Gaussian Units vs. SI Units by Dan Petru Danescu,

Size: px
Start display at page:

Download "Gaussian Units vs. SI Units by Dan Petru Danescu,"

Transcription

1 Note Date: May 6, 202 Gaussian Units vs. SI Units by Dan Petru Danescu, Keywords: Gaussian units, SI units, BIPM brochure, Maxwell equations, Lorentz force,,bohr magneton, fundamental physical constants. Contents:. Title page 2. Short presentation 3. Fig. (Electromagnetic wave and systems of units) 4. Table (Maxwell equations and evidence of moving wave with c velocity in Gaussian units) 5. Table 2 (Lorentz force and relativistic character of magnetism) 6. Table 3 (Fundamental physical constants. Comparison between SI and Gaussian units) 7. Appendix (An amendment to the Bohr magneton unit <in Gaussian system of units>)

2 Short presentation The International System of Units (SI) developed in the last century [], [2] has proved to be inadequate for theoretical physics. This was shown in some previous works [3], [4], [5], [6]. The most important works in theoretical physics developed by A. Einstein, N. Bohr, A.Sommerfeld, L. de Broglie, E. Schrodinger, M. Born, W. Pauli, P.A.M. Dirac, I. Tamm and others used the Gaussian units. In BIPM (Bureau International des Poids et Measures) brochure, 8th edition (2006) it is mentioned that: It has always recognized that CGS Gaussian system, in particular, has advantages in certain areas of physics, particulary in classical and relativistic electrodynamics (9th CGPM, 948, Resolution 6). In Fig., Table and Table 2 the contradictions of the International System (SI) and the advantages of the Gaussian system are schematically presented. Table 3 and Appendix shows a comparison of the fundamental physical constants in SI units and Gaussian units. Only in the Gaussian system of units we observe two groups of equal values of the electron charge and electron rest mass. Making the transition LTM Gaussian L (cm) we can write: e ± s 2 C cm [L] () m e 2( S /2) 2[ r.(e/2) 2 ] cm 3 [L] (2) the expression 2[ r.(e/2) 2 ] where r = (3/2)a 0, represents the double filiform volume generated by the movement of electric charge (double twist of spin) on the average radius of electronic cloud. The 2( S /2) expression is correlated with this double filiform volume. In conclusion: SI remains an industrial and practical system of units. For theoretical physics have used the Gaussian non-contradictory system of units. References [] Giorgi G., (902) Il sistema assoluta MKS. Atti dell associazione elettrotecnica italiana, vol VI, fasc.5. [2] Budeanu C.I., (956) Sistemul practic general de marimi si unitati, Ed. Acad. R.P.R. [3] Born M. (964) Die Relativitatstheorie Einsteins, Springer-Verlag. [4] Danescu D.P.,(978) Measuring units systems and the relativistic aspect of the electromagnetic phenomena, Studii şi Cercetări de Fizică,6, 30, pp [5] Danescu D.P., (978) The Fundamental Physical Constants of the Electron, Buletin de Fizică şi Chimie, Volumul 2, pp [6] Danescu D.P., (98) Considerations Regarding the Impedance Characteristic to the Vacuum, Buletinul Ştiinţific şi Tehnic al Institutului Politehnic "Traian Vuia",Timişoara, 26, (40), fascicola 2, pp

3 Representation of the electromagnetic wave. The E and H vectors vary synchronically, they are permanent perpendicular between them and they move together in the same direction, in vacuum, with c speed. The only correct system of units it is the Gaussian system, where we have in vacuum E = H. *) D.P. Dănescu, Consideraţii asupra impedanţei caracteristice a vidului (Considerations Regarding the Impedance Characteristic to the Vacuum), Buletinul Ştiinţific şi Tehnic al Institutului Politehnic "Traian Vuia",Timişoara, 26, (40), fascicola 2, pp (98). 3

4 Table Maxwell s equations and the evidence of moving wave with c velocity (in Gaussian units) In vacuum: = 0 ; J = 0 Name Gaussian units SI units Gauss law. D = 0. D = 0 Gauss law for magnetism. B = 0. B = 0 Maxwell-Faraday equation Ampere-Maxwell equation E = - c H = c B D B E = - D H = H. D =. B = 0 (absence of electric and magnetic sources); D - E B = c (moving wave with c velocity, in Gaussian units) 4

5 Table 2 The systems of units and Lorentz force System of units Electrostatic CGS (CGSesu) Electromagnetic CGS (CGSemu) Gaussian CGS Lorentz-Heaviside CGS International System of Units (SI) Lorentz force relations F = q[e + (v B)] F = q[e + (v B)] v F = q[e + ( B)] c v F = q[e + ( B)] c F = q[e + (v B)] Remark: Only in Gaussian CGS and Lorentz-Heaviside CGS systems of units, relativistic aspect of magnetism can be observed (the v/c factor) 5

6 Table 3 Fundamental physical constants of electron. Comparison between SI and Gaussian units (202) The starting point of this table is CODATA recommended Values of the Fundamental Physical Constants-2006, by Peter J. Mohr, Barry N. Taylor, and David B. Newell. Opportunity of used Gaussian units shown in [-3]. An amendment to Bohr magneton measure unit was developed in [3]. This amendment consist in transfer of /c factor of units in torque relation imply the change of unit emu esu. Importance of double Compton wavelength result in description of symmetry phenomena [4]. Quantity, symbol SI units Gaussian units speed of light in vacuum (c, c 0 ) m s cm s - magnetic constant (vacuum permeability), ( 0 ) N A -2 electric constant (vacuum permittivity), ( 0 ) F m - characteristic impedance of vacuum (Z 0 ) Compton wavelength ( C ) (33) 0-2 m (33) 0-0 cm electron g-factor (g) (5) (5) Bohr magneton ( B ) (23) 0-26 JT (69) 0-0 esu electron magnetic moment ( e) (23) 0-26 JT (69) 0-0 esu spin magnetic moment [ s = g (e/2m e )S] (40) 0-23 JT (2) 0-0 esu electron charge (e) (40) 0-9 C (2) 0-0 esu double Compton wavelength (2 C ) (67) 0-2 m (67) 0-0 cm fine-structure constant ( ) (50) (50) 0-3 inverse fine-structure constant ( ) (94) (94) Bohr radius (a 0 ) (36) 0-0 m (36) 0-8 cm Bohr speed ( c, v 0 ) (4) 0 6 m s (4) 0 8 cm s - average radius of electron cloud (s), (53) 0-0 m (53) 0-8 cm r =3a 0 /2 Planck constant (h) (33) 0-34 J s (33) 0-27 erg s Planck constant, reduced (ћ) (53) 0-34 J s (53) 0-27 erg s spin angular momentum (S = 3 /2) (45) 0-35 J s (45) 0-28 erg s electron rest mass (me) (45) 0-3 kg (45) 0-28 g Newtonian constant of gravitation (G) (67) 0 - m 3 kg - s (67) 0-8 cm 3 g - s -2 classical electron radius (re, r 0 ) (58) 0-5 m (58) 0-3 cm Thomson cross section ( e) (27) 0-28 m (27) 0-24 cm 2 Rydberg constant (R ) (73) m (73) 0 5 cm - [] D.P.Dănescu, Systems of measure units and relativistic aspect of electromagnetic phenomena, St. Cerc. Fizică, 6, 30 (978). [2] D.P.Dănescu, The fundamental physical constants of electron, Buletin de Fizică şi Chimie, Vol. 2, 70 (978). [3] D.P.Dănescu, Consideration of characteristic impedance of vacuum, Buletinul Ştiinţific şi Tehnic al Institutului Politehnic"Traian Vuia",Timişoara, 26, (40), fascicola 2, (98). [4] D.P.Dănescu, The symmetry of Compton effect and 2 C constant, Revista de Fizică şi Chimie, Vol. 36, Nr (200). 6

7 APPENDIX An amendment to the Bohr magneton unit (in Gaussian system of units) Comparison of the current element and the magnetic moment follows = idl (The current element) df = c idl B (The Laplace force) = ida (The magnetic moment) d = c ida B (The torque) The quantities = idl and = ida, introduced by definition, have geometric and electrokinetic nature not electrodynamic nature. They are without /c factor of units, transferred in the force respectively in the torque expression. Consequence: I. The Bohr magneton is B = B = c e = emu; 2m e II. The spin magnetic moment is s = g and not s = g c e 2m e e = esu, and not 2m e e 2m e S = emu. S = esu, 7

8 8

The International System of Units (SI) A Handicapping System for Theoretical Physics by Dan Petru Danescu,

The International System of Units (SI) A Handicapping System for Theoretical Physics by Dan Petru Danescu, Note Date: May 03, 2011 The International System of Units (SI) A Handicapping System for Theoretical Physics by Dan Petru Danescu, e-mail: dpdanescu@yahoo.com Key works: SI units, Gaussian units, BIPM

More information

Electron Structure and Inversion *) DAN PETRU DĂNESCU

Electron Structure and Inversion *) DAN PETRU DĂNESCU Revised: May 29, 2012 Electron Structure and Inversion *) DAN PETRU DĂNESCU e-mail:dpdanescu@yahoo.com Abstract Having summarily dealt with plane geometric inversion in the special case of transforming

More information

Brief History of Bohr Magneton by Dan Petru Danescu,

Brief History of Bohr Magneton by Dan Petru Danescu, Note Date: May 03, 20 Brief History of Bohr Magneton by Dan Petru Danescu, e-mail: dpdanescu@yahoo.com Keywords: Bohr magneton, Bohr magneton unit, magnetic moment, Amperian currents, magneton, spin Content:.Title

More information

From the Bohr theory to modern atomic quantum theory and the double helix of magnetic field. by Dan Petru Danescu,

From the Bohr theory to modern atomic quantum theory and the double helix of magnetic field. by Dan Petru Danescu, From the Bohr theory to modern atomic quantum theory and the double helix of magnetic field by Dan Petru Danescu, e-mail dpdanescu@yahoo.com Date: July 28, 2010 1 I. Interpretation of Bohr-de Broglie Atom

More information

1.2.3 Atomic constants

1.2.3 Atomic constants 1 of 5 18/12/2011 23:36 Home About Table of Contents Advanced Search Copyright Feedback Privacy You are here: Chapter: 1 Units and fundamental constants Section: 1.2 Fundamental physical constants SubSection:

More information

Units. Appendix A. D = 4πρ, B = 0, (A.1) H = 1 c t D + 4π c J, E = 1. c t B, where. D = E + 4πP, H = B 4πM.

Units. Appendix A. D = 4πρ, B = 0, (A.1) H = 1 c t D + 4π c J, E = 1. c t B, where. D = E + 4πP, H = B 4πM. 558 Appendix A Units This book has been written entirely in the Gaussian system of units, which is most convenient for theoretical purposes. However, for practical uses, and for engineering applications,

More information

1 Fundamental Constants, Elements, Units

1 Fundamental Constants, Elements, Units 1 Fundamental Constants, Elements, Units 1.1 Fundamental Physical Constants Table 1.1. Fundamental Physical Constants Electron mass m e = 9.10939 10 28 g Proton mass m p = 1.67262 10 24 g Atomic unit of

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

Quantum resonance scheme to determine the gravitational constant G

Quantum resonance scheme to determine the gravitational constant G 1 Quantum resonance scheme to determine the gravitational constant G Zhi Ping Li 1, Xin Li 2 1 1065, Don Mills Road, Toronto, Ontario M3C1X4, Canada Electronic address: zhiping_lee@hotmail.com 2 College

More information

Analytical Expressions for the Gravitational Constant L.L. Williams Konfluence Research August 2009

Analytical Expressions for the Gravitational Constant L.L. Williams Konfluence Research August 2009 1. Introduction Analytical Expressions for the Gravitational Constant L.L. Williams Konfluence Research August 2009 Theories which unify gravity (the Einstein equations of general relativity) and electromagnetism

More information

Energy Wave Equations: Correction Factors

Energy Wave Equations: Correction Factors Energy Wave Equations: Correction Factors Jeff Yee jeffsyee@gmail.com March 16, 2018 Summary The equations in Energy Wave Theory accurately model particle energy, photon energy, forces, atomic orbitals

More information

Part IB Electromagnetism

Part IB Electromagnetism Part IB Electromagnetism Theorems Based on lectures by D. Tong Notes taken by Dexter Chua Lent 2015 These notes are not endorsed by the lecturers, and I have modified them (often significantly) after lectures.

More information

INTERNATIONAL STANDARD. This is a preview of "ISO :2009". Click here to purchase the full version from the ANSI store.

INTERNATIONAL STANDARD. This is a preview of ISO :2009. Click here to purchase the full version from the ANSI store. INTERNATIONAL STANDARD ISO 80000-1 First edition 2009-11-15 Quantities and units Part 1: General Grandeurs et unités Partie 1: Généralités Reference number ISO 80000-1:2009(E) ISO 2009 PDF disclaimer This

More information

Summary on Units, Dimensions and Conversions on Electrodynamics

Summary on Units, Dimensions and Conversions on Electrodynamics Summary on Units, Dimensions and Conversions on Electrodynamics Summary on Units, Dimensions and Conversions on Electrodynamics Dongwook Lee Abstract. In this short note, we summarize five different units

More information

INTRODUCTION TO ELECTRODYNAMICS

INTRODUCTION TO ELECTRODYNAMICS INTRODUCTION TO ELECTRODYNAMICS Second Edition DAVID J. GRIFFITHS Department of Physics Reed College PRENTICE HALL, Englewood Cliffs, New Jersey 07632 CONTENTS Preface xi Advertisement 1 1 Vector Analysis

More information

Physics 209 Fall 2002 Notes 2 SI and Gaussian Units

Physics 209 Fall 2002 Notes 2 SI and Gaussian Units Physics 209 Fall 2002 Notes 2 SI and Gaussian Units These notes are intended to help you become comfortable with the two systems of electromagnetic units that will be used in this course, SI units and

More information

Determining the value of the fine-structure constant from a current balance: getting acquainted with some upcoming changes to the SI

Determining the value of the fine-structure constant from a current balance: getting acquainted with some upcoming changes to the SI Determining the value of the fine-structure constant from a current balance: getting acquainted with some upcoming changes to the SI Richard S. Davis* International Bureau of Weights and Measures (BIPM),

More information

Quantum Mysteries. Scott N. Walck. September 2, 2018

Quantum Mysteries. Scott N. Walck. September 2, 2018 Quantum Mysteries Scott N. Walck September 2, 2018 Key events in the development of Quantum Theory 1900 Planck proposes quanta of light 1905 Einstein explains photoelectric effect 1913 Bohr suggests special

More information

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Students are required to pass a minimum of 15 AU of PAP courses including the following courses: School of Physical and Mathematical Sciences Division of Physics and Applied Physics Minor in Physics Curriculum - Minor in Physics Requirements for the Minor: Students are required to pass a minimum of

More information

Preliminary Examination - Day 1 Thursday, August 10, 2017

Preliminary Examination - Day 1 Thursday, August 10, 2017 UNL - Department of Physics and Astronomy Preliminary Examination - Day Thursday, August, 7 This test covers the topics of Quantum Mechanics (Topic ) and Electrodynamics (Topic ). Each topic has 4 A questions

More information

Natural Units APPENDIX A [.I [MI = [LJ- = [TI-. (A4. [El = [MI = [PI = [kl, (A.1) 1 e2 1 47rhc 137

Natural Units APPENDIX A [.I [MI = [LJ- = [TI-. (A4. [El = [MI = [PI = [kl, (A.1) 1 e2 1 47rhc 137 APPENDICES GAUGE FIELD THEORIES MIKE GUIDRY 0 2004 WILEY-VCH Verlag GmbH & Co. APPENDIX A Natural Units The use of h=c= 1 units (natural units) can simplify particle physics notation considerably. Since

More information

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms.

We also find the development of famous Schrodinger equation to describe the quantization of energy levels of atoms. Lecture 4 TITLE: Quantization of radiation and matter: Wave-Particle duality Objectives In this lecture, we will discuss the development of quantization of matter and light. We will understand the need

More information

Units and Magnitudes (lecture notes)

Units and Magnitudes (lecture notes) Units and Magnitudes (lecture notes) This lecture has two parts. The first part is mainly a practical guide to the measurement units that dominate the particle physics literature, and culture. The second

More information

Chapter 1. From Classical to Quantum Mechanics

Chapter 1. From Classical to Quantum Mechanics Chapter 1. From Classical to Quantum Mechanics Classical Mechanics (Newton): It describes the motion of a classical particle (discrete object). dp F ma, p = m = dt dx m dt F: force (N) a: acceleration

More information

Quantum Theory and the Electronic Structure of Atoms

Quantum Theory and the Electronic Structure of Atoms Quantum Theory and the Electronic Structure of Atoms Chapter 7 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Properties of Waves Wavelength ( ) is the distance

More information

The Zeeman Effect refers to the splitting of spectral

The Zeeman Effect refers to the splitting of spectral Calculation of the Bohr Magneton Using the Zeeman Effect Robert Welch Abstract The Zeeman Effect was predicted by Hendrik Lorentz and first observed by Pieter Zeeman in 1896. It refers to the splitting

More information

MCQs E M WAVES. Physics Without Fear.

MCQs E M WAVES. Physics Without Fear. MCQs E M WAVES Physics Without Fear Electromagnetic Waves At A Glance Ampere s law B. dl = μ 0 I relates magnetic fields due to current sources. Maxwell argued that this law is incomplete as it does not

More information

Ingvar Lindgren Symposium: New Trends in Atomic Physics II 2 3 June 2006 The Quantum SI: A possible new International System of Units

Ingvar Lindgren Symposium: New Trends in Atomic Physics II 2 3 June 2006 The Quantum SI: A possible new International System of Units Ingvar Lindgren Symposium: New Trends in Atomic Physics II 2 3 June 2006 The Quantum SI: A possible new International System of Units Peter Mohr National Institute of Standards and Technology Gaithersburg,

More information

Applied Nuclear Physics (Fall 2006) Lecture 1 (9/6/06) Basic Nuclear Concepts

Applied Nuclear Physics (Fall 2006) Lecture 1 (9/6/06) Basic Nuclear Concepts 22.101 Applied Nuclear Physics (Fall 2006) Lecture 1 (9/6/06) Basic Nuclear Concepts References Table of Isotopes, C. M. Lederer and V. S. Shirley, ed. (Wiley & Sons, New York, 1978), 7 th ed. Table of

More information

Classical Electrodynamics

Classical Electrodynamics Classical Electrodynamics Third Edition John David Jackson Professor Emeritus of Physics, University of California, Berkeley JOHN WILEY & SONS, INC. Contents Introduction and Survey 1 I.1 Maxwell Equations

More information

Chapter 16 - Maxwell s Equations

Chapter 16 - Maxwell s Equations David J. Starling Penn State Hazleton PHYS 214 Gauss s Law relates point charges to the value of the electric field. Φ E = E d A = q enc ɛ 0 Gauss s Law relates point charges to the value of the electric

More information

Common Exam Department of Physics University of Utah August 24, 2002

Common Exam Department of Physics University of Utah August 24, 2002 Common Exam - 2002 Department of Physics University of Utah August 24, 2002 Examination booklets have been provided for recording your work and your solutions. Please note that there is a separate booklet

More information

Alternative set of defining constants for redefinition of four SI units

Alternative set of defining constants for redefinition of four SI units Alternative set of defining constants for redefinition of four SI units V V Khruschov 1,2 1 Centre for Gravitation and Fundamental Metrology, VNIIMS, 119361 Moscow, Russia 2 National Research Centre Kurchatov

More information

The Relation of Relativistic Energy to Particle Wavelength

The Relation of Relativistic Energy to Particle Wavelength The Relation of Relativistic Energy to Particle Wavelength Jeff Yee jeffsyee@gmail.com March 24, 2018 Summary The relativistic nature of matter has never been well understood. Equations accurately model

More information

Mise en pratique for the definition of the ampere and other electric units in the SI

Mise en pratique for the definition of the ampere and other electric units in the SI Mise en pratique for the definition of the ampere and other electric units in the SI Consultative Committee for Electricity and Magnetism 1. Introduction The purpose of this Mise en pratique, prepared

More information

CHAPTER 7 ELECTRODYNAMICS

CHAPTER 7 ELECTRODYNAMICS CHAPTER 7 ELECTRODYNAMICS Outlines 1. Electromotive Force 2. Electromagnetic Induction 3. Maxwell s Equations Michael Faraday James C. Maxwell 2 Summary of Electrostatics and Magnetostatics ρ/ε This semester,

More information

Spin-orbit coupling: Dirac equation

Spin-orbit coupling: Dirac equation Dirac equation : Dirac equation term couples spin of the electron σ = 2S/ with movement of the electron mv = p ea in presence of electrical field E. H SOC = e 4m 2 σ [E (p ea)] c2 The maximal coupling

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

CLASSICAL ELECTRICITY

CLASSICAL ELECTRICITY CLASSICAL ELECTRICITY AND MAGNETISM by WOLFGANG K. H. PANOFSKY Stanford University and MELBA PHILLIPS Washington University SECOND EDITION ADDISON-WESLEY PUBLISHING COMPANY Reading, Massachusetts Menlo

More information

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics

Magnetostatics. P.Ravindran, PHY041: Electricity & Magnetism 22 January 2013: Magntostatics Magnetostatics Magnetic Fields We saw last lecture that some substances, particularly iron, possess a property we call magnetism that exerts forces on other magnetic materials We also saw that t single

More information

Calculation of the Larmor Radius of the Inverse Faraday Effect in an Electron Ensemble from the Einstein Cartan Evans (ECE) Unified Field Theory

Calculation of the Larmor Radius of the Inverse Faraday Effect in an Electron Ensemble from the Einstein Cartan Evans (ECE) Unified Field Theory 10 Calculation of the Larmor Radius of the Inverse Faraday Effect in an Electron Ensemble from the Einstein Cartan Evans (ECE) Unified Field Theory by Myron W. Evans, Alpha Institute for Advanced Study,

More information

Introduction. Chapter Presentation of Macroscopic Electrodynamics. 1.1 What is Electrodynamics?

Introduction. Chapter Presentation of Macroscopic Electrodynamics. 1.1 What is Electrodynamics? Chapter 1 Introduction 1.1 What is Electrodynamics? Electrodynamics as a theory deals with electric charges which move in space and with electromagnetic fields that are produced by the charges and again

More information

Mills s The Grand Unified Theory of Classical Physics (GUTCP) shows amazing equations and calculations that indicate his theory is correct.

Mills s The Grand Unified Theory of Classical Physics (GUTCP) shows amazing equations and calculations that indicate his theory is correct. Comments and potential corrections can be emailed directly to me at: jeffd3@gmail.com Mills s The Grand Unified Theory of Classical Physics (GUTCP) shows amazing equations and calculations that indicate

More information

Elementary particles and typical scales in high energy physics

Elementary particles and typical scales in high energy physics Elementary particles and typical scales in high energy physics George Jorjadze Free University of Tbilisi Zielona Gora - 23.01.2017 GJ Elementary particles and typical scales in HEP Lecture 1 1/18 Contents

More information

Magnetic Materials. 2. Diamagnetism. Numan Akdoğan.

Magnetic Materials. 2. Diamagnetism. Numan Akdoğan. Magnetic Materials. Diamagnetism Numan Akdoğan akdogan@gyte.edu.tr Gebze Institute of Technology Department of Physics Nanomagnetism and Spintronic Research Center (NASAM) Magnetic moments of electrons

More information

Properties of Elementary Particles

Properties of Elementary Particles and of Elementary s 01/11/2018 My Office Hours: Thursday 1:00-3:00 PM 212 Keen Building Outline 1 2 3 Consider the world at different scales... Cosmology - only gravity matters XXXXX Input: Mass distributions

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

Radius of electron, magnetic moment and helical motion of the charge of electron

Radius of electron, magnetic moment and helical motion of the charge of electron Apeiron, Vol. 19, No. 3, July 01 47 Radius of electron, magnetic moment and helical motion of the charge of electron S. Ghosh, A. Choudhury and J. K. Sarma Dept. of Physics, Tezpur University Napaam, Tezpur,

More information

Space, Time and Units Fundamental Vision

Space, Time and Units Fundamental Vision 13 Space, Time and Units Fundamental Vision G.V.Sharlanov E-mail: gsharlanov@yahoo.com Abstract The change of the units between two time-spatial domains with different gravitational potentials is analyzed

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

CHAPTER 8 CONSERVATION LAWS

CHAPTER 8 CONSERVATION LAWS CHAPTER 8 CONSERVATION LAWS Outlines 1. Charge and Energy 2. The Poynting s Theorem 3. Momentum 4. Angular Momentum 2 Conservation of charge and energy The net amount of charges in a volume V is given

More information

Maxwell Equations: Electromagnetic Waves

Maxwell Equations: Electromagnetic Waves Maxwell Equations: Electromagnetic Waves Maxwell s Equations contain the wave equation The velocity of electromagnetic waves: c = 2.99792458 x 10 8 m/s The relationship between E and B in an EM wave Energy

More information

ATOM atomov - indivisible

ATOM atomov - indivisible Structure of matter ATOM atomov - indivisible Greek atomists - Democrite and Leukip 300 b.c. R. Bošković - accepts the concept of atom and defines the force J. Dalton - accepts the concept of atom and

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

Relativistic corrections of energy terms

Relativistic corrections of energy terms Lectures 2-3 Hydrogen atom. Relativistic corrections of energy terms: relativistic mass correction, Darwin term, and spin-orbit term. Fine structure. Lamb shift. Hyperfine structure. Energy levels of the

More information

by M.W. Evans, British Civil List (

by M.W. Evans, British Civil List ( Derivation of relativity and the Sagnac Effect from the rotation of the Minkowski and other metrics of the ECE Orbital Theorem: the effect of rotation on spectra. by M.W. Evans, British Civil List (www.aias.us)

More information

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule.

(1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. a) True b) False Hint: pay attention to how

More information

Class 11 : Magnetic materials

Class 11 : Magnetic materials Class 11 : Magnetic materials Magnetic dipoles Magnetization of a medium, and how it modifies magnetic field Magnetic intensity How does an electromagnet work? Boundary conditions for B Recap (1) Electric

More information

[variable] = units (or dimension) of variable.

[variable] = units (or dimension) of variable. Dimensional Analysis Zoe Wyatt wyatt.zoe@gmail.com with help from Emanuel Malek Understanding units usually makes physics much easier to understand. It also gives a good method of checking if an answer

More information

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields

Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Electromagnetic Field Theory Chapter 9: Time-varying EM Fields Faraday s law of induction We have learned that a constant current induces magnetic field and a constant charge (or a voltage) makes an electric

More information

Classical Field Theory

Classical Field Theory April 13, 2010 Field Theory : Introduction A classical field theory is a physical theory that describes the study of how one or more physical fields interact with matter. The word classical is used in

More information

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester ELECTROMAGNETISM Second Edition I. S. Grant W. R. Phillips Department of Physics University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Flow diagram inside front cover

More information

20th Century Atomic Theory- Hydrogen Atom

20th Century Atomic Theory- Hydrogen Atom Background for (mostly) Chapter 12 of EDR 20th Century Atomic Theory- Hydrogen Atom EDR Section 12.7 Rutherford's scattering experiments (Raff 11.2.3) in 1910 lead to a "planetary" model of the atom where

More information

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule

Einstein s Theory Relativistic 0 < v < c. No Absolute Time. Quantization, Zero point energy position & momentum obey Heisenberg uncertainity rule Lecture: March 27, 2019 Classical Mechanics Particle is described by position & velocity Quantum Mechanics Particle is described by wave function Probabilistic description Newton s equation non-relativistic

More information

Relativistic Formulation of Maxwell s Equations for Free Space

Relativistic Formulation of Maxwell s Equations for Free Space The African Review of Physics (2016) 11:0024 187 Relativistic Formulation of Maxwell s Equations for Free Space Randy Wayne Laboratory of Natural Philosophy, Section of Plant Biology, School of Integrative

More information

Essential Astrophysics

Essential Astrophysics ASTR 530 Essential Astrophysics Course Notes Paul Hickson The University of British Columbia, Department of Physics and Astronomy January 2015 1 1 Introduction and review Several text books present an

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

Topics for the Qualifying Examination

Topics for the Qualifying Examination Topics for the Qualifying Examination Quantum Mechanics I and II 1. Quantum kinematics and dynamics 1.1 Postulates of Quantum Mechanics. 1.2 Configuration space vs. Hilbert space, wave function vs. state

More information

By Charles William Johnson. September, 2014 Copyrighted

By Charles William Johnson. September, 2014 Copyrighted A Proposal for Reordering and Making Additions to the Complete List of Fundamental Physical and Chemical Constants Published by NIST [Preliminary Version of a Work in Progress] By Charles William Johnson

More information

Index. Symbols 4-vector of current density, 320, 339

Index. Symbols 4-vector of current density, 320, 339 709 Index Symbols 4-vector of current density, 320, 339 A action for an electromagnetic field, 320 adiabatic invariants, 306 amplitude, complex, 143 angular momentum tensor of an electromagnetic field,

More information

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co. Frank Y. Wang Physics with MAPLE The Computer Algebra Resource for Mathematical Methods in Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA k Preface Guide for Users Bibliography XI XVII XIX 1 Introduction

More information

Explicit-unit formulations of proposed redefinitions of SI base units

Explicit-unit formulations of proposed redefinitions of SI base units Explicit-unit formulations of proposed redefinitions of SI base units B. P. Leonard The University of Akron, Akron, Ohio, USA 1849 Brookfield Drive, Akron, OH 44313, USA phone: (330) 867-7152 e-mail: bpleona@uakron.edu

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-ELECTRICITY AND MAGNETISM 1. Electrostatics (1-58) 1.1 Coulomb s Law and Superposition Principle 1.1.1 Electric field 1.2 Gauss s law 1.2.1 Field lines and Electric flux 1.2.2 Applications 1.3

More information

ELECTRICITY AND MAGNETISM

ELECTRICITY AND MAGNETISM THIRD EDITION ELECTRICITY AND MAGNETISM EDWARD M. PURCELL DAVID J. MORIN Harvard University, Massachusetts Щ CAMBRIDGE Ell UNIVERSITY PRESS Preface to the third edition of Volume 2 XIII CONTENTS Preface

More information

Advanced Higher Physics

Advanced Higher Physics Wallace Hall Academy Physics Department Advanced Higher Physics Quanta Problems AH Physics: Quanta 1 2015 Data Common Physical Quantities QUANTITY SYMBOL VALUE Gravitational acceleration g 9.8 m s -2 Radius

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Intermission Page 343, Griffith

Intermission Page 343, Griffith Intermission Page 343, Griffith Chapter 8. Conservation Laws (Page 346, Griffith) Lecture : Electromagnetic Power Flow Flow of Electromagnetic Power Electromagnetic waves transport throughout space the

More information

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc. Chapter 37 Early Quantum Theory and Models of the Atom Planck s Quantum Hypothesis; Blackbody Radiation Photon Theory of Light and the Photoelectric Effect Energy, Mass, and Momentum of a Photon Compton

More information

Classical electromagnetism - Wikipedia, the free encyclopedia

Classical electromagnetism - Wikipedia, the free encyclopedia Page 1 of 6 Classical electromagnetism From Wikipedia, the free encyclopedia (Redirected from Classical electrodynamics) Classical electromagnetism (or classical electrodynamics) is a branch of theoretical

More information

ADIKAVI NANNAYA UNIVERSITY. II SEMESTER M.Sc.PHYSICS (Effective from admitted batch) P201 :STATISTICAL MECHANICS. MODEL QUESTION PAPER

ADIKAVI NANNAYA UNIVERSITY. II SEMESTER M.Sc.PHYSICS (Effective from admitted batch) P201 :STATISTICAL MECHANICS. MODEL QUESTION PAPER Time : 3 Hrs. SECTION - A M.Sc.PHYSICS (Effective from 2016-2017 admitted batch) P201 :STATISTICAL MECHANICS. MODEL QUESTION PAPER Max. Marks:75 Answer ALL Questions. 4 x 5 = 60. 1. a) State and prove

More information

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields?

1.1 Units, definitions and fundamental equations. How should we deal with B and H which are usually used for magnetic fields? Advance Organizer: Chapter 1: Introduction to single magnetic moments: Magnetic dipoles Spin and orbital angular momenta Spin-orbit coupling Magnetic susceptibility, Magnetic dipoles in a magnetic field:

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index 347 Index a AC fields 81 119 electric 81, 109 116 laser 81, 136 magnetic 112 microwave 107 109 AC field traps see Traps AC Stark effect 82, 84, 90, 96, 97 101, 104 109 Adiabatic approximation 3, 10, 32

More information

Chapter 2 Basics of Electricity and Magnetism

Chapter 2 Basics of Electricity and Magnetism Chapter 2 Basics of Electricity and Magnetism My direct path to the special theory of relativity was mainly determined by the conviction that the electromotive force induced in a conductor moving in a

More information

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009

Fundamentals of Spectroscopy for Optical Remote Sensing. Course Outline 2009 Fundamentals of Spectroscopy for Optical Remote Sensing Course Outline 2009 Part I. Fundamentals of Quantum Mechanics Chapter 1. Concepts of Quantum and Experimental Facts 1.1. Blackbody Radiation and

More information

B(r) = µ 0a 2 J r 2ρ 2

B(r) = µ 0a 2 J r 2ρ 2 28 S8 Covariant Electromagnetism: Problems Questions marked with an asterisk are more difficult.. Eliminate B instead of H from the standard Maxwell equations. Show that the effective source terms are

More information

Explain the term subshell. 5. Explain de-broglie equation (relationship). 6. Discuss the dual nature of electrons

Explain the term subshell. 5. Explain de-broglie equation (relationship). 6. Discuss the dual nature of electrons MODEL COLLEGE ASSIGNMENT SHEET FOR STRUCTURE OF ATOM. What are the main postulates of Bohr s theory of an atom?. Explain how the angular momentum of an electron in an atom is quantized? 3. What are the

More information

Hamiltonian Symmetry in Special Relativity : Consequences of a decreasing light speed

Hamiltonian Symmetry in Special Relativity : Consequences of a decreasing light speed Annales de la Fondation Louis de Broglie, Volume 31 no 4, 2006 395 Hamiltonian Symmetry in Special Relativity : Consequences of a decreasing light speed FELIX T. SMITH Molecular Physics Laboratory, SRI

More information

Basic concepts in Magnetism; Units

Basic concepts in Magnetism; Units Basic concepts in Magnetism; Units J. M. D. Coey School of Physics and CRANN, Trinity College Dublin Ireland. 1. SI Units 2. cgs units 3. Conversions 4. Dimensions Comments and corrections please: jcoey@tcd.ie

More information

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid

μ (vector) = magnetic dipole moment (not to be confused with the permeability μ). Magnetism Electromagnetic Fields in a Solid Magnetism Electromagnetic Fields in a Solid SI units cgs (Gaussian) units Total magnetic field: B = μ 0 (H + M) = μ μ 0 H B = H + 4π M = μ H Total electric field: E = 1/ε 0 (D P) = 1/εε 0 D E = D 4π P

More information

3. Particle-like properties of E&M radiation

3. Particle-like properties of E&M radiation 3. Particle-like properties of E&M radiation 3.1. Maxwell s equations... Maxwell (1831 1879) studied the following equations a : Gauss s Law of Electricity: E ρ = ε 0 Gauss s Law of Magnetism: B = 0 Faraday

More information

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time Displacement Current Ampere s law in the original form is valid only if any electric fields present are constant in time Maxwell modified the law to include timesaving electric fields Maxwell added an

More information

Introduction and Review Lecture 1

Introduction and Review Lecture 1 Introduction and Review Lecture 1 1 Fields 1.1 Introduction This class deals with classical electrodynamics. Classical electrodynamics is the exposition of electromagnetic interactions between the develoment

More information

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010

PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 PHYS4210 Electromagnetic Theory Quiz 1 Feb 2010 1. An electric dipole is formed from two charges ±q separated by a distance b. For large distances r b from the dipole, the electric potential falls like

More information

The Magnetic field of the Electric current and the Magnetic induction

The Magnetic field of the Electric current and the Magnetic induction The Magnetic field of the Electric current and the Magnetic induction This paper explains the magnetic effect of the electric current from the observed effects of the accelerating electrons, causing naturally

More information

Preston Guynn Guynn Engineering, 1776 Heritage Center Drive, Suite 204 Wake Forest, North Carolina, United States

Preston Guynn Guynn Engineering, 1776 Heritage Center Drive, Suite 204 Wake Forest, North Carolina, United States The Electrostatic Force Preston Guynn Guynn Engineering, 1776 Heritage Center Drive, Suite 04 Wake Forest, North Carolina, United States 7587 guynnengineering@gmail.com In our previous paper, Electromagnetic

More information

1 Introduction. 1.1 Motivation. 1.2 Comparing X-Rays with Optical Radiation

1 Introduction. 1.1 Motivation. 1.2 Comparing X-Rays with Optical Radiation 1 Part I Introduction In the first part of this book, we give a general introduction and review all the aspects of classical electrodynamics and quantum mechanics that are needed in later chapters. This

More information

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics.

A more comprehensive theory was needed. 1925, Schrödinger and Heisenberg separately worked out a new theory Quantum Mechanics. Ch28 Quantum Mechanics of Atoms Bohr s model was very successful to explain line spectra and the ionization energy for hydrogen. However, it also had many limitations: It was not able to predict the line

More information

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS

MIDSUMMER EXAMINATIONS 2001 PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS No. of Pages: 6 No. of Questions: 10 MIDSUMMER EXAMINATIONS 2001 Subject PHYSICS, PHYSICS WITH ASTROPHYSICS PHYSICS WITH SPACE SCIENCE & TECHNOLOGY PHYSICS WITH MEDICAL PHYSICS Title of Paper MODULE PA266

More information

Fundamental constants and tests of theory in Rydberg states of hydrogen like ions

Fundamental constants and tests of theory in Rydberg states of hydrogen like ions International Conference on Precision Physics of Simple Atomic Systems University of Windsor, July 21 26, 2008 Fundamental constants and tests of theory in Rydberg states of hydrogen like ions Ulrich Jentschura,

More information