Angular Momentum About Spin Axis

Size: px
Start display at page:

Download "Angular Momentum About Spin Axis"

Transcription

1 Angla Momentm

2 Angla Momentm Abot Spin Axis Ω AM (pe nit mass) = velocity moment am M =( + ) = a cos φ Thin-shell appoximation: take distance fom any point in atmosphee to planet s baycente eqal to constant adis a

3 Length of Day 2 4 ΔLOD (ms) Yea ΔLOD (ms) Yea LOD vaies seasonally becase of AM consevation in solid-eath/atmosphee system and seasonal vaiations of atmospheic AM. LOD vaiations on longe timescales becase of AM exchange with moon (tides).

4 Angla Momentm in Atmosphee dm dt se deivative hee, be In axisymmetic inviscid flow, DM/Dt =. So no axisymmetic e-aangement of ai masses can geneate an angla momentm extemm. Hide s theoem is a conseqence: AM extema mst occ at bondaies. Inteio AM cannot exceed AM at eqato at the sface: M max = a 2 This implies an ppe bond on the zonal flow, the angla momentmconseving zonal + D

5 AM and Hadley cell AM-conseving zonal wind (m s -1 ) N 3 N 45 N 6 N 75 N 9 N Latitde Zonal wind (m s -1 ) Pesse (hpa) Steamfnction (Sv) 15 N 3 N 45 N 6 N 75 N 9 N Latitde

6 Pimitive Momentm Eqations The sal pimitive momentm eqations follow fom angla momentm consevation and hydostatic balance by expanding ot definitions of angla momentm and making the thin-shell appoximation. Fo t + M + M The Coiolis toqe nd side, aises the st with tem M epesents a 2 cos 2 thefom local ate o M a@ a momentm com v2 sin a cos fv paamete 2 sin. Pimitive Momentm + D. d dt fv v tan a 1 + D dv dt + f D

7 Aveaged AM Eqation Reynolds aveaging spin AM eqation in flx t ( ) + (M + M ) gives in a statistically + D oe convenient fo aveaging than the advective fom Ū M Ū M M D, tmosphee appoximation, o, in thin-shell appoximation, f V Ū M M D mosphee

8 o, in thin-atmosphee M f V U appoximation, M U M Fee Atmosphee U M (2.2b) M D, f V U M D, o, f V in thin-atmosphee U M appoximation, M D, M Dominant Balances low Rossby Feenmbe Atmosphee (2.2b) (2.2b) FeeFee Atmosphee U M M (2.3a) Atmosphee lowatmosphee: Rossby nmbe Fee Whee Rossby nmbe is negligible, f V small, U M is Mhence low Rossby nmbe low Rossby nmbe U M M (2.3a) o, in thin-atmosphee appoximation, U U M M M M Fee Atmosphee (2.3a) (2.3a) o, in thin-atmosphee2.3.1 appoximation, fappoximation, V M ino,thin-atmosphee appoximation, in thin-atmosphee o, in o, thin-shell appoximation, (2.3b) low Rossby nmbe M f V eddy meidional ow balances (2.3b) Coiolis toqe on mean angla momentm f V f V M MU (2.3b) (2.3b) M M x divegence whee dag is weak. Coiolis toqe on mean meidional ow balances eddy angla momentm Coiolis toqe on in mean meidional ow balances eddyangla anglamomentm momentm Coiolis toqe on o, mean meidional ow balances eddy thin-atmosphee appoximation, Coiolis toqe on mean meidional flow balances eddy angla momentm flx x divegence whee dag is weak. divegence whee dag isfeel weak.cells). x x divegence whee dag is weak. divegence (ppe banches Hadley, Nea Sface f V M Nea Sface Nea Sface low Rossby nmbe Nea Sface Nea sface: Eddy flxes geneally weak. When Rossby nmbe is small, dominant balance is Ekman balance Coiolis ow balances edd low Rossby nmbe lowlow Rossby nmbe U toqe M on mean D meidional, (2.4a) Rossby nmbe x divegence whee dag is weak. U M D, U U M D, M D, o, in thin-atmosphee appoximation, o,o, in in thin-shell appoximation in thin-atmosphee appoximation, appoximation, o,thin-atmosphee ino,thin-atmosphee appoximation, (2.4a) (2.4a) (2.4a) Nea Sface f V D, (2.4b) f V D, (2.4b) f V DD,, (2.4b) f V low Rossby nmbe Coiolis toqe on mean meidional flow balances mean zonal dag. Hence, (2.4b) eqatowad flow whee thee ae eastelies, polewad flow U whee M westelies. D,

9 Eath (Annal Mean).2 Se> Se< σ Latitde Se >, D Flow towad poles (towad spin axis) Se<, D Flow towad eqato (away fom spin axis)

10 AM Flxes (Tansient) and Zonal Wind

11 Seasonal Cycle RG31 RG31 Schneide et al.: WATER VAPOR AND CLIMATE CHANGE RG31 Schneide et al.: WATER VAPOR AND CLIMATE CHANGE RG31 Fige 5. Eath s Hadley ciclation ove the cose of the seasonal cycle. Black contos show the 5. Eath s Hadleywith ciclation the cose of the seasonal cycle. Black contos the massfige flx steam fnction, dashedove (negative) contos indicating clockwise motionshow and solid 9 1 mass contos flx steam fnction, with dashed (negative) indicating clockwise and solid s ). Colos indi(positive) indicating conteclockwise motion contos (conto inteval is kgmotion 1 kg s ). Colos indiindicating conteclockwise 25 1 denoting cos!), inteval with theis oveba the seasonal cate (positive) hoizontalcontos eddy momentm flx divegence motion div( v(conto 6 cos!), with the oveba denoting the seasonal cate hoizontal momentm divegence div( v(conto m s 2 2, with ed tones and zonal mean andeddy pimes denotingflx deviations theefom inteval m s, Ro with ed tones and zonal mean pimes theefom (conto inteval 8 1in which fo positive and bleand tones fo denoting negativedeviations vales). Gay shading indicates egions >.5. The fo positive and ble tones fo negative vales). Gay shading indicates egions in which Ro >.5. The vetical coodinate s = p/ps is pesse p nomalized by sface pesse ps. Compted fom eanalysis vetical coodinate s = p/p is pesse p nomalized by sface pesse ps. Compted fom eanalysis data fo the yeas spovided by the Eopean Cente fo Medim Range Weathe Foecasts data fo the yeas povided by the Eopean Cente fo Medim Range Weathe Foecasts [Kållbeg et al., 24; Uppala et al., 25]. [Kållbeg et al., 24; Uppala et al., 25]. climate changes onlyonly via via changes in the eddy momentm 1% incease inceaseininthe thestength stengthofof mean climate changes changes in the eddy momentm the thehadley Hadley cells, cells, aa 1% thethe mean (Schneide et al. 21) flx divegence S, and possibly via changes in the width of meidional mass flx eqies a 1% incease in S, an

12 Eddy AM Flx Conveges in Midlatitde Jets.2 σ Pesse (hpa) Altitde (km) 9 S 45 S 45 N 9 N Latitde

13 AM Balance at Sface Ekman balance f v = D Zonal dag balances Coiolis foce on meidional flow Z!"#$%&'( )&*+(

14 Vetically Integated AM Flxes

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in ME 01 DYNAMICS Chapte 1: Kinematics of a Paticle Chapte 1 Kinematics of a Paticle A. Bazone 1.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS Pola Coodinates Pola coodinates ae paticlaly sitable fo solving

More information

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics

Fall 2016 Semester METR 3113 Atmospheric Dynamics I: Introduction to Atmospheric Kinematics and Dynamics Fall 06 Semeste METR 33 Atmospheic Dynamics I: Intoduction to Atmospheic Kinematics Dynamics Lectue 7 Octobe 3 06 Topics: Scale analysis of the equations of hoizontal motion Geostophic appoximation eostophic

More information

Gravity and isostasy

Gravity and isostasy Gavity and isostasy Reading: owle p60 74 Theoy of gavity Use two of Newton s laws: ) Univesal law of gavitation: Gmm = m m Univesal gavitational constant G=6.67 x 0 - Nm /kg ) Second law of motion: = ma

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Analysis of the Dynamical Equations Chapter 2. Paul A. Ullrich

Analysis of the Dynamical Equations Chapter 2. Paul A. Ullrich Analysis of the Dynamical Equations Chapte 2 Paul A. Ullich paullich@ucdavis.edu Pat 1: Scale Analysis of the Momentum Equation The Atmospheic Equations Du uv tan Dv + u2 tan Dw c p DT + uw = 1 cos + vw

More information

3.3 Properties of Vortex Structures

3.3 Properties of Vortex Structures .0 - Maine Hydodynamics, Sping 005 Lecte 8.0 - Maine Hydodynamics Lecte 8 In Lecte 8, paagaph 3.3 we discss some popeties of otex stctes. In paagaph 3.4 we dedce the Benolli eqation fo ideal, steady flow.

More information

Dynamic Meteorology 1

Dynamic Meteorology 1 Dynamic Meteooloy 1 Lecte 3 Sahaei Physics Depatment, Rai Univesity http://www.ai.ac.i/sahaei Physical meanin of The Laplacian ives the smoothness of a fnction.it meases the diffeence between the vale

More information

Mechanics and Special Relativity (MAPH10030) Assignment 3

Mechanics and Special Relativity (MAPH10030) Assignment 3 (MAPH0030) Assignment 3 Issue Date: 03 Mach 00 Due Date: 4 Mach 00 In question 4 a numeical answe is equied with pecision to thee significant figues Maks will be deducted fo moe o less pecision You may

More information

Chapter 2: Basic Physics and Math Supplements

Chapter 2: Basic Physics and Math Supplements Chapte 2: Basic Physics and Math Supplements Decembe 1, 215 1 Supplement 2.1: Centipetal Acceleation This supplement expands on a topic addessed on page 19 of the textbook. Ou task hee is to calculate

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ

The study of the motion of a body along a general curve. the unit vector normal to the curve. Clearly, these unit vectors change with time, u ˆ Section. Cuilinea Motion he study of the motion of a body along a geneal cue. We define u ˆ û the unit ecto at the body, tangential to the cue the unit ecto nomal to the cue Clealy, these unit ectos change

More information

The evolution of the phase space density of particle beams in external fields

The evolution of the phase space density of particle beams in external fields The evolution of the phase space density of paticle beams in extenal fields E.G.Bessonov Lebedev Phys. Inst. RAS, Moscow, Russia, COOL 09 Wokshop on Beam Cooling and Related Topics August 31 Septembe 4,

More information

PHYS 705: Classical Mechanics. Central Force Problems II

PHYS 705: Classical Mechanics. Central Force Problems II PHYS 75: Cassica Mechanics Centa Foce Pobems II Obits in Centa Foce Pobem Sppose we e inteested moe in the shape of the obit, (not necessay the time evotion) Then, a sotion fo = () o = () wod be moe sef!

More information

Radial Inflow Experiment:GFD III

Radial Inflow Experiment:GFD III Radial Inflow Expeiment:GFD III John Mashall Febuay 6, 003 Abstact We otate a cylinde about its vetical axis: the cylinde has a cicula dain hole in the cente of its bottom. Wate entes at a constant ate

More information

Physics 111 Lecture 5 Circular Motion

Physics 111 Lecture 5 Circular Motion Physics 111 Lectue 5 Cicula Motion D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Multiple Objects q A block of mass m1 on a ough, hoizontal suface is connected to a ball of mass m by a lightweight

More information

Do not turn over until you are told to do so by the Invigilator.

Do not turn over until you are told to do so by the Invigilator. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Seies UG Examination 2015 16 FLUID DYNAMICS WITH ADVANCED TOPICS MTH-MD59 Time allowed: 3 Hous Attempt QUESTIONS 1 and 2, and THREE othe questions.

More information

1 Fundamental Solutions to the Wave Equation

1 Fundamental Solutions to the Wave Equation 1 Fundamental Solutions to the Wave Equation Physical insight in the sound geneation mechanism can be gained by consideing simple analytical solutions to the wave equation. One example is to conside acoustic

More information

HW Solutions # MIT - Prof. Please study example 12.5 "from the earth to the moon". 2GmA v esc

HW Solutions # MIT - Prof. Please study example 12.5 from the earth to the moon. 2GmA v esc HW Solutions # 11-8.01 MIT - Pof. Kowalski Univesal Gavity. 1) 12.23 Escaping Fom Asteoid Please study example 12.5 "fom the eath to the moon". a) The escape velocity deived in the example (fom enegy consevation)

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

ω = θ θ o = θ θ = s r v = rω

ω = θ θ o = θ θ = s r v = rω Unifom Cicula Motion Unifom cicula motion is the motion of an object taveling at a constant(unifom) speed in a cicula path. Fist we must define the angula displacement and angula velocity The angula displacement

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

Lecture 10. Vertical coordinates General vertical coordinate

Lecture 10. Vertical coordinates General vertical coordinate Lectue 10 Vetical coodinates We have exclusively used height as the vetical coodinate but thee ae altenative vetical coodinates in use in ocean models, most notably the teainfollowing coodinate models

More information

Dynamics of Rotational Motion

Dynamics of Rotational Motion Dynamics of Rotational Motion Toque: the otational analogue of foce Toque = foce x moment am τ = l moment am = pependicula distance though which the foce acts a.k.a. leve am l l l l τ = l = sin φ = tan

More information

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3331 Electromagnetic I Chapter 4. Electrostatic fields. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3331 Electomagnetic I Chapte 4 Electostatic fields Islamic Univesity of Gaza Electical Engineeing Depatment D. Talal Skaik 212 1 Electic Potential The Gavitational Analogy Moving an object upwad against

More information

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM

COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM Honou School of Mathematical and Theoetical Physics Pat C Maste of Science in Mathematical and Theoetical Physics COLLISIONLESS PLASMA PHYSICS TAKE-HOME EXAM HILARY TERM 18 TUESDAY, 13TH MARCH 18, 1noon

More information

Midterm Exam #2, Part A

Midterm Exam #2, Part A Physics 151 Mach 17, 2006 Midtem Exam #2, Pat A Roste No.: Scoe: Exam time limit: 50 minutes. You may use calculatos and both sides of ONE sheet of notes, handwitten only. Closed book; no collaboation.

More information

Balanced Flow. Natural Coordinates

Balanced Flow. Natural Coordinates Balanced Flow The pessue and velocity distibutions in atmospheic systems ae elated by elatively simple, appoximate foce balances. We can gain a qualitative undestanding by consideing steady-state conditions,

More information

A Kolmogoroff-type Scaling for the Fine Structure of Drainage Basins

A Kolmogoroff-type Scaling for the Fine Structure of Drainage Basins Kolmogooff-type Scaling fo the Fine Stcte of Dainage Basins Gay Pake, Uniesity of Minnesota Pete K. Haff and. Bad May, Dke Uniesity Kolmogooff scaling in tblent flows: Enegy Cascade Tblent enegy is podced

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

Astronomy 111, Fall October 2011

Astronomy 111, Fall October 2011 Astonomy 111, Fall 011 4 Octobe 011 Today in Astonomy 111: moe details on enegy tanspot and the tempeatues of the planets Moe about albedo and emissivity Moe about the tempeatue of sunlit, adiation-cooled

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

Physics 506 Winter 2006 Homework Assignment #9 Solutions

Physics 506 Winter 2006 Homework Assignment #9 Solutions Physics 506 Winte 2006 Homewok Assignment #9 Solutions Textbook poblems: Ch. 12: 12.2, 12.9, 12.13, 12.14 12.2 a) Show fom Hamilton s pinciple that Lagangians that diffe only by a total time deivative

More information

Chap 5. Circular Motion: Gravitation

Chap 5. Circular Motion: Gravitation Chap 5. Cicula Motion: Gavitation Sec. 5.1 - Unifom Cicula Motion A body moves in unifom cicula motion, if the magnitude of the velocity vecto is constant and the diection changes at evey point and is

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stella Stuctue and Evolution Theoetical Stella odels Conside each spheically symmetic shell of adius and thickness d. Basic equations of stella stuctue ae: 1 Hydostatic equilibium π dp dp d G π = G =.

More information

Vectors, Vector Calculus, and Coordinate Systems

Vectors, Vector Calculus, and Coordinate Systems Apil 5, 997 A Quick Intoduction to Vectos, Vecto Calculus, and Coodinate Systems David A. Randall Depatment of Atmospheic Science Coloado State Univesity Fot Collins, Coloado 80523. Scalas and vectos Any

More information

Three dimensional flow analysis in Axial Flow Compressors

Three dimensional flow analysis in Axial Flow Compressors 1 Thee dimensional flow analysis in Axial Flow Compessos 2 The ealie assumption on blade flow theoies that the flow inside the axial flow compesso annulus is two dimensional means that adial movement of

More information

Potential Energy and Conservation of Energy

Potential Energy and Conservation of Energy Potential Enegy and Consevation of Enegy Consevative Foces Definition: Consevative Foce If the wok done by a foce in moving an object fom an initial point to a final point is independent of the path (A

More information

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges

F Q E v B MAGNETOSTATICS. Creation of magnetic field B. Effect of B on a moving charge. On moving charges only. Stationary and moving charges MAGNETOSTATICS Ceation of magnetic field. Effect of on a moving chage. Take the second case: F Q v mag On moving chages only F QE v Stationay and moving chages dw F dl Analysis on F mag : mag mag Qv. vdt

More information

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions)

JURONG JUNIOR COLLEGE Physics Department Tutorial: Electric Fields (solutions) JJ 5 H Physics (646) Electic Fields_tutsoln JURONG JUNIOR COLLEGE Physics Depatment Tutoial: Electic Fields (solutions) No Solution LO Electic field stength at a point in an electic field is defined as

More information

Stress, Cauchy s equation and the Navier-Stokes equations

Stress, Cauchy s equation and the Navier-Stokes equations Chapte 3 Stess, Cauchy s equation and the Navie-Stokes equations 3. The concept of taction/stess Conside the volume of fluid shown in the left half of Fig. 3.. The volume of fluid is subjected to distibuted

More information

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving

Easy. P4.2 Since the car is moving with constant speed and in a straight line, the. resultant force on it must be regardless of whether it is moving Chapte 4 Homewok Solutions Easy P4. Since the ca is moving with constant speed and in a staight line, the zeo esultant foce on it must be egadless of whethe it is moving (a) towad the ight o the left.

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II

ESCI 342 Atmospheric Dynamics I Lesson 3 Fundamental Forces II Reading: Matin, Section. ROTATING REFERENCE FRAMES ESCI 34 Atmospheic Dnamics I Lesson 3 Fundamental Foces II A efeence fame in which an object with zeo net foce on it does not acceleate is known as an

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Chapte 0. Gases Chaacteistics of Gases All substances have thee phases: solid, liquid, and gas. Substances that ae liquids o solids unde odinay conditions may also exist as gases. These ae often efeed

More information

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e.,

But for simplicity, we ll define significant as the time it takes a star to lose all memory of its original trajectory, i.e., Stella elaxation Time [Chandasekha 1960, Pinciples of Stella Dynamics, Chap II] [Ostike & Davidson 1968, Ap.J., 151, 679] Do stas eve collide? Ae inteactions between stas (as opposed to the geneal system

More information

(read nabla or del) is defined by, k. (9.7.1*)

(read nabla or del) is defined by, k. (9.7.1*) 9.7 Gadient of a scala field. Diectional deivative Some of the vecto fields in applications can be obtained fom scala fields. This is vey advantageous because scala fields can be handled moe easily. The

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

INTRODUCTION. 2. Vectors in Physics 1

INTRODUCTION. 2. Vectors in Physics 1 INTRODUCTION Vectos ae used in physics to extend the study of motion fom one dimension to two dimensions Vectos ae indispensable when a physical quantity has a diection associated with it As an example,

More information

Hoizontal Cicula Motion 1. A paticle of mass m is tied to a light sting and otated with a speed v along a cicula path of adius. If T is tension in the sting and mg is gavitational foce on the paticle then,

More information

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in Supplementay Figue 1. Cicula paallel lamellae gain size as a function of annealing time at 50 C. Eo bas epesent the σ uncetainty in the measued adii based on image pixilation and analysis uncetainty contibutions

More information

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion

AH Mechanics Checklist (Unit 2) AH Mechanics Checklist (Unit 2) Circular Motion AH Mechanics Checklist (Unit ) AH Mechanics Checklist (Unit ) Cicula Motion No. kill Done 1 Know that cicula motion efes to motion in a cicle of constant adius Know that cicula motion is conveniently descibed

More information

Chapter 13: Gravitation

Chapter 13: Gravitation v m m F G Chapte 13: Gavitation The foce that makes an apple fall is the same foce that holds moon in obit. Newton s law of gavitation: Evey paticle attacts any othe paticle with a gavitation foce given

More information

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Circular-Rotational Motion Mock Exam. Instructions: (92 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Sping, 2017 Cicula-Rotational Motion Mock Exam Name: Answe Key M. Leonad Instuctions: (92 points) Answe the following questions. SHOW ALL OF YOUR WORK. ( ) 1. A stuntman dives a motocycle

More information

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet

Physics C Rotational Motion Name: ANSWER KEY_ AP Review Packet Linea and angula analogs Linea Rotation x position x displacement v velocity a T tangential acceleation Vectos in otational motion Use the ight hand ule to detemine diection of the vecto! Don t foget centipetal

More information

Cylindrical and Spherical Coordinate Systems

Cylindrical and Spherical Coordinate Systems Clindical and Spheical Coodinate Sstems APPENDIX A In Section 1.2, we leaned that the Catesian coodinate sstem is deined b a set o thee mtall othogonal saces, all o which ae planes. The clindical and spheical

More information

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287

Practice. Understanding Concepts. Answers J 2. (a) J (b) 2% m/s. Gravitation and Celestial Mechanics 287 Pactice Undestanding Concepts 1. Detemine the gavitational potential enegy of the Eath Moon system, given that the aveage distance between thei centes is 3.84 10 5 km, and the mass of the Moon is 0.0123

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

Generalized functions and statistical problems of. orbital mechanics

Generalized functions and statistical problems of. orbital mechanics Genealized functions and statistical poblems of obital mechanics Meshcheyakov TSNIIMASH OSKOSMOS 4// 8th US/ussian Space Suveillance Wokshop, Intoduction Thee is discussed a new method fo solution of statistical

More information

Curvature singularity

Curvature singularity Cuvatue singulaity We wish to show that thee is a cuvatue singulaity at 0 of the Schwazschild solution. We cannot use eithe of the invaiantsr o R ab R ab since both the Ricci tenso and the Ricci scala

More information

Chapter 15 Slope Stability

Chapter 15 Slope Stability Page 15 1 Chapte 15 Slope Stability 1. The oil lope faile in the fom of a lide by tanlation i called (a) fall. (b) topple. (c) pead. (d) flow. 2. The facto of afety of a lope i defined a the atio of (a)

More information

Electrostatics (Electric Charges and Field) #2 2010

Electrostatics (Electric Charges and Field) #2 2010 Electic Field: The concept of electic field explains the action at a distance foce between two chaged paticles. Evey chage poduces a field aound it so that any othe chaged paticle expeiences a foce when

More information

Uniform Circular Motion

Uniform Circular Motion Unifom Cicula Motion Intoduction Ealie we defined acceleation as being the change in velocity with time: a = v t Until now we have only talked about changes in the magnitude of the acceleation: the speeding

More information

Review: Electrostatics and Magnetostatics

Review: Electrostatics and Magnetostatics Review: Electostatics and Magnetostatics In the static egime, electomagnetic quantities do not vay as a function of time. We have two main cases: ELECTROSTATICS The electic chages do not change postion

More information

1.2 Differential cross section

1.2 Differential cross section .2. DIFFERENTIAL CROSS SECTION Febuay 9, 205 Lectue VIII.2 Diffeential coss section We found that the solution to the Schodinge equation has the fom e ik x ψ 2π 3/2 fk, k + e ik x and that fk, k = 2 m

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. Of ECE. Notes 20 Dielectrics ECE 3318 Applied Electicity and Magnetism Sping 218 Pof. David R. Jackson Dept. Of ECE Notes 2 Dielectics 1 Dielectics Single H 2 O molecule: H H Wate ε= εε O 2 Dielectics (cont.) H H Wate ε= εε O Vecto

More information

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if Subject: Mathematics-I Question Bank Section A T T. Find the value of fo which the matix A = T T has ank one. T T i. Is the matix A = i is skew-hemitian matix. i. alculate the invese of the matix = 5 7

More information

Bernoulli equation. Frictionless incompressible flow: Equation of motion for a mass element moving along a streamline. m dt

Bernoulli equation. Frictionless incompressible flow: Equation of motion for a mass element moving along a streamline. m dt Benoulli equation Fictionless incompessible flow: Equation of motion fo a mass element moing along a steamline F = ma= d m dt In the diection of a steamline a = d = ds s => as = dt s dt s and pependicula

More information

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed?

c) (6) Assuming the tires do not skid, what coefficient of static friction between tires and pavement is needed? Geneal Physics I Exam 2 - Chs. 4,5,6 - Foces, Cicula Motion, Enegy Oct. 10, 2012 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults with

More information

MAGNETIC FIELD INTRODUCTION

MAGNETIC FIELD INTRODUCTION MAGNETIC FIELD INTRODUCTION It was found when a magnet suspended fom its cente, it tends to line itself up in a noth-south diection (the compass needle). The noth end is called the Noth Pole (N-pole),

More information

Dynamics of the Atmosphere. General circulation of the atmosphere

Dynamics of the Atmosphere. General circulation of the atmosphere 12.810 Dynamics of the Atmosphere General circulation of the atmosphere 1 Spinup of the general circulation in an idealized model Fig. 1 Schneider, General circulation of the atmosphere, 2006 2 Sigma 0.2

More information

b) (5) What average force magnitude was applied by the students working together?

b) (5) What average force magnitude was applied by the students working together? Geneal Physics I Exam 3 - Chs. 7,8,9 - Momentum, Rotation, Equilibium Nov. 3, 2010 Name Rec. Inst. Rec. Time Fo full cedit, make you wok clea to the gade. Show fomulas used, essential steps, and esults

More information

Graphs of Sine and Cosine Functions

Graphs of Sine and Cosine Functions Gaphs of Sine and Cosine Functions In pevious sections, we defined the tigonometic o cicula functions in tems of the movement of a point aound the cicumfeence of a unit cicle, o the angle fomed by the

More information

REVIEW Polar Coordinates and Equations

REVIEW Polar Coordinates and Equations REVIEW 9.1-9.4 Pola Coodinates and Equations You ae familia with plotting with a ectangula coodinate system. We ae going to look at a new coodinate system called the pola coodinate system. The cente of

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G =

Physics 111. Ch 12: Gravity. Newton s Universal Gravity. R - hat. the equation. = Gm 1 m 2. F g 2 1. ˆr 2 1. Gravity G = ics Announcements day, embe 9, 004 Ch 1: Gavity Univesal Law Potential Enegy Keple s Laws Ch 15: Fluids density hydostatic equilibium Pascal s Pinciple This week s lab will be anothe physics wokshop -

More information

PS113 Chapter 5 Dynamics of Uniform Circular Motion

PS113 Chapter 5 Dynamics of Uniform Circular Motion PS113 Chapte 5 Dynamics of Unifom Cicula Motion 1 Unifom cicula motion Unifom cicula motion is the motion of an object taveling at a constant (unifom) speed on a cicula path. The peiod T is the time equied

More information

Math Notes on Kepler s first law 1. r(t) kp(t)

Math Notes on Kepler s first law 1. r(t) kp(t) Math 7 - Notes on Keple s fist law Planetay motion and Keple s Laws We conside the motion of a single planet about the sun; fo simplicity, we assign coodinates in R 3 so that the position of the sun is

More information

Applications of radars: Sensing of clouds and precipitation.

Applications of radars: Sensing of clouds and precipitation. Lectue 1 Applications of adas: Sensing of clouds and pecipitation. Ojectives: 1. aticle ackscatteing and ada equation.. Sensing of pecipitation and clouds with adas (weathe adas, space adas: TMM and CloudSat).

More information

Department of Atmospheric and Oceanic Sciences, University of Wisconsin Madison, Madison, Wisconsin

Department of Atmospheric and Oceanic Sciences, University of Wisconsin Madison, Madison, Wisconsin 2507 Suface Cyclolysis in the Noth Pacific Ocean. Pat III: Composite Local Enegetics of Topospheic-Deep Cyclone Decay Associated with Rapid Suface Cyclolysis JUSTIN G. MCLAY AND JONATHAN E. MARTIN Depatment

More information

PROBLEM SET 5. SOLUTIONS March 16, 2004

PROBLEM SET 5. SOLUTIONS March 16, 2004 Havad-MIT ivision of Health Sciences and Technology HST.54J: Quantitative Physiology: Ogan Tanspot Systems Instuctos: Roge Mak and Jose Venegas MASSACHUSETTS INSTITUTE OF TECHNOLOGY epatments of Electical

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson ECE Dept. Notes 13 ECE 338 Applied Electicity and Magnetism ping 07 Pof. David R. Jackson ECE Dept. Notes 3 Divegence The Physical Concept Find the flux going outwad though a sphee of adius. x ρ v0 z a y ψ = D nˆ d = D ˆ

More information

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points

PHYSICS 1210 Exam 2 University of Wyoming 14 March ( Day!) points PHYSICS 1210 Exam 2 Univesity of Wyoming 14 Mach ( Day!) 2013 150 points This test is open-note and closed-book. Calculatos ae pemitted but computes ae not. No collaboation, consultation, o communication

More information

VECTOR MECHANICS FOR ENGINEERS: STATICS

VECTOR MECHANICS FOR ENGINEERS: STATICS 4 Equilibium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Fedinand P. Bee E. Russell Johnston, J. of Rigid Bodies Lectue Notes: J. Walt Ole Texas Tech Univesity Contents Intoduction Fee-Body Diagam

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In Chaptes 2 and 4 we have studied kinematics, i.e., we descibed the motion of objects using paametes such as the position vecto, velocity, and acceleation without any insights

More information

EN40: Dynamics and Vibrations. Midterm Examination Thursday March

EN40: Dynamics and Vibrations. Midterm Examination Thursday March EN40: Dynamics and Vibations Midtem Examination Thusday Mach 9 2017 School of Engineeing Bown Univesity NAME: Geneal Instuctions No collaboation of any kind is pemitted on this examination. You may bing

More information

Force can be exerted by direct contact between bodies: Contact Force.

Force can be exerted by direct contact between bodies: Contact Force. Chapte 4, Newton s Laws of Motion Chapte IV NEWTON S LAWS OF MOTION Study of Dynamics: cause of motion (foces) and the esistance of objects to motion (mass), also called inetia. The fundamental Pinciples

More information

Chapter 5 Force and Motion

Chapter 5 Force and Motion Chapte 5 Foce and Motion In chaptes 2 and 4 we have studied kinematics i.e. descibed the motion of objects using paametes such as the position vecto, velocity and acceleation without any insights as to

More information

Physics 1114: Unit 5 Hand-out Homework (Answers)

Physics 1114: Unit 5 Hand-out Homework (Answers) Physics 1114: Unit 5 Hand-out Homewok (Answes) Poblem set 1 1. The flywheel on an expeimental bus is otating at 420 RPM (evolutions pe minute). To find (a) the angula velocity in ad/s (adians/second),

More information

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete.

THE NAVIER-STOKES EQUATION: The Queen of Fluid Dynamics. A proof simple, but complete. THE NAIER-TOKE EQUATION: The Queen of Fluid Dnamics. A poof simple, but complete. Leonado Rubino leonubino@ahoo.it eptembe 010 Rev. 00 Fo www.via.og Abstact: in this pape ou will find a simple demonstation

More information

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5

ECE Spring Prof. David R. Jackson ECE Dept. Notes 5 ECE 634 Sping 06 Pof. David R. Jacson ECE Dept. Notes 5 TM x Sface-Wave Soltion Poblem nde consideation: x h ε, µ z A TM x sface wave is popagating in the z diection (no y vaiation). TM x Sface-Wave Soltion

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

CHAPTER 5: Circular Motion; Gravitation

CHAPTER 5: Circular Motion; Gravitation CHAPER 5: Cicula Motion; Gavitation Solution Guide to WebAssign Pobles 5.1 [1] (a) Find the centipetal acceleation fo Eq. 5-1.. a R v ( 1.5 s) 1.10 1.4 s (b) he net hoizontal foce is causing the centipetal

More information

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website:

Rotational Motion. Lecture 6. Chapter 4. Physics I. Course website: Lectue 6 Chapte 4 Physics I Rotational Motion Couse website: http://faculty.uml.edu/andiy_danylov/teaching/physicsi Today we ae going to discuss: Chapte 4: Unifom Cicula Motion: Section 4.4 Nonunifom Cicula

More information

Physics 101 Lecture 6 Circular Motion

Physics 101 Lecture 6 Circular Motion Physics 101 Lectue 6 Cicula Motion Assist. Pof. D. Ali ÖVGÜN EMU Physics Depatment www.aovgun.com Equilibium, Example 1 q What is the smallest value of the foce F such that the.0-kg block will not slide

More information

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7

Niraj Sir. circular motion;; SOLUTIONS TO CONCEPTS CHAPTER 7 SOLUIONS O CONCEPS CHAPE 7 cicula otion;;. Distance between Eath & Moon.85 0 5 k.85 0 8 7. days 4 600 (7.) sec.6 0 6 sec.4.85 0 v 6.6 0 8 05.4/sec v (05.4) a 0.007/sec.7 0 /sec 8.85 0. Diaete of eath 800k

More information

Final Review of AerE 243 Class

Final Review of AerE 243 Class Final Review of AeE 4 Class Content of Aeodynamics I I Chapte : Review of Multivaiable Calculus Chapte : Review of Vectos Chapte : Review of Fluid Mechanics Chapte 4: Consevation Equations Chapte 5: Simplifications

More information