Fast Solvers for Unsteady Incompressible Flow

Size: px
Start display at page:

Download "Fast Solvers for Unsteady Incompressible Flow"

Transcription

1 ICFD25 Workshop p. 1/39 Fast Solvers for Unsteady Incompressible Flow David Silvester University of Manchester

2 ICFD25 Workshop p. 2/39 Outline Semi-Discrete Navier-Stokes Equations: DAE theory 25 year overview: Decoupled Solution Methods Today: A black-box "Smart Integrator (SI)

3 ICFD25 Workshop p. 3/39 Joint work with Phil Gresho (ex-llnl) David Griffiths (University of Dundee) David Kay (Oxford University Computing Laboratory) For further details, see Philip Gresho & David Griffiths & David Silvester Adaptive time-stepping for incompressible flow; part I: scalar advection-diffusion, SIAM J. Scientific Computing, 30: , David Kay & Philip Gresho & David Griffiths & David Silvester Adaptive time-stepping for incompressible flow; part II: Navier-Stokes equations. MIMS Eprint

4 Semi-Discrete Navier-Stokes Equations: DAE theory ICFD25 Workshop p. 4/39

5 ICFD25 Workshop p. 5/39 Navier-Stokes Equations u t + u u ν 2 u + p = 0 u = 0 in W Ω (0,T) in W Boundary and Initial conditions u = g D on Γ D [0,T]; ν u n p n = 0 u( x, 0) = u 0 ( x) in Ω. on Γ N [0,T];

6 ICFD25 Workshop p. 6/39 Spatial Discretization I In R 2 the method-of-lines discretized system is a semi-explicit system of DAEs: M v 0 0 F v 0 Bx T 0 M v F v B T y B x B y 0 α x t α y t α p t α x α y α p = f x f y f p The DAEs have index equal to two The discrete problem is nonlinear F v := νa v + N v (α) The vector f is constructed from the boundary data g D. To reduce the index we differentiate the constraint...

7 ICFD25 Workshop p. 7/39 Spatial Discretization II... to give an index one DAE system: α x t Mv 1 F v 0 Mv 1 α y t + 0 Mv 1 F v Mv 1 0 B x Mv 1 F v B y Mv 1 F v A p Bx T By T α x α y α p = f x f y f p The matrix A p := B x Mv 1 Bx T + B y Mv 1 By T is the (consistent) Pressure Poisson matrix. Explicit approximation in time gives a decoupled formulation. Diagonally implicit approximation in time gives a segregated (SIMPLE-like) formulation. Implicit approximation in time does not look attractive!

8 ICFD25 Workshop p. 8/39 Semi-Discrete Navier-Stokes Equations: DAE theory 25 year overview: Decoupled Solution Methods

9 Semi-Implicit, Fractional-Step, Pressure Projection I A.J. Chorin A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2:12 26, J. Kim & P. Moin Application of a fractional step method to incompressible Navier Stokes equations, J. Comput. Phys., 59: , J. Van Kan A second order accurate pressure correction scheme for viscous incompressible flow, SIAM J. Sci. Stat. Comput., 7(3): , J.B. Bell, P. Colella & H.M. Glaz A second order projection method for the incompressible Navier Stokes equations, J. Comput. Phys., 85:(2) , ICFD25 Workshop p. 9/39

10 ICFD25 Workshop p. 10/39 Semi-Implicit, Fractional-Step, Pressure Projection II P.M. Gresho, S.T. Chan, R.L. Lee & C.D. Upson A modified finite element method for solving the time dependent, incompressible Navier Stokes equations. Part 1: Theory, Int. J. Numer. Meth. Fluids, 4: , P.M. Gresho & S.T. Chan On the theory of semi implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. Part 2: Implementation, Int. J. Numer. Meth. Fluids, 11(5): , J.B. Perot An analysis of the fractional step method, J. Comput. Phys., 108:51 58, 1993.

11 ICFD25 Workshop p. 11/39 Semi-Implicit, Fractional-Step, Pressure Projection III J. L. Guermond Sur l approximation des équations de Navier Stokes instationnaires par une méthode de projection, C.R. Acad. Sci. Paris, 319: , Serie I. R. Rannacher The Navier Stokes Equations II: Theory and Numerical Methods, Springer Verlag, Berlin, Germany, Chap.On Chorin s projection method for the incompressible Navier Stokes equations; pp ; Lecture Notes in Mathematics, Vol

12 ICFD25 Workshop p. 12/39 Semi-Implicit, Fractional-Step, Pressure Projection IV W. E & J. G. Liu Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., 32(4): , W. E & J. G. Liu Vorticity boundary conditions and related issues for finite difference schemes, J. Comput. Phys., 124: , 1996.

13 ICFD25 Workshop p. 13/39 Semi-Implicit, Fractional-Step, Pressure Projection V J. Shen On error estimates of some higher order projection and penalty projection methods for Navier Stokes equations, Numer. Math., 62:49 73, J. Shen On error estimates of the projection methods for the Navier Stokes equations: Second order schemes, Math. Comput., 65, 215: , A. Prohl Analysis of Chorin s projection method for solving the incompressible Navier Stokes equations, Universität Heidelberg, Institut für Angewandte Mathematik, INF 294, D Heidelberg, Germany, 1996.

14 ICFD25 Workshop p. 14/39 Transport Diffusion, Lagrange-Galerkin, Backward Method of Characteristics I P. Hansbo The characteristic streamline diffusion method for the time dependent incompressible Navier Stokes equations, Comput. Meth. Appl. Mech. Eng., 99: , O. Pironneau On the transport diffusion algorithm and its application to the Navier Stokes equations, Numer. Math., 38: , K.W. Morton, A. Priestley & E. Süli Stability of the Lagrange Galerkin method with non exact integration, Math. Model. Numer. Anal., 22:(4) , 1988.

15 ICFD25 Workshop p. 15/39 Transport Diffusion, Lagrange-Galerkin, Backward Method of Characteristics II A. Priestley Exact projections and the Lagrange Galerkin method: A realistic alternative to quadrature, J. Comput. Phys., 112: , 1994 R. Bermejo Analysis of an algorithm for the Galerkin characteristic method, Numer. Math., 60: , 1991.

16 ICFD25 Workshop p. 16/39 Fractional Step, le Θ scheme I M.O. Bristeau, R. Glowinski, B. Mantel, J. Periaux & P. Perrier, Numerical methods for incompressible and compressible Navier Stokes problems, Finite Elements in Fluids 6 (R.H. Gallagher, G. Carey, J.T. Oden & O.C. Zienkiewicz, eds), Chichester: Wiley, pp E.J. Dean & R. Glowinski On some finite element methods for the numerical simulation of incompressible viscous flow, Incompressible Computational Fluid Dynamics., (M.D. Gunzburger & R.A. Nicolaides, eds), Cambridge University Press, pp

17 ICFD25 Workshop p. 17/39 Fractional Step, le Θ scheme II R. Rannacher Applications of mathematics in industry and technology, B.G. Teubner, Stuttgart, Germany, Chap. Numerical analysis of nonstationary fluid flow (a survey); pp ; (V.C. Boffi & H. Neunzert, eds). R. Rannacher Navier Stokes equations: theory and numerical methods, Springer Verlag, Berlin, Germany, Chap. On the numerical analysis of the non stationary Navier Stokes equations; pp ; (J. Heywood et al., eds).

18 ICFD25 Workshop p. 18/39 Fractional Step, le Θ scheme III S. Turek A comparative study of some time stepping techniques for the incompressible Navier Stokes equations: From fully implicit nonlinear schemes to semi implicit projection methods, Int. J. Numer. Meth. Fluids, 22(10): , A. Smith & D.J. Silvester Implicit algorithms and their linearization for the transient incompressible Navier Stokes equations, IMA J. Numer. Anal. 17: , 1997.

19 ICFD25 Workshop p. 19/39 Semi-Discrete Navier-Stokes Equations: DAE theory Decoupled Solution Methods Gresho s black-box "Smart Integrator

20 ICFD25 Workshop p. 20/39 Trapezoidal Rule (TR) time discretization We subdivide [0,T] into time levels {t i } N i=1. Given ( un,p n ) at time level t n, k n+1 := t n+1 t n, compute ( u n+1,p n+1 ) via 2 k n+1 u n+1 + w n+1/2 u n+1 ν 2 u n+1 + p n+1 = f n+1, with linearization u n+1 = 0 u n+1 = g n+1 D in Ω on Γ D ν u n+1 n p n+1 n = 0 on Γ N, n+1 f = 2 k n+1 u n + u n t + ( un u n w n+1/2 u n ) w n+1/2 = (1 + k n+1 k n ) u n k n+1 k n u n 1

21 ICFD25 Workshop p. 21/39 Adaptive Time Stepping AB2 TR Consider the simple ODE u = f(u) Manipulating the truncation error terms for TR and AB2 gives the estimate T n = u n+1 u n+1 3(1 + k n k n+1 ) Given some user-prescribed error tolerance tol, the new time step is selected to be the biggest possible such that T n+1 tol u max. This criterion leads to k n+2 := k n+1 ( tol umax T n ) 1/3

22 ICFD25 Workshop p. 22/39 Stabilized AB2 TR To address the instability issues: We rewrite the AB2 TR algorithm to compute updates v n and w n scaled by the time-step: u n+1 u n = 1 2 k n+1v n ; u n+1 u n = k n+1 w n. We perform time-step averaging every n steps: u n := 1 2 (u n+u n 1 ); u n+1 := u n k n+1v n ; u n+1 := 1 2 v n. Contrast this with the standard acceleration obtained by inverting the TR formula: u n+1 = 2 k n+1 (u n+1 u n ) u n = v n u n

23 ICFD25 Workshop p. 23/39 Stabilized AB2 TR t 10 2 t t t Advection-Diffusion of step profile on Shishkin grid. tol = 10 3 tol = 10 4

24 ICFD25 Workshop p. 24/39 Smart Integrator (SI) definition Optimal time-stepping: time-steps automatically chosen to follow the physics. Black-box implementation: few parameters that have to be estimated a priori. Solver efficiency: the linear solver convergence rate is bounded independently of the discrete problem parameters.

25 ICFD25 Workshop p. 25/39 Saddle-point system The Oseen system (*) is: Fv n+1 0 Bx T B T y 0 Fv n+1 B x B y 0 α x,n+1 α y,n+1 α p,n+1 = f x,n+1 f y,n+1 f p,n+1 F n+1 v := 2 k n+1 M v + νa v + N v ( w n+1/2 h ) The timestep k n+1 is computed adaptively The vector f is constructed from the boundary data, the computed velocity un h at the previous time g n+1 D level and the acceleration un h t The system can be efficiently solved using appropriately preconditioned GMRES...

26 ICFD25 Workshop p. 26/39 Preconditioned system ( F B 0 B T ) P 1 P ( α u α p ) = ( ) f u f p A perfect preconditioner is given by ( ) ( ) F B T F 1 F 1 B T S 1 B 0 } 0 S 1 {{ } P 1 = ( ) I 0 BF 1 I with F = 2 k n+1 M + νa + N and S = BF 1 B T.

27 ICFD25 Workshop p. 27/39 For an efficient preconditioner we need to construct a sparse approximation to the exact Schur complement S 1 = (BF 1 B T ) 1 See Chapter 8 of Howard Elman & David Silvester & Andrew Wathen Finite Elements and Fast Iterative Solvers: with applications in incompressible fluid dynamics Oxford University Press, Two possible constructions...

28 ICFD25 Workshop p. 28/39 Schur complement approximation I Introducing the diagonal of the velocity mass matrix M M ij = ( φ i, φ j ), gives the least-squares commutator preconditioner : (BF 1 B T ) 1 (BM 1 B T ) 1 (BM }{{} 1 amg FM 1 B T )(BM 1 B T ) 1 } {{ } amg

29 ICFD25 Workshop p. 29/39 Schur complement approximation II Introducing associated pressure matrices M p ( ψ i, ψ j ), A p ( ψ i, ψ j ), N p ( w h ψ i,ψ j ), F p = 2 k n+1 M p + νa p + N p, mass diffusion convection convection-diffusion gives the pressure convection-diffusion preconditioner : (BF 1 B T ) 1 Q 1 F p A 1 p }{{} amg

30 ICFD25 Workshop p. 30/39 Adaptive Time-Stepping Algorithm I The following parameters must be specified: time accuracy tolerance tol (10 4 ) GMRES tolerance itol (10 6 ) GMRES iteration limit maxit (50) Starting from rest, u 0 = 0, and given a steady state boundary condition u( x,t) = g D, we model the impulse with a time-dependent boundary condition: u( x,t) = g D (1 e 5t ) on Γ D [0,T]. We specify the frequency of averaging, typically n = 10. We also choose a very small initial timestep, typically, k 1 = 10 8.

31 ICFD25 Workshop p. 31/39 Adaptive Time-Stepping Algorithm II Setup the Oseen System ( ) and compute [α x,n+1, α y,n+1 ] using GMRES(maxit, itol). Compute the LTE estimate e v,n+1 If e v,n+1 > (1/0.7) 3 tol, we reject the current time step, and repeat the old time step with k n+1 = k n+1 ( tol e v,n+1 )1/3. Otherwise, accept the step and continue with n = n + 1 and k n+2 based on the LTE estimate and the accuracy tolerance tol.

32 ICFD25 Workshop p. 32/39 Example Flow Problem I (ν = 1/1000)

33 Time step evolution ICFD25 Workshop p. 33/39

34 Linear solver performance ICFD25 Workshop p. 34/39

35 Example Flow Problem II (ν = 1/100) ICFD25 Workshop p. 35/39

36 Lift Coefficient ICFD25 Workshop p. 36/39

37 Time step evolution ICFD25 Workshop p. 37/39

38 Linear solver performance ICFD25 Workshop p. 38/39

39 ICFD25 Workshop p. 39/39 What have we achieved? Black-box implementation: few parameters that have to be estimated a priori. Optimal complexity: essentially O(n) flops per iteration, where n is dimension of the discrete system. Optimal convergence: rate is bounded independently of h. Given an appropriate time accuracy tolerance convergence is also robust with respect to ν

A Review of Solution Techniques for Unsteady Incompressible Flow

A Review of Solution Techniques for Unsteady Incompressible Flow Zeist 2009 p. 1/57 A Review of Solution Techniques for Unsteady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/57 PDEs Review : 1966 1999 Update : 2000

More information

A Review of Preconditioning Techniques for Steady Incompressible Flow

A Review of Preconditioning Techniques for Steady Incompressible Flow Zeist 2009 p. 1/43 A Review of Preconditioning Techniques for Steady Incompressible Flow David Silvester School of Mathematics University of Manchester Zeist 2009 p. 2/43 PDEs Review : 1984 2005 Update

More information

Fast solvers for steady incompressible flow

Fast solvers for steady incompressible flow ICFD 25 p.1/21 Fast solvers for steady incompressible flow Andy Wathen Oxford University wathen@comlab.ox.ac.uk http://web.comlab.ox.ac.uk/~wathen/ Joint work with: Howard Elman (University of Maryland,

More information

(1:1) 1. The gauge formulation of the Navier-Stokes equation We start with the incompressible Navier-Stokes equation 8 >< >: u t +(u r)u + rp = 1 Re 4

(1:1) 1. The gauge formulation of the Navier-Stokes equation We start with the incompressible Navier-Stokes equation 8 >< >: u t +(u r)u + rp = 1 Re 4 Gauge Finite Element Method for Incompressible Flows Weinan E 1 Courant Institute of Mathematical Sciences New York, NY 10012 Jian-Guo Liu 2 Temple University Philadelphia, PA 19122 Abstract: We present

More information

Theoretical advances. To illustrate our approach, consider the scalar ODE model,

Theoretical advances. To illustrate our approach, consider the scalar ODE model, Final Report GR/R69/ : Analysis of Numerical Methods for Incompressible Fluid Dynamics Personnel supported: Professor Philip Gresho (nominated Visiting Fellow; visited UK: 7/6/ 5//). Dr David Kay (visited

More information

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations

PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations 2013 SIAM Conference On Computational Science and Engineering Boston, 27 th February 2013 PALADINS: Scalable Time-Adaptive Algebraic Splitting and Preconditioners for the Navier-Stokes Equations U. Villa,

More information

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Jie Shen Department of Mathematics, Penn State University University Par, PA 1680, USA Abstract. We present in this

More information

Uncertainty Quantification: Does it need efficient linear algebra?

Uncertainty Quantification: Does it need efficient linear algebra? USA trip October 2014 p. 1/62 Uncertainty Quantification: Does it need efficient linear algebra? David Silvester University of Manchester, UK Catherine Powell University of Manchester,UK Yes. USA trip

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Gauge finite element method for incompressible flows

Gauge finite element method for incompressible flows INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2000; 34: 701 710 Gauge finite element method for incompressible flows Weinan E a, *,1 and Jian-Guo Liu b,2 a Courant Institute

More information

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing

FEniCS Course. Lecture 6: Incompressible Navier Stokes. Contributors Anders Logg André Massing FEniCS Course Lecture 6: Incompressible Navier Stokes Contributors Anders Logg André Massing 1 / 11 The incompressible Navier Stokes equations u + u u ν u + p = f in Ω (0, T ] u = 0 in Ω (0, T ] u = g

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation

Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation Unsteady Incompressible Flow Simulation Using Galerkin Finite Elements with Spatial/Temporal Adaptation Mohamed S. Ebeida Carnegie Mellon University, Pittsburgh, PA 15213 Roger L. Davis and Roland W. Freund

More information

Projection Method with Spatial Discretizations

Projection Method with Spatial Discretizations Projection Method with Spatial Discretizations Weinan E School of Mathematics Institute for Advanced Study Princeton, NJ 08540 and Jian-Guo Liu Courant Institute of Mathematical Sciences New York, NY 10012

More information

Fast Iterative Solution of Saddle Point Problems

Fast Iterative Solution of Saddle Point Problems Michele Benzi Department of Mathematics and Computer Science Emory University Atlanta, GA Acknowledgments NSF (Computational Mathematics) Maxim Olshanskii (Mech-Math, Moscow State U.) Zhen Wang (PhD student,

More information

PROJECTION METHOD III: SPATIAL DISCRETIZATION ON THE STAGGERED GRID

PROJECTION METHOD III: SPATIAL DISCRETIZATION ON THE STAGGERED GRID MATHEMATICS OF COMPUTATION Volume 71, Number 237, Pages 27 47 S 0025-5718(01)01313-8 Article electronically published on May 14, 2001 PROJECTION METHOD III: SPATIAL DISCRETIZATION ON THE STAGGERED GRID

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

Finite Element Decompositions for Stable Time Integration of Flow Equations

Finite Element Decompositions for Stable Time Integration of Flow Equations MAX PLANCK INSTITUT August 13, 2015 Finite Element Decompositions for Stable Time Integration of Flow Equations Jan Heiland, Robert Altmann (TU Berlin) ICIAM 2015 Beijing DYNAMIK KOMPLEXER TECHNISCHER

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Preconditioning for Nonsymmetry and Time-dependence

Preconditioning for Nonsymmetry and Time-dependence Preconditioning for Nonsymmetry and Time-dependence Andy Wathen Oxford University, UK joint work with Jen Pestana and Elle McDonald Jeju, Korea, 2015 p.1/24 Iterative methods For self-adjoint problems/symmetric

More information

A DISCRETE PROJECTION METHOD FOR INCOMPRESSIBLE VISCOUS FLOW WITH CORIOLIS FORCE

A DISCRETE PROJECTION METHOD FOR INCOMPRESSIBLE VISCOUS FLOW WITH CORIOLIS FORCE A DISCRETE PROJECTION METHOD FOR INCOMPRESSIBLE VISCOUS FLOW WITH CORIOLIS FORCE ANDRIY SOKOLOV, MAXIM A. OLSHANSKII, AND STEFAN TUREK Abstract. The paper presents a new discrete projection method (DPM)

More information

SECOND-ORDER FULLY DISCRETIZED PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

SECOND-ORDER FULLY DISCRETIZED PROJECTION METHOD FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Tenth MSU Conference on Differential Equations and Computational Simulations. Electronic Journal of Differential Equations, Conference 3 (06), pp. 9 0. ISSN: 07-669. URL: http://ejde.math.txstate.edu or

More information

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations Fourteenth International Conference on Domain Decomposition Methods Editors: Ismael Herrera, David E. Keyes, Olof B. Widlund, Robert Yates c 23 DDM.org 2. A Dual-Primal FEI Method for solving Stokes/Navier-Stokes

More information

New constructions of domain decomposition methods for systems of PDEs

New constructions of domain decomposition methods for systems of PDEs New constructions of domain decomposition methods for systems of PDEs Nouvelles constructions de méthodes de décomposition de domaine pour des systèmes d équations aux dérivées partielles V. Dolean?? F.

More information

Mathematics and Computer Science

Mathematics and Computer Science Technical Report TR-2007-002 Block preconditioning for saddle point systems with indefinite (1,1) block by Michele Benzi, Jia Liu Mathematics and Computer Science EMORY UNIVERSITY International Journal

More information

Runge-Kutta-Chebyshev Projection Method

Runge-Kutta-Chebyshev Projection Method Runge-Kutta-Chebyshev Projection Method Zheming Zheng Linda Petzold Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA June 8, 2006 This work was

More information

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations S. Hussain, F. Schieweck, S. Turek Abstract In this note, we extend our recent work for

More information

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS STUDIA UNIV. BABEŞ BOLYAI, MATHEMATICA, Volume LIII, Number 1, March 2008 HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS FOR THREE-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IOAN TELEAGA AND JENS

More information

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods

1 Introduction. J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods J.-L. GUERMOND and L. QUARTAPELLE 1 On incremental projection methods 1 Introduction Achieving high order time-accuracy in the approximation of the incompressible Navier Stokes equations by means of fractional-step

More information

Glowinski Pironneau method for the 3D ω-ψ equations

Glowinski Pironneau method for the 3D ω-ψ equations 280 GUERMOND AND QUARTAPELLE Glowinski Pironneau method for the 3D ω-ψ equations Jean-Luc Guermond and Luigi Quartapelle 1 LIMSI CNRS, Orsay, France, and Dipartimento di Fisica, Politecnico di Milano,

More information

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems

Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems Finding Rightmost Eigenvalues of Large, Sparse, Nonsymmetric Parameterized Eigenvalue Problems AMSC 663-664 Final Report Minghao Wu AMSC Program mwu@math.umd.edu Dr. Howard Elman Department of Computer

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. im Forschungsverbund Berlin e.v. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. im Forschungsverbund Berlin e.v. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik im Forschungsverbund Berlin e.v. Preprint ISSN 946 8633 Computational comparison between the Taylor Hood and the conforming Crouzeix Raviart element

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

An advanced ILU preconditioner for the incompressible Navier-Stokes equations

An advanced ILU preconditioner for the incompressible Navier-Stokes equations An advanced ILU preconditioner for the incompressible Navier-Stokes equations M. ur Rehman C. Vuik A. Segal Delft Institute of Applied Mathematics, TU delft The Netherlands Computational Methods with Applications,

More information

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems Efficient Solvers for Stochastic Finite Element Saddle Point Problems Catherine E. Powell c.powell@manchester.ac.uk School of Mathematics University of Manchester, UK Efficient Solvers for Stochastic Finite

More information

A posteriori error estimates applied to flow in a channel with corners

A posteriori error estimates applied to flow in a channel with corners Mathematics and Computers in Simulation 61 (2003) 375 383 A posteriori error estimates applied to flow in a channel with corners Pavel Burda a,, Jaroslav Novotný b, Bedřich Sousedík a a Department of Mathematics,

More information

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1

On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 On Pressure Stabilization Method and Projection Method for Unsteady Navier-Stokes Equations 1 Jie Shen Department of Mathematics, Penn State University University Park, PA 1682 Abstract. We present some

More information

ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS FOR THE NAVIER-STOKES EQUATIONS : FIRST-ORDER SCHEMES

ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS FOR THE NAVIER-STOKES EQUATIONS : FIRST-ORDER SCHEMES MATHEMATICS OF COMPUTATION Volume, Number, Pages S 5-578XX- ERROR ESTIMATES FOR SEMI-DISCRETE GAUGE METHODS FOR THE NAVIER-STOKES EQUATIONS : FIRST-ORDER SCHEMES RICARDO H. NOCHETTO AND JAE-HONG PYO Abstract.

More information

DELFT UNIVERSITY OF TECHNOLOGY

DELFT UNIVERSITY OF TECHNOLOGY DELFT UNIVERSITY OF TECHNOLOGY REPORT 13-10 Comparison of some preconditioners for the incompressible Navier-Stokes equations X. He and C. Vuik ISSN 1389-6520 Reports of the Delft Institute of Applied

More information

Construction of a New Domain Decomposition Method for the Stokes Equations

Construction of a New Domain Decomposition Method for the Stokes Equations Construction of a New Domain Decomposition Method for the Stokes Equations Frédéric Nataf 1 and Gerd Rapin 2 1 CMAP, CNRS; UMR7641, Ecole Polytechnique, 91128 Palaiseau Cedex, France 2 Math. Dep., NAM,

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6. Mathematik Preprint Nr. 228 A Variational Multiscale Method for Turbulent Flow Simulation with Adaptive Large Scale

More information

Efficient Solvers for the Navier Stokes Equations in Rotation Form

Efficient Solvers for the Navier Stokes Equations in Rotation Form Efficient Solvers for the Navier Stokes Equations in Rotation Form Computer Research Institute Seminar Purdue University March 4, 2005 Michele Benzi Emory University Atlanta, GA Thanks to: NSF (MPS/Computational

More information

Numerical Methods for Incompressible Viscous Flow

Numerical Methods for Incompressible Viscous Flow Numerical Methods for Incompressible Viscous Flow Hans Petter Langtangen Kent-Andre Mardal Dept. of Scientific Computing, Simula Research Laboratory and Dept. of Informatics, University of Oslo Ragnar

More information

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS BIT Numerical Mathematics 43: 961 974, 2003. 2003 Kluwer Academic Publishers. Printed in the Netherlands. 961 PRECONDITIONING TECHNIQUES FOR NEWTON S METHOD FOR THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

More information

Space-time XFEM for two-phase mass transport

Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Space-time XFEM for two-phase mass transport Christoph Lehrenfeld joint work with Arnold Reusken EFEF, Prague, June 5-6th 2015 Christoph Lehrenfeld EFEF, Prague,

More information

Preconditioning the incompressible Navier-Stokes equations with variable viscosity

Preconditioning the incompressible Navier-Stokes equations with variable viscosity Preconditioning the incompressible Navier-Stokes equations with variable viscosity Xin He and Maya Neytcheva Abstract This paper deals with preconditioners for the iterative solution of the discrete Oseen

More information

c 2006 Society for Industrial and Applied Mathematics

c 2006 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 27, No. 5, pp. 1651 1668 c 2006 Society for Industrial and Applied Mathematics BLOCK PRECONDITIONERS BASED ON APPROXIMATE COMMUTATORS HOWARD ELMAN, VICTORIA E. HOWLE, JOHN SHADID,

More information

Vector and scalar penalty-projection methods

Vector and scalar penalty-projection methods Numerical Flow Models for Controlled Fusion - April 2007 Vector and scalar penalty-projection methods for incompressible and variable density flows Philippe Angot Université de Provence, LATP - Marseille

More information

JURJEN DUINTJER TEBBENS

JURJEN DUINTJER TEBBENS Proceedings of ALGORITMY 005 pp. 40 49 GMRES ACCELERATION ANALYSIS FOR A CONVECTION DIFFUSION MODEL PROBLEM JURJEN DUINTJER TEBBENS Abstract. When we apply the GMRES method [4] to linear systems arising

More information

arxiv: v1 [physics.flu-dyn] 23 Apr 2016

arxiv: v1 [physics.flu-dyn] 23 Apr 2016 A numerical study of the transition to oscillatory flow in 3D lid-driven cubic cavity flows Shang-Huan Chiu, Tsorng-Whay Pan, Jiwen He, Aixia Guo, and Roland Glowinski Department of Mathematics, University

More information

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations

A Least-Squares Finite Element Approximation for the Compressible Stokes Equations A Least-Squares Finite Element Approximation for the Compressible Stokes Equations Zhiqiang Cai, 1 Xiu Ye 1 Department of Mathematics, Purdue University, 1395 Mathematical Science Building, West Lafayette,

More information

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS ON THE ROLE OF COUTATOR ARGUENTS IN THE DEVELOPENT OF PARAETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLES JOHN W. PEARSON Abstract. The development of preconditioners for PDE-constrained optimization

More information

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N)

A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N) wwwijmercom Vol2, Issue1, Jan-Feb 2012 pp-464-472 ISSN: 2249-6645 A mixed finite element approximation of the Stokes equations with the boundary condition of type (D+N) Jaouad El-Mekkaoui 1, Abdeslam Elakkad

More information

CONVERGENCE OF GAUGE METHOD FOR INCOMPRESSIBLE FLOW CHENG WANG AND JIAN-GUO LIU

CONVERGENCE OF GAUGE METHOD FOR INCOMPRESSIBLE FLOW CHENG WANG AND JIAN-GUO LIU MATHEMATICS OF COMPUTATION Volume 69, Number 232, Pages 135{1407 S 0025-571(00)0124-5 Article electronically published on March 24, 2000 CONVERGENCE OF GAUGE METHOD FOR INCOMPRESSIBLE FLOW CHENG WANG AND

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2002) 90: 665 688 Digital Object Identifier (DOI) 10.1007/s002110100300 Numerische Mathematik Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes

More information

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS

FREE BOUNDARY PROBLEMS IN FLUID MECHANICS FREE BOUNDARY PROBLEMS IN FLUID MECHANICS ANA MARIA SOANE AND ROUBEN ROSTAMIAN We consider a class of free boundary problems governed by the incompressible Navier-Stokes equations. Our objective is to

More information

Open boundary conditions in numerical simulations of unsteady incompressible flow

Open boundary conditions in numerical simulations of unsteady incompressible flow Open boundary conditions in numerical simulations of unsteady incompressible flow M. P. Kirkpatrick S. W. Armfield Abstract In numerical simulations of unsteady incompressible flow, mass conservation can

More information

Multigrid and Iterative Strategies for Optimal Control Problems

Multigrid and Iterative Strategies for Optimal Control Problems Multigrid and Iterative Strategies for Optimal Control Problems John Pearson 1, Stefan Takacs 1 1 Mathematical Institute, 24 29 St. Giles, Oxford, OX1 3LB e-mail: john.pearson@worc.ox.ac.uk, takacs@maths.ox.ac.uk

More information

Termination criteria for inexact fixed point methods

Termination criteria for inexact fixed point methods Termination criteria for inexact fixed point methods Philipp Birken 1 October 1, 2013 1 Institute of Mathematics, University of Kassel, Heinrich-Plett-Str. 40, D-34132 Kassel, Germany Department of Mathematics/Computer

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Vector Penalty-Projection Methods for the Solution of Unsteady Incompressible Flows

Vector Penalty-Projection Methods for the Solution of Unsteady Incompressible Flows Author manuscript, published in "5th International Symposium on Finite Volumes for Complex Applications, Aussois : France 2008)" Vector Penalty-Projection Methods for the Solution of Unsteady Incompressible

More information

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller

Algebraic flux correction and its application to convection-dominated flow. Matthias Möller Algebraic flux correction and its application to convection-dominated flow Matthias Möller matthias.moeller@math.uni-dortmund.de Institute of Applied Mathematics (LS III) University of Dortmund, Germany

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations

Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations Least-Squares Spectral Collocation with the Overlapping Schwarz Method for the Incompressible Navier Stokes Equations by Wilhelm Heinrichs Universität Duisburg Essen, Ingenieurmathematik Universitätsstr.

More information

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1)

1. Introduction. Consider the Navier Stokes equations ηu t ν 2 u + (u grad) u + grad p = f div u = 0 (1.1) University of Maryland Department of Computer Science TR-C4930 University of Maryland Institute for Advanced Computer Studies TR-009-0 BOUNDARY CONDITIONS IN APPROXIMATE COMMUTATOR PRECONDITIONERS FOR

More information

FEM solution of the ψ-ω equations with explicit viscous diffusion 1

FEM solution of the ψ-ω equations with explicit viscous diffusion 1 FEM solution of te ψ-ω equations wit explicit viscous diffusion J.-L. Guermond and L. Quartapelle 3 Abstract. Tis paper describes a variational formulation for solving te D time-dependent incompressible

More information

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations

Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations MATEMATIKA, 2011, Volume 27, Number 2, 199 208 c Department of Mathematical Sciences, UTM Quarter-Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-differential Equations 1 E. Aruchunan

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

1. Introduction. The flow of an incompressible fluid is governed by the incompressible Navier Stokes equations. u(0, x) =u 0 in Ω,

1. Introduction. The flow of an incompressible fluid is governed by the incompressible Navier Stokes equations. u(0, x) =u 0 in Ω, SIAM J. SCI. COMPUT. Vol. 6, No. 5, pp. 1485 153 c 5 Society for Industrial and Applied Mathematics A FINITE ELEMENT VARIATIONAL MULTISCALE METHOD FOR THE NAVIER STOKES EQUATIONS VOLKER JOHN AND SONGUL

More information

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000

UNIVERSITY OF MARYLAND PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS CS-TR #4164 / UMIACS TR # JULY 2000 UNIVERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES DEPARTMENT OF COMPUTER SCIENCE PERFORMANCE AND ANALYSIS OF SADDLE POINT PRECONDITIONERS FOR THE DISCRETE STEADY-STATE NAVIER-STOKES EQUATIONS

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations

A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations A High-Order Discontinuous Galerkin Method for the Unsteady Incompressible Navier-Stokes Equations Khosro Shahbazi 1, Paul F. Fischer 2 and C. Ross Ethier 1 1 University of Toronto and 2 Argonne National

More information

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations

A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations A Two-Grid Stabilization Method for Solving the Steady-State Navier-Stokes Equations Songul Kaya and Béatrice Rivière Abstract We formulate a subgrid eddy viscosity method for solving the steady-state

More information

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM

NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM Proceedings of ALGORITMY 212 pp. 44 415 NUMERICAL STUDIES OF VARIATIONAL-TYPE TIME-DISCRETIZATION TECHNIQUES FOR TRANSIENT OSEEN PROBLEM NAVEED AHMED AND GUNAR MATTHIES Abstract. In this paper, we combine

More information

1. Introduction. Consider nonstationary Navier Stokes equations with a nonslip boundary condition

1. Introduction. Consider nonstationary Navier Stokes equations with a nonslip boundary condition SIAM J. SCI. COMPUT. Vol. 3, No., pp. 398 49 c 8 Society for Industrial and Applied Mathematics LONG TIME NUMERICAL SOLUTION OF THE NAVIER STOKES EQUATIONS BASED ON A SEQUENTIAL REGULARIZATION FORMULATION

More information

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION

A STUDY OF MULTIGRID SMOOTHERS USED IN COMPRESSIBLE CFD BASED ON THE CONVECTION DIFFUSION EQUATION ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

Chebyshev semi-iteration in Preconditioning

Chebyshev semi-iteration in Preconditioning Report no. 08/14 Chebyshev semi-iteration in Preconditioning Andrew J. Wathen Oxford University Computing Laboratory Tyrone Rees Oxford University Computing Laboratory Dedicated to Victor Pereyra on his

More information

7.4 The Saddle Point Stokes Problem

7.4 The Saddle Point Stokes Problem 346 CHAPTER 7. APPLIED FOURIER ANALYSIS 7.4 The Saddle Point Stokes Problem So far the matrix C has been diagonal no trouble to invert. This section jumps to a fluid flow problem that is still linear (simpler

More information

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS

STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS STOPPING CRITERIA FOR MIXED FINITE ELEMENT PROBLEMS M. ARIOLI 1,3 AND D. LOGHIN 2 Abstract. We study stopping criteria that are suitable in the solution by Krylov space based methods of linear and non

More information

A comparison of preconditioners for incompressible Navier Stokes solvers

A comparison of preconditioners for incompressible Navier Stokes solvers INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids (2007) Published online in Wiley InterScience (www.interscience.wiley.com)..1684 A comparison of preconditioners for incompressible

More information

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5

Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Two-Dimensional Unsteady Flow in a Lid Driven Cavity with Constant Density and Viscosity ME 412 Project 5 Jingwei Zhu May 14, 2014 Instructor: Surya Pratap Vanka 1 Project Description The objective of

More information

Pseudo-divergence-free element free Galerkin method for incompressible fluid flow

Pseudo-divergence-free element free Galerkin method for incompressible fluid flow International Workshop on MeshFree Methods 23 Pseudo-divergence-free element free Galerkin method for incompressible fluid flow Y. Vidal () and A. Huerta (2) Abstract: Incompressible modelling in finite

More information

High-order ADI schemes for convection-diffusion equations with mixed derivative terms

High-order ADI schemes for convection-diffusion equations with mixed derivative terms High-order ADI schemes for convection-diffusion equations with mixed derivative terms B. Düring, M. Fournié and A. Rigal Abstract We consider new high-order Alternating Direction Implicit ADI) schemes

More information

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS

SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS Proceedings of ALGORITMY 2009 pp. 1 10 SECOND ORDER TIME DISCONTINUOUS GALERKIN METHOD FOR NONLINEAR CONVECTION-DIFFUSION PROBLEMS MILOSLAV VLASÁK Abstract. We deal with a numerical solution of a scalar

More information

Global regularity of a modified Navier-Stokes equation

Global regularity of a modified Navier-Stokes equation Global regularity of a modified Navier-Stokes equation Tobias Grafke, Rainer Grauer and Thomas C. Sideris Institut für Theoretische Physik I, Ruhr-Universität Bochum, Germany Department of Mathematics,

More information

NumAn2014 Conference Proceedings

NumAn2014 Conference Proceedings OpenAccess Proceedings of the 6th International Conference on Numerical Analysis, pp 198-03 Contents lists available at AMCL s Digital Library. NumAn014 Conference Proceedings Digital Library Triton :

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion

On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion On finite element methods for 3D time dependent convection diffusion reaction equations with small diffusion Volker John and Ellen Schmeyer FR 6.1 Mathematik, Universität des Saarlandes, Postfach 15 11

More information

Efficient iterative algorithms for linear stability analysis of incompressible flows

Efficient iterative algorithms for linear stability analysis of incompressible flows IMA Journal of Numerical Analysis Advance Access published February 27, 215 IMA Journal of Numerical Analysis (215) Page 1 of 21 doi:1.193/imanum/drv3 Efficient iterative algorithms for linear stability

More information

Universität des Saarlandes. Fachrichtung 6.1 Mathematik

Universität des Saarlandes. Fachrichtung 6.1 Mathematik Universität des Saarlandes U N I V E R S I T A S S A R A V I E N I S S Fachrichtung 6.1 Mathematik Preprint Nr. 219 On finite element methods for 3D time dependent convection diffusion reaction equations

More information

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS 2004 P. Neittaanmäki, T. Rossi, K. Majava, and O. Pironneau (eds.) O. Nevanlinna and R. Rannacher (assoc. eds.) Jyväskylä,

More information

UNIVERSITY OF MARYLAND NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 OCTOBER 1999

UNIVERSITY OF MARYLAND NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 OCTOBER 1999 UNIVERSITY OF MARYLAND INSTITUTE FOR ADVANCED COMPUTER STUDIES DEPARTMENT OF COMPUTER SCIENCE EFFICIENT PRECONDITIONING OF THE LINEARIZED NAVIER-STOKES EQUATIONS CS-TR #4073 / UMIACS TR #99-66 DAVID SILVESTER

More information

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES

CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT ESTIMATES OF THE FIELD OF VALUES European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006 P. Wesseling, E. Oñate and J. Périaux (Eds) c TU Delft, The Netherlands, 2006 CONVERGENCE BOUNDS FOR PRECONDITIONED GMRES USING ELEMENT-BY-ELEMENT

More information

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan

Modeling, Simulating and Rendering Fluids. Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Modeling, Simulating and Rendering Fluids Thanks to Ron Fediw et al, Jos Stam, Henrik Jensen, Ryan Applications Mostly Hollywood Shrek Antz Terminator 3 Many others Games Engineering Animating Fluids is

More information

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J.

IFISS: A computational laboratory for investigating incompressible flow problems. Elman, Howard C. and Ramage, Alison and Silvester, David J. IFISS: A computational laboratory for investigating incompressible flow problems Elman, Howard C. and Ramage, Alison and Silvester, David J. 22 MIMS EPrint: 22.8 Manchester Institute for Mathematical Sciences

More information

The Deflation Accelerated Schwarz Method for CFD

The Deflation Accelerated Schwarz Method for CFD The Deflation Accelerated Schwarz Method for CFD J. Verkaik 1, C. Vuik 2,, B.D. Paarhuis 1, and A. Twerda 1 1 TNO Science and Industry, Stieltjesweg 1, P.O. Box 155, 2600 AD Delft, The Netherlands 2 Delft

More information

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions

Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Simulating Drag Crisis for a Sphere Using Skin Friction Boundary Conditions Johan Hoffman May 14, 2006 Abstract In this paper we use a General Galerkin (G2) method to simulate drag crisis for a sphere,

More information

Multigrid Methods and their application in CFD

Multigrid Methods and their application in CFD Multigrid Methods and their application in CFD Michael Wurst TU München 16.06.2009 1 Multigrid Methods Definition Multigrid (MG) methods in numerical analysis are a group of algorithms for solving differential

More information