNO cycle Controls duration of hydrogen burning Determines main sequence turnoff glob. cluster ages stable target can

More information

Status of the TRACE array

Status of the TRACE array Status of the TRACE array D. Mengoni University of the West of Scotland, Paisley - U.K. INFN - Sezione di Padova, Padova - Italy SPES workshop, LNL - Italy Nov 15 th 17 th, 2010 Outline 1 Introduction

More information

A Comparison between Channel Selections in Heavy Ion Reactions

A Comparison between Channel Selections in Heavy Ion Reactions Brazilian Journal of Physics, vol. 39, no. 1, March, 2009 55 A Comparison between Channel Selections in Heavy Ion Reactions S. Mohammadi Physics Department, Payame Noor University, Mashad 91735, IRAN (Received

More information

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL

SURROGATE REACTIONS. An overview of papers by Jason Burke from LLNL SURROGATE REACTIONS An overview of papers by Jason Burke from LLNL Compound Nuclear Reaction cross sections Cross sections for compound-nuclear reactions are required input for astrophysical models and

More information

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7

Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Presentation at the 10th RIBLL Collaboration Symposium, Beijing, 2017/1/7 Outline 1. Background 1.1 Decay for proton-rich nuclei 1.2 Astrophysical implications 2. Experiments 2.1 Introduction 2.2 Experimental

More information

Proximity Decay and Tidal Effects

Proximity Decay and Tidal Effects Proximity Decay and Tidal Effects A. B. McIntosh,S. Hudan, C.J. Metelko, N. Peters, J. Black, RdS Dept of Chemistry and IUCF, Indiana University July 16 22 1994: http://www2.jpl.nasa.gov/sl9/ Comet P/Shoemaker-Levy

More information

nuclear states nuclear stability

nuclear states nuclear stability nuclear states 1 nuclear stability 2 1 nuclear chart 3 nuclear reactions Important concepts: projectile (A) target (B) residual nuclei (C+D) q-value of a reaction Notations for the reaction B(A,C)D A+B

More information

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H.

Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment. J. Button, Y.-W. Lui, and D.H. Progress in measuring GMR in unstable nuclei: Decay detector calibration and inverse reaction experiment J. Button, Y.-W. Lui, and D.H. Youngblood I. Introduction The Giant Monopole Resonance (GMR) is

More information

Nuclear Astrophysics II

Nuclear Astrophysics II Nuclear Astrophysics II Lecture 5 Fri. June 1, 2012 Prof. Shawn Bishop, Office 2013, Ex. 12437 shawn.bishop@ph.tum.de http://www.nucastro.ph.tum.de/ 1 Where to from here? We are now at a crossroads for

More information

HIRA CSI DETECTOR RESPONSE TO LOW ENERGY PROTONS

HIRA CSI DETECTOR RESPONSE TO LOW ENERGY PROTONS HIRA CSI DETECTOR RESPONSE TO LOW ENERGY PROTONS Chelsey Morien Ursinus College Collegeville, PA 09 Aug 07 The High Resolution Array Each of the 20 identical telescopes can be individually placed and aligned,

More information

The Super-FRS Project at GSI

The Super-FRS Project at GSI 2 m A G A T A The Super-FRS Project at GSI FRS facility The concept of the new facility The Super-FRS and its branches Summary Martin Winkler for the Super-FRS working group CERN, 3.1.22 Energy Buncher

More information

TIGRESS Auxiliary Detectors

TIGRESS Auxiliary Detectors TIGRESS Auxiliary Detectors Gordon Ball, TRIUMF GRETINA Auxiliary Detector Workshop Washington University, St. Louis MO January 28 9, 2006 TIGRESS 32 Fold Segmented HPGe Clover Detector Four ~40% n type

More information

FARCOS Femtoscope Array for Correlations & Spectroscopy

FARCOS Femtoscope Array for Correlations & Spectroscopy FARCOS Femtoscope Array for Correlations & Spectroscopy Overview of project and physics inputs Present status (mechanics, electronics) and perspectives for the use with GET electronics G. Cardella, INFN-Catania

More information

in2p , version 1-28 Nov 2008

in2p , version 1-28 Nov 2008 Author manuscript, published in "Japanese French Symposium - New paradigms in Nuclear Physics, Paris : France (28)" DOI : 1.1142/S21831391444 November 23, 28 21:1 WSPC/INSTRUCTION FILE oliveira International

More information

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA

Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA Spin assignments of 22 Mg states through a 24 Mg(p,t) 22 Mg measurement, K. L. Jones, B. H. Moazen, S. T. Pittman Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996,

More information

Overview of Nuclear Science

Overview of Nuclear Science Overview of Nuclear Science Nuclear science addresses the quantum quark/gluon and nuclear many body problems. How do we understand nuclei in terms of their fundamental parts and interactions? W. Nazarewicz

More information

Farcos FemtoscopeArray for Correlations and Spectroscopy

Farcos FemtoscopeArray for Correlations and Spectroscopy Farcos FemtoscopeArray for Correlations and Spectroscopy G. Verde(INFN-CT), A. Chbihi(GANIL), Exochim coll., INFN- CT, LNS, MI, NA - Open collaboration and synergies. Farcosphysics: dynamics & spectroscopy

More information

II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF

II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF CYRIC Annual Report 2005 II. 5. Study for NaI(Tl) and Scintillation Fiber with 80 MeV Proton Beam Toward ESPRI Experiment at NIRS-HIMAC, RIKEN-RIBF Zenihiro J. 1, Matsuda Y. 2, Sakaguchi H. 3, Takeda H.

More information

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA

Physics opportunities with the AT-TPC. D. Bazin NSCL/MSU at ReA Physics opportunities with the AT-TPC D. Bazin NSCL/MSU at ReA Reaction studies at ReA Radioactive beams are used in inverse kinematics Target is now the (usually light) probe nucleus Scattered particles

More information

Light ion recoil detector

Light ion recoil detector Light ion recoil detector Overall design The detector for light (target-like) particles is a substantial part of the R3B setup. It allows registration of recoils in coincidence with the heavy fragments,

More information

Research at FSU, using RESOLUT facility Development of and research with two new detector-systems

Research at FSU, using RESOLUT facility Development of and research with two new detector-systems Nuclear Astrophysics and Structure Research with Radioactive Beams Research at FSU, using RESOLUT facility Development of and research with two new detector-systems ResoNeut: Low-energy neutron detector-array

More information

NUSTAR and the status of the R3B project at FAIR

NUSTAR and the status of the R3B project at FAIR PRAMANA c Indian Academy of Sciences journal of physics pp. 1 7 NUSTAR and the status of the R3B project at FAIR 1nstituto de Estructura de la Materia, Consejo Superior de Investigaciones Cientficas, Madrid

More information

H/He burning reactions on unstable nuclei for Nuclear Astrophysics

H/He burning reactions on unstable nuclei for Nuclear Astrophysics H/He burning reactions on unstable nuclei for Nuclear Astrophysics PJ Woods University of Edinburgh H T O F E E U D N I I N V E B R U S I R T Y H G Explosive H/He burning in Binary Stars Isaac Newton,

More information

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies Christoph Langer (JINA/NSCL) INT Workshop: Reactions and Structure of Exotic Nuclei March 2015 1 Understanding

More information

Topics of interest for Must2 in HIC

Topics of interest for Must2 in HIC Topics of interest for Must2 in HIC 1. Density dependence of the symmetry energy: peripheral and central collisions 2. particle-particle correlations a. Imaging of emitting sources: space-time properties

More information

Resonance scattering and α- transfer reactions for nuclear astrophysics.

Resonance scattering and α- transfer reactions for nuclear astrophysics. Resonance scattering and α- transfer reactions for nuclear astrophysics. Grigory Rogachev Outline Studying resonances using resonance scattering Studying resonances using transfer reactions Resonances

More information

JLEIC forward detector design and performance

JLEIC forward detector design and performance Jefferson Lab E-mail: ryoshida@jlab.org A major part of the physics program at the Electron-Ion Collider being planned in the US is the exploration of nucleon and nuclear structure. This program means

More information

Charge Exchange reactions with Unstable Nuclei

Charge Exchange reactions with Unstable Nuclei Charge Exchange reactions with Unstable Nuclei Sam Austin and Remco Zegers Sam Austin, Daniel Bazin, Alex Brown, Christian Diget, Alexandra Gade, Carol Guess, Marc Hausmann, Wes Hitt, Meredith Howard,

More information

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge

Charged particle detection in GE6 To stop high energy particles need large thickness of Germanium (GE6 has ~13 cm) Charged particle detection in Ge Using stacked germanium detectors for charged hadron detection Daniel Watts Edinburgh University Derek Branford, Klaus Foehl Charged particle detection in GE To stop high energy particles need large thickness

More information

Detekce a spektrometrie neutronů. neutron detection and spectroscopy

Detekce a spektrometrie neutronů. neutron detection and spectroscopy Detekce a spektrometrie neutronů neutron detection and spectroscopy 1. Slow neutrons 2. Fast neutrons 1 1. Slow neutrons neutron kinetic energy E a) charged particles are produced, protons, α particle,

More information

Experimental Investigation of Few-Nucleon Dynamics at Medium Energies

Experimental Investigation of Few-Nucleon Dynamics at Medium Energies Experimental Investigation of Few-Nucleon Dynamics at Medium Energies by Ghanshyam Khatri 1 \ 22 Outline Introduction Three-body (3N) force Experimental tools BINA Detector and it s status at CCB (Krakow)

More information

Compound Nucleus Reactions

Compound Nucleus Reactions Compound Nucleus Reactions E CM a Q CN Direct CN decays Time. Energy. Two-step reaction. CN forgets how it was formed. Decay of CN depends on statistical factors that are functions of E x, J. Low energy

More information

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Pion Physics in the Meson Factory Era R. P. Redwine Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Bates Symposium 1 Meson Factories

More information

Studying the nuclear pairing force through. Zack Elledge and Dr. Gregory Christian

Studying the nuclear pairing force through. Zack Elledge and Dr. Gregory Christian Studying the nuclear pairing force through 18 O( 26 Mg, 28 Mg) 16 O Zack Elledge and Dr. Gregory Christian Weizsaecker Formula Binding energy based off of volume and surface terms (strong force), coulomb

More information

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies

two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies two-proton radioactivity discovery of two-proton radioactivity experimental results with TPC s future studies Bertram Blank CEN Bordeaux-Gradignan EPS European Nuclear Physics Conference 2009 Spring meeting

More information

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics.

Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Spectroscopy of light exotic nuclei using resonance scattering in inverse kinematics. Grigory Rogachev RESOLUT: a new radioactive beam facility at FSU Solenoid 2 Magnetic Spectrograph Magnetic Spectrograph

More information

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo

C NS. Direct reactions of Borromean nuclei FM50. S. Shimoura CNS, University of Tokyo C NS Direct reactions of Borromean nuclei S. Shimoura CNS, University of Tokyo FM50 Introduction 3N force in neutron-rich nuclei U1X IL2/4 B.E. Importance of T=3/2 3N force in the PRC 64 014001 (2001)

More information

Development of a new MeV gamma-ray camera

Development of a new MeV gamma-ray camera Development of a new MeV gamma-ray camera ICEPP Symposium February 16, 2004 Hakuba, Nagano, Japan Kyoto University Atsushi Takeda H. Kubo, K. Miuchi, T. Nagayoshi, Y. Okada, R. Orito, A. Takada, T. Tanimori,

More information

3-D MEASUREMENT OF THE NSCL POSITION-SENSITIVE GAMMA RAY DETECTOR ARRAY

3-D MEASUREMENT OF THE NSCL POSITION-SENSITIVE GAMMA RAY DETECTOR ARRAY 3-D MEASUREMENT OF THE NSCL POSITION-SENSITIVE GAMMA RAY DETECTOR ARRAY D. P. Sanderson and W. F. Mueller The National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI,

More information

Measurements of liquid xenon s response to low-energy particle interactions

Measurements of liquid xenon s response to low-energy particle interactions Measurements of liquid xenon s response to low-energy particle interactions Payam Pakarha Supervised by: Prof. L. Baudis May 5, 2013 1 / 37 Outline introduction Direct Dark Matter searches XENON experiment

More information

NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics

NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics National Superconducting Cyclotron Laboratory An overview Ana D. Becerril NSCL and Physics and Astronomy Department, Michigan State University Joint Institute for Nuclear Astrophysics University of North

More information

Stellar Evolution: what do we know?

Stellar Evolution: what do we know? Stellar Evolution: what do we know? New Tools - Astronomy satellite based observatories Hubble Space Telescope Compton Gamma-Ray Observatory Chandra X-Ray Observatory INTEGRAL ground based observatories

More information

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy

Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Development of High-Z Semiconductor Detectors and Their Applications to X-ray/gamma-ray Astronomy Taka Tanaka (SLAC/KIPAC) 9/19/2007 SLAC Advanced Instrumentation Seminar Outline Introduction CdTe Diode

More information

Investigation of nuclear Equation of State (EoS) is an attractive subject not only for nuclear

Investigation of nuclear Equation of State (EoS) is an attractive subject not only for nuclear First Experiment of SπRIT-TPC at SAMURAI in RIKEN-RIBF for SπRIT Collaboration RIKEN, Nishina Center, RIKEN, Japan E-mail: mizuki@riken.jp Investigation of nuclear Equation of State (EoS) is an attractive

More information

Production and Separation of Radioactive Beams. Mg and 20 Na with MARS

Production and Separation of Radioactive Beams. Mg and 20 Na with MARS Production and Separation of Radioactive Beams 20 Mg and 20 Na with MARS Gopal Subedi, Colby College REU 2009, Cyclotron Institute, TAMU Advisor: Dr. Robert E. Tribble August 23, 2009 1 Overview Motivation

More information

Nuclear Alpha-Particle Condensation

Nuclear Alpha-Particle Condensation Nuclear Alpha-Particle Condensation 40 Ca+ 12 C, 25 AMeV with CHIMERA First experimental evidence of alpha-particle condensation for the Hoyle state Ad. R. Raduta, B.Borderie, N. Le Neindre, E. Geraci,

More information

Experimental Initiatives in Nuclear Astrophysics

Experimental Initiatives in Nuclear Astrophysics Experimental Initiatives in Nuclear Astrophysics Carl Brune Astrophysics: H and He burning, S process Facilities: neutron and gamma beams, underground accelerators, ICF plasmas Joint DNP Town Meetings

More information

The SPIRAL2 Project and experiments with high-intensity rare isotope beams

The SPIRAL2 Project and experiments with high-intensity rare isotope beams The SPIRAL2 Project and experiments with high-intensity rare isotope beams Marek Lewitowicz GANIL, CEA/DSM-CNRS/IN2P3, BP 55027, 14076 Caen Cedex, France Lewitowicz@ganil.fr Abstract. The SPIRAL2 facility

More information

PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE ENERGIES

PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE ENERGIES EPJ Web of Conferences 66, 03068 (2014) DOI: 10.1051/ epjconf/ 2014 6603068 C Owned by the authors, published by EDP Sciences, 2014 PROTON-PROTON FEMTOSCOPY AND ACCESS TO DYNAMICAL SOURCES AT INTERMEDIATE

More information

RITU and the GREAT Spectrometer

RITU and the GREAT Spectrometer RITU and the GREAT Spectrometer Cath Scholey Department of Physics University of Jyväskylä 19 th March 2006 3rd TASCA Detector Group Meeting, GSI Darmstadt C. Scholey (JYFL, Finland) RITU and the GREAT

More information

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Experimental Nuclear Physics: Part 2

Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation August Experimental Nuclear Physics: Part 2 2358-11 Joint ICTP-IAEA Workshop on Nuclear Structure Decay Data: Theory and Evaluation 6-17 August 2012 Experimental Nuclear Physics: Part 2 E. Ricard McCutchan Brookhaven National Lab. USA Experimental

More information

Nuclear Reactions Part III Grigory Rogachev

Nuclear Reactions Part III Grigory Rogachev THE FLORIDA STATE UNIVERSITY National Superconducting Cyclotron Facility Nuclear Reactions Part III Grigory Rogachev Outline Introduction. Resonances in atomic nuclei Role of resonances in era of exotic

More information

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University

Alpha inelastic scattering and cluster structures in 24 Mg. Takahiro KAWABATA Department of Physics, Kyoto University Alpha inelastic scattering and cluster structures in 24 Mg Takahiro KAWABATA Department of Physics, Kyoto University Introduction Contents Alpha cluster structure in light nuclei. Alpha condensed states.

More information

Neutron Structure Function from BoNuS

Neutron Structure Function from BoNuS Neutron Structure Function from BoNuS Stephen BültmannB Old Dominion University for the CLAS Collaboration The Structure of the Neutron at Large x The BoNuS Experiment in 005 First Results from the BoNuS

More information

The Detector Design of the Jefferson Lab EIC

The Detector Design of the Jefferson Lab EIC The Detector Design of the Jefferson Lab EIC Jefferson Lab E-mail: mdiefent@jlab.org The Electron-Ion Collider (EIC) is envisioned as the next-generation U.S. facility to study quarks and gluons in strongly

More information

Capabilities at the National Superconducting Cyclotron Laboratory. Sean Liddick NDNCA workshop, May 26-29, 2015

Capabilities at the National Superconducting Cyclotron Laboratory. Sean Liddick NDNCA workshop, May 26-29, 2015 Capabilities at the National Superconducting Cyclotron Laboratory Sean Liddick NDNCA workshop, May 26-29, 2015 NSCL and FRIB Laboratory NSCL is funded by the U.S. National Science Foundation to operate

More information

Characterization study of the CsI(Tl) detector array

Characterization study of the CsI(Tl) detector array Characterization study of the CsI(Tl) detector array by Corwin Trottier A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF SCIENCE in Honors Physics (Department

More information

Der Silizium Recoil Detektor für HERMES Ingrid-Maria Gregor

Der Silizium Recoil Detektor für HERMES Ingrid-Maria Gregor Der Silizium Recoil Detektor für HERMES Introduction HERMES at DESY Hamburg What do we want to measure? Recoil Detector Overview Silicon Recoil Detector Principle First measurements Zeuthen activities

More information

An Introduction to. Ion-Optics. Series of Five Lectures JINA, University of Notre Dame Sept. 30 Dec. 9, Georg P. Berg

An Introduction to. Ion-Optics. Series of Five Lectures JINA, University of Notre Dame Sept. 30 Dec. 9, Georg P. Berg An Introduction to Ion-Optics Series of Five Lectures JINA, University of Notre Dame Sept. 30 Dec. 9, 2005 Georg P. Berg 1 The Lecture Series 1 st Lecture: 9/30/05, 2:00 pm: Definitions, Formalism, Examples

More information

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Neutron Instruments I & II. Ken Andersen ESS Instruments Division Neutron Instruments I & II ESS Instruments Division Neutron Instruments I & II Overview of source characteristics Bragg s Law Elastic scattering: diffractometers Continuous sources Pulsed sources Inelastic

More information

PHY982. Week Starting date Topic

PHY982. Week Starting date Topic PHY982 Week Starting date Topic 1 Jan 7+8 Introduction to nuclear reactions 2 Jan 14+15 Scattering theory 3 Jan 22 Scattering theory 4 Jan 28+29 Reaction mechanisms 5 Feb 4+5 Connecting structure and reactions

More information

Why Make Rare Isotopes?

Why Make Rare Isotopes? Outline Use and production of radioactive isotopes. Importance of RIBs Challenges in making RIBs Current experiments to make RIBs Current experiments using RIBs Why Make Rare Isotopes? Fill in the Chart

More information

Annax-I. Investigation of multi-nucleon transfer reactions in

Annax-I. Investigation of multi-nucleon transfer reactions in Annax-I Investigation of multi-nucleon transfer reactions in 40 Ca on 68,70 Zn at and near the Coulomb barrier. Abstract We will study the multi-nucleon transfer between two medium-heavy nuclei to find

More information

ISOSPIN DIFFUSION IN HEAVY ION REACTIONS

ISOSPIN DIFFUSION IN HEAVY ION REACTIONS ISOSPIN DIFFUSION IN HEAVY ION REACTIONS M.B. Tsang, T.X. Liu, L. Shi, P. Danielewicz, C.K. Gelbke, X.D. Liu, W.G. Lynch, W.P. Tan a, G. Verde, A.Wagner b, H.S. Xu c National Superconducting Cyclotron

More information

2 Give the compound nucleus resulting from 6-MeV protons bombarding a target of. my notes in the part 3 reading room or on the WEB.

2 Give the compound nucleus resulting from 6-MeV protons bombarding a target of. my notes in the part 3 reading room or on the WEB. Lecture 15 Krane Enge Cohen Williams Reaction theories compound nucleus 11.10 13.7 13.1-3 direct reactions 11.11 13.11/12 ch 14 Admixed Wave functions residual interaction 5.1-4 Admixed Wave functions

More information

Tagging with Roman Pots at RHIC. Proton tagging at STAR

Tagging with Roman Pots at RHIC. Proton tagging at STAR Tagging with Roman Pots at RHIC Proton tagging at STAR Elastic and Diffractive Processes in High Energy Proton Scattering Elastic scattering Detect protons in very forward direction with Roman Pots (RPs)

More information

Polarization of a stored beam by spin filtering

Polarization of a stored beam by spin filtering Mitglied der Helmholtz-Gemeinschaft Polarization of a stored beam by spin filtering Christian Weidemann 03. June 2013 Motivation The PAX collaboration proposed to investigate so called Drell-Yan processes

More information

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture

Nuclear Physics. (PHY-231) Dr C. M. Cormack. Nuclear Physics This Lecture Nuclear Physics (PHY-31) Dr C. M. Cormack 11 Nuclear Physics This Lecture This Lecture We will discuss an important effect in nuclear spectroscopy The Mössbauer Effect and its applications in technology

More information

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods

Isospin symmetry breaking in mirror nuclei. Experimental and theoretical methods Isospin symmetry breaking in mirror nuclei Experimental and theoretical methods Silvia M. Lenzi Dipartimento di Fisica dell Università and INFN, Padova, Italy 2. Experimental techniques for mirror spectroscopy

More information

EVOLUTION OF SHELL STRUCTURE

EVOLUTION OF SHELL STRUCTURE EVOLUTION OF SHELL STRUCTURE W A RICHTER ITHEMBA LABS UNIVERSITY OF THE WESTERN CAPE Focus points: 1. Single-particle structure of nuclei 2. Elastic scattering 3. The Interface between Nuclear structure

More information

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University

Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects. Catherine M. Deibel Louisiana State University Hydrogen and Helium Burning in Type I X-ray Bursts: Experimental Results and Future Prospects Catherine M. Deibel Louisiana State University 8/29/14 CGS15 August 25 29, 2014 1 Click Type to I X-Ray edit

More information

Noncentral collisions

Noncentral collisions Noncentral collisions Projectile Target QT E* MRS QP E* MRS: L. Gingras et al., Phys. Rev. C 65, 061604(2002) Noncentral collisions The IVS source Velocity distributions (LAB) for the 40 Ca + 40 Ca reaction

More information

Physic 492 Lecture 16

Physic 492 Lecture 16 Physic 492 Lecture 16 Main points of last lecture: Angular momentum dependence. Structure dependence. Nuclear reactions Q-values Kinematics for two body reactions. Main points of today s lecture: Measured

More information

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI

High-resolution study of Gamow- Teller transitions in pf-shell nuclei. Tatsuya ADACHI High-resolution study of Gamow- Teller transitions in pf-shell nuclei Tatsuya ADACHI Type II supernova Electron Capture (EC) & β decay Neutrino induced reaction A Z-1X N+1 daughter EC β A ZX N parent (A,Z)

More information

Decay of 10 C excited states above the 2 p + 2α threshold and the contribution from democratic two-proton emission

Decay of 10 C excited states above the 2 p + 2α threshold and the contribution from democratic two-proton emission PHYSICAL REVIEW C 75, 534(R) (7) Decay of C excited states above the p + α threshold and the contribution from democratic two-proton emission R. J. Charity, K. Mercurio, L. G. Sobotka,, J. M. Elson, M.

More information

Experimental data analysis at the MASHA setup. Prepared by: Abeer M. Attia Supervisor: Lubos Krupa LOGO. Aleksey Novoselov

Experimental data analysis at the MASHA setup. Prepared by: Abeer M. Attia Supervisor: Lubos Krupa LOGO. Aleksey Novoselov Experimental data analysis at the MASHA setup Flerov Laboratory of Nuclear Reactions JINR, Dubna, Russia Prepared by: Abeer M. Attia Supervisor: Lubos Krupa LOGO Aleksey Novoselov Flerov Laboratory of

More information

Rare Isotope productions from Projectile Fragmentation. Ca + Be. Betty Tsang March 27, 2008

Rare Isotope productions from Projectile Fragmentation. Ca + Be. Betty Tsang March 27, 2008 Rare Isotope productions from Projectile Fragmentation 48 Ca + Be Betty Tsang March 27, 2008 Acknowledgement Collaborators: Michal Mocko (thesis) M. Andronenko, L. Andronenko, N. Aoi, J. Cook, F. Delaunay,

More information

High-resolution Study of Gamow-Teller Transitions

High-resolution Study of Gamow-Teller Transitions High-resolution Study of Gamow-Teller Transitions Yoshitaka Fujita, Osaka Univ. @CNS-SS, 04.Aug.17-20 Nucleus : 3 active interactions out of 4 Strong, Weak, EM Comparison of Analogous Transitions High

More information

A NEW GENERATION OF GAMMA-RAY TELESCOPE

A NEW GENERATION OF GAMMA-RAY TELESCOPE A NEW GENERATION OF GAMMA-RAY TELESCOPE Aleksandar GOSTOJIĆ CSNSM, Orsay, France 11 th Russbach School on Nuclear Astrophysics, March 2014. Introduction: Gamma-ray instruments GROUND BASED: ENERGY HIGHER

More information

A taste of Proton-rich nuclei. David Jenkins

A taste of Proton-rich nuclei. David Jenkins A taste of Proton-rich nuclei David Jenkins even%a% odd%a%!2%%%%%%%%%%%%%!1%%%%%%%%%%%%%%0%%%%%%%%%%%%%%1%%%%%%%%%%%%%%2%!5/2%%%%%%%%%!3/2%%%%%%%%%!1/2%%%%%%%%%%1/2%%%%%%%%%%3/2%%%%%%%%%%5/2% Isobaric

More information

Gamma-ray spectroscopy II

Gamma-ray spectroscopy II Gamma-ray spectroscopy II Andreas Görgen DAPNIA/SPhN, CEA Saclay F-91191 Gif-sur-Yvette France agoergen@cea.fr Lectures presented at the IoP Nuclear Physics Summer School September 4 17, 2005 Chester,

More information

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder

Future X-rayX Spectroscopy Missions. Jan-Willem den Herder Future X-rayX Spectroscopy Missions Jan-Willem den Herder contents Plasma diagnostics in the 0.1 to 10 kev band with resolution > 100 X-ray spectrometers: instrumental promises Future missions (a dream)

More information

Two-Proton Halo Structure

Two-Proton Halo Structure DREB 2012, Pisa, Italia Breakup Reactions of Ne to Study its Motivation: Nuclear Structure of Ne & Astrophysics Impact Experimental Methods: Knockout Reactions & Coulomb Dissociation Results: Proton Knockout

More information

Nuclear Physics and Astrophysics

Nuclear Physics and Astrophysics Nuclear Physics and Astrophysics PHY-30 Dr. E. Rizvi Lecture 4 - Detectors Binding Energy Nuclear mass MN less than sum of nucleon masses Shows nucleus is a bound (lower energy) state for this configuration

More information

ACTAR TPC: an active target and time projection chamber for nuclear physics

ACTAR TPC: an active target and time projection chamber for nuclear physics ACTAR TPC: an active target and time projection chamber for nuclear physics 1 Nuclear structure through transfer reactions Past: structure of nuclei close to stability in direct kinematics, use of magnetic

More information

Stable and Rare Beams at the Texas A&M Cyclotron Ins:tute

Stable and Rare Beams at the Texas A&M Cyclotron Ins:tute Stable and Rare Beams at the Texas A&M Cyclotron Ins:tute S. Yennello T-REX Interna'onal Symposium on Super Heavy Nuclei 2015 Facility Layout K500 Commissioned 1989 88 Commissioned 1967, Decommissioned

More information

The heavy-ion magnetic spectrometer PRISMA

The heavy-ion magnetic spectrometer PRISMA Nuclear Physics A 701 (2002) 217c 221c www.elsevier.com/locate/npe The heavy-ion magnetic spectrometer PRISMA A.M. Stefanini a,,l.corradi a,g.maron a,a.pisent a,m.trotta a, A.M. Vinodkumar a, S. Beghini

More information

Decay spectroscopy for nuclear astrophysics

Decay spectroscopy for nuclear astrophysics Decay spectroscopy for nuclear astrophysics 1 Cyclotron Institute, Texas A&M University College Station, TX 77843-3366, USA E-mail: livius_trache@tamu.edu Abstract. In many radiative proton capture reactions

More information

Magnetic Separator for light RIB production

Magnetic Separator for light RIB production Magnetic Separator for light RIB production Vandana Nanal 1,* 1 Deptartment of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai - 400005, INDIA. * email:vnanal@gmail.com A magnetic

More information

Tracking at the LAND/R B setup on 17

Tracking at the LAND/R B setup on 17 3 Tracking at the LAND/R B setup on 17 the example of Ne(γ,2p)15O R. Plag*, J. Marganiec 21. Januar 2011 Dedicated to the students of LAND/R3B Outline rp process and motivation coulomb dissociation as

More information

Michigan State University, East Lansing MI48824, USA INTRODUCTION

Michigan State University, East Lansing MI48824, USA INTRODUCTION Two-Proton Decay of the First Excited State of 17 Ne M.J. Chromik 1;2,P.G. Thirolf 1;2, M. Thoennessen 1, M. Fauerbach 1, T. Glasmacher 1, R. Ibbotson 1, R.A. Kryger 1, H. Scheit 1, and P.J. Woods 3 1

More information

Status of GEp III high Q form factor ratio analysis. Andrew Puckett, MIT on behalf of the GEp III Collaboration

Status of GEp III high Q form factor ratio analysis. Andrew Puckett, MIT on behalf of the GEp III Collaboration Status of GEp III high Q form factor ratio 2 analysis Andrew Puckett, MIT on behalf of the GEp III Collaboration Experiments E04 108 and E04 019 e' e p Analysis Method Two primary tasks for form factor

More information

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research

Prompt gamma measurements for the verification of dose deposition in proton therapy. Contents. Two Proton Beam Facilities for Therapy and Research Prompt gamma measurements for the verification of dose deposition in proton therapy Two Proton Beam Facilities for Therapy and Research Ion Beam Facilities in Korea 1. Proton therapy facility at National

More information

Status of the magnetic spectrometer PRISMA

Status of the magnetic spectrometer PRISMA Status of the magnetic spectrometer PRISMA E. Fioretto INFN Laboratori Nazionali di Legnaro 1 PRISMA in vacuum mode Dipole 50 cm 120 cm 60 +130 Quadrupole 30 cm Beam Target 2-20 Rotating platform PRISMA:

More information

Investigation of the nuclear structure of 17 O at high excitation energy with five-particle transfer reactions

Investigation of the nuclear structure of 17 O at high excitation energy with five-particle transfer reactions Investigation of the nuclear structure of 17 O at high excitation energy with five-particle transfer reactions B.T. Roeder* Cyclotron Institute, Texas A&M University, College Station, Texas, USA M.R.D.

More information

N/Z influence on the level density parameter

N/Z influence on the level density parameter EPJ Web of Conferences 88, 00030 ( 2015) DOI: 10.1051/ epjconf/ 20158800030 C Owned by the authors, published by EDP Sciences - SIF, 2015 N/Z influence on the level density parameter G. Ademard 1,L.Augey

More information