Reduced Basis Methods for Nonlinear Parametrized Partial Differential Equations

Size: px
Start display at page:

Download "Reduced Basis Methods for Nonlinear Parametrized Partial Differential Equations"

Transcription

1 Reduced Basis Methods for Nonlinear Parametrized Partial Differential Equations M. Grepl Aachen Institute for Advanced Study in Computational Engineering Science AICES Progress since 2009 Overview of the A New Principal Inv New Young Rese New facilities Recent highlights Goals and sched Workshop on Model Order Reduction of Transport-dominated Phenomena Advisory Board Meeting Brandenburg-BerlinRWTH Academy of Sciences and Humanities Aachen University July 12, 2011 May 19-20, 2015 Overview of the AICES Project Overvie

2 Acknowledgments Collaborators: Eduard Bader Mark Kärcher Dirk Klindworth Robert O Connor Mohammad Rasty Karen Veroy Sponsors: Excellence Initiative of the German federal and state governments German Research Foundation through Grant GSC 111 M. Grepl (RWTH Aachen) 1

3 Outline PART I: A Reduced Basis Primer PART II: Nonlinear (and Nonaffine) Problems M. Grepl (RWTH Aachen) 2

4 Outline PART I: A Reduced Basis Primer Introduction Key Ingredients Extensions & References PART II: Nonlinear (and Nonaffine) Problems M. Grepl (RWTH Aachen) 2

5 Outline PART I: A Reduced Basis Primer Introduction Key Ingredients Extensions & References PART II: Nonlinear (and Nonaffine) Problems Empirical Interpolation Method Nonlinear Elliptic Problems Extensions & References Numerical Results Nonlinear Reaction Diffusion Systems M. Grepl (RWTH Aachen) 2

6 Part I A Reduced Basis Primer M. Grepl (RWTH Aachen) 3

7 Introduction The Reduced Basis Method M. Grepl (RWTH Aachen) 4

8 Introduction The Reduced Basis Method is a model order reduction technique that provides M. Grepl (RWTH Aachen) 4

9 Introduction The Reduced Basis Method is a model order reduction technique that provides rapid and reliable approximation of solutions M. Grepl (RWTH Aachen) 4

10 Introduction The Reduced Basis Method is a model order reduction technique that provides rapid and reliable approximation of solutions to parametrized partial differential equations (µpdes) M. Grepl (RWTH Aachen) 4

11 Introduction The Reduced Basis Method is a model order reduction technique that provides rapid and reliable approximation of solutions to parametrized partial differential equations (µpdes) for design and optimization, control, parameter estimation,... M. Grepl (RWTH Aachen) 4

12 Introduction The Reduced Basis Method is a model order reduction technique that provides rapid and reliable approximation of solutions to parametrized partial differential equations (µpdes) for design and optimization, control, parameter estimation,... i.e., for parameter space exploration. M. Grepl (RWTH Aachen) 4

13 The Reduced Basis Method FE SPACE a(u(µ), v; µ) = f(v; µ), for all v X M. Grepl (RWTH Aachen) 5

14 The Reduced Basis Method FE SPACE a(u(µ), v; µ) = f(v; µ), for all v X M. Grepl (RWTH Aachen) 5

15 The Reduced Basis Method FE SPACE a(u(µ), v; µ) = f(v; µ), for all v X M. Grepl (RWTH Aachen) 5

16 The Reduced Basis Method HIGH-DIMENSIONAL FE SPACE a(u(µ), v; µ) = f(v; µ), for all v X M. Grepl (RWTH Aachen) 5

17 The Reduced Basis Method SNAPSHOTS u(µ i ) HIGH-DIMENSIONAL FE SPACE X N = span { u(µ i ), i = 1,..., N } M. Grepl (RWTH Aachen) 5

18 The Reduced Basis Method SNAPSHOTS u(µ i ) EXACT SOLUTION u(µ) HIGH-DIMENSIONAL FE SPACE a(u(µ), v; µ) = f(v; µ), for all v X M. Grepl (RWTH Aachen) 5

19 The Reduced Basis Method SNAPSHOTS u(µ i ) EXACT SOLUTION u(µ) u N (µ) (1) APPROXIMATION HIGH-DIMENSIONAL FE SPACE a(u N (µ), v; µ) = f(v; µ), for all v X N. M. Grepl (RWTH Aachen) 5

20 The Reduced Basis Method SNAPSHOTS u(µ i ) EXACT SOLUTION u(µ) u N (µ) (1) APPROXIMATION (2) ERROR BOUND N (µ) HIGH-DIMENSIONAL FE SPACE u(µ) u N (µ) X u N (µ) := r N( ; µ) X α LB (µ) M. Grepl (RWTH Aachen) 5

21 The Reduced Basis Method SNAPSHOTS u(µ i ) EXACT SOLUTION u(µ) u N (µ) (1) APPROXIMATION (2) ERROR BOUND N (µ) HIGH-DIMENSIONAL FE SPACE (3) OFFLINE-ONLINE COMPUTATIONAL DECOMPOSITION a(w, v; µ) = Q q=1 θ q (µ) }{{} a q (w, v), }{{} w, v X µ-dependent µ-independent COEFFICIENTS BILINEAR FORMS M. Grepl (RWTH Aachen) 5

22 The Reduced Basis Method SNAPSHOTS u(µ i ) EXACT SOLUTION u(µ) u N (µ) (1) APPROXIMATION (2) ERROR BOUND N (µ) HIGH-DIMENSIONAL FE SPACE (3) OFFLINE-ONLINE COMPUTATIONAL DECOMPOSITION (4) GREEDY ALGORITHM µ n+1 = arg max µ D s u n (µ) u N (µ) X M. Grepl (RWTH Aachen) 5

23 Problem Statement We wish to compute, for any parameter µ D, s(µ) = l(u(µ); µ) OUTPUT where u(µ) X satisfies and a(u, v; µ) = f(v; µ), for all v X, FEM N (µ) f(v; µ), l(v; µ) a(, ; µ) : X X R are bounded linear functionals is continuous and coercive for all µ D. M. Grepl (RWTH Aachen) 6

24 (1) Approximation We let X N = span { u(µ i ) }{{}, i = 1,..., N } SNAPSHOTS and compute our approximation as s N (µ) = l(u N (µ); µ) where u N (µ) X N satisfies a(u N, v; µ) = f(v; µ), for all v X N. ROM N (µ) M. Grepl (RWTH Aachen) 7

25 (1) Approximation (Algebraic Formulation) We let X N = [ ζ 1 }{{} ζ 2 }{{} ]... ζ }{{} N X -ORTHONORMAL SNAPSHOTS ζ i = u(µ i ) s.t. u N (µ) = X N u N (µ) M. Grepl (RWTH Aachen) 8

26 (1) Approximation (Algebraic Formulation) We let X N = [ ζ 1 }{{} ζ 2 }{{} ]... ζ }{{} N X -ORTHONORMAL SNAPSHOTS ζ i = u(µ i ) and compute our approximation as where u N (µ) R N satisfies s N (µ) = L(µ) T X N }{{} u N (µ) = L T N (µ) u N(µ) s.t. u N (µ) = X N u N (µ) X T A(µ) X N N }{{} u N (µ) = X T F (µ) N }{{} A N (µ) u N (µ) = F N (µ) M. Grepl (RWTH Aachen) 8

27 (1) Approximation (Algebraic Formulation) We let X N = [ ζ 1 }{{} ζ 2 }{{} ]... ζ }{{} N X -ORTHONORMAL SNAPSHOTS ζ i = u(µ i ) and compute our approximation as where u N (µ) R N satisfies s N (µ) = L(µ) T X N }{{} u N (µ) = L T N (µ) u N(µ) s.t. u N (µ) = X N u N (µ) X T A(µ) X N N }{{} u N (µ) = X T F (µ) N }{{} A N (µ) u N (µ) = F N (µ) How do we quantify the error? M. Grepl (RWTH Aachen) 8

28 (2) Error Estimation Let α(µ) be the coercivity constant of a a(v, v; µ) α(µ) := inf v X v 2 X and define residual r N (v; µ) := f(v; µ) a(u N, v; µ), v X. M. Grepl (RWTH Aachen) 9

29 (2) Error Estimation Let α(µ) be the coercivity constant of a a(v, v; µ) α(µ) := inf v X v 2 X and define residual r N (v; µ) := f(v; µ) a(u N, v; µ), v X. The error, e N (µ) := u(µ) u N (µ), then satisfies a(e N, v; µ) = r N (v; µ), v X, M. Grepl (RWTH Aachen) 9

30 (2) Error Estimation Let α(µ) be the coercivity constant of a a(v, v; µ) α(µ) := inf v X v 2 X and define residual r N (v; µ) := f(v; µ) a(u N, v; µ), v X. The error, e N (µ) := u(µ) u N (µ), then satisfies a(e N, v; µ) = r N (v; µ), v X, and, for any µ D and α LB (µ) α(µ), we have e N (µ) X r N( ; µ) X α LB (µ) }{{} =: u N (µ) and s s N l X u N }{{} =: l N (µ) M. Grepl (RWTH Aachen) 9

31 (2) Error Estimation Let α(µ) be the coercivity constant of a a(v, v; µ) α(µ) := inf v X v 2 X and define residual r N (v; µ) := f(v; µ) a(u N, v; µ), v X. The error, e N (µ) := u(µ) u N (µ), then satisfies a(e N, v; µ) = r N (v; µ), v X, and, for any µ D and α LB (µ) α(µ), we have e N (µ) X r N( ; µ) X α LB (µ) }{{} =: u N (µ) and s s N l X u N }{{} =: l N (µ) How do we compute u N, s N, u N, l N efficiently? M. Grepl (RWTH Aachen) 9

32 (3) Offline/Online Decomposition We assume a(v, w; µ) = Q so that A N (µ) }{{} RB-MATRIX q=1 θ q (µ) }{{} a q (v, w) }{{} µ-dependent µ-independent COEFFICIENTS BILINEAR FORMS = X T A(µ) X N N = Q θ q (µ) X T N Aq X N }{{} q=1 }{{} FE-MATRIX µ-independent M. Grepl (RWTH Aachen) 10

33 (3) Offline/Online Decomposition Example Affine Parameter Dependence: Example 1 Parameters: µ = ( k 0, k 1, k 2, k 3, k 4 ) }{{} THERMAL CONDUCTIVITIES Governing Equation: k i 2 y i = 0 in Ω i, i = 0 to 4 M. Grepl (RWTH Aachen) 11

34 (3) Offline/Online Decomposition Example Affine Parameter Dependence: Example 1 Parameters: µ = ( k 0, k 1, k 2, k 3, k 4 ) }{{} THERMAL CONDUCTIVITIES Governing Equation: k i 2 y i = 0 The matrix A(µ) then represents the bilinear form a(v, w; µ) = 4 k i v w i=0 Ω }{{}} i {{} = A q θ q (µ) in Ω i, i = 0 to 4 M. Grepl (RWTH Aachen) 11

35 (3) Offline/Online Decomposition Example Affine Parameter Dependence: Example 2 1 x 2 Ω(µ) µ x 1 PARAMETRIZED DOMAIN Bilinear Form on Parameter-Dependent Domain ( ṽ w ã(ṽ, w; µ) = + ṽ ) w d Ω(µ), Ω(µ) x 1 x 1 x 2 x }{{ 2 } ṽ w ṽ, w H 1 ( Ω(µ)) M. Grepl (RWTH Aachen) 12

36 (3) Offline/Online Decomposition Example Affine Parameter Dependence: Example x 2 Ω(µ) µ x 2 Ω 1 x 1 x 1 PARAMETRIZED DOMAIN REFERENCE DOMAIN Bilinear Form on Parameter-Dependent Domain ( ṽ w ã(ṽ, w; µ) = + ṽ ) w d Ω(µ), Ω(µ) x 1 x 1 x 2 x }{{ 2 } ṽ w After (Affine) Mapping to a Reference Domain ( v w a(v, w; µ) = + 1 ) v w µdω, x 1 x 1 µ 2 x 2 x 2 Ω ṽ, w H 1 ( Ω(µ)) v, w H 1 (Ω) M. Grepl (RWTH Aachen) 12

37 (3) Offline/Online Decomposition We assume a(v, w; µ) = Q so that A N (µ) }{{} RB-MATRIX q=1 θ q (µ) }{{} a q (v, w) }{{} µ-dependent µ-independent COEFFICIENTS BILINEAR FORMS = X T A(µ) X N N = Q θ q (µ) X T N Aq X N }{{} q=1 }{{} FE-MATRIX µ-independent Since all required quantities can be decomposed in this manner, we can OFFLINE: ONLINE: Form and store µ-independent quantities at cost O(N ) For any µ D, compute approx and error bounds at cost O(QN 2 + N 3 ) and O(Q 2 N 2 ) M. Grepl (RWTH Aachen) 13

38 (3) Offline/Online Decomposition We assume a(v, w; µ) = Q so that A N (µ) }{{} RB-MATRIX q=1 θ q (µ) }{{} a q (v, w) }{{} µ-dependent µ-independent COEFFICIENTS BILINEAR FORMS = X T A(µ) X N N = Q θ q (µ) X T N Aq X N }{{} q=1 }{{} FE-MATRIX µ-independent Since all required quantities can be decomposed in this manner, we can OFFLINE: ONLINE: Form and store µ-independent quantities at cost O(N ) For any µ D, compute approx and error bounds at cost O(QN 2 + N 3 ) and O(Q 2 N 2 ) How do we choose the snapshots? M. Grepl (RWTH Aachen) 13

39 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? M. Grepl (RWTH Aachen) 14

40 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? n u n X µ 1 µ 2 M. Grepl (RWTH Aachen) 14

41 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? n u n X µ 1 µ 2 M. Grepl (RWTH Aachen) 14

42 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? n u n X µ 3 = arg max µ D s 2 (µ) u 2 (µ) X where D s D is a finite train sample µ 1 µ 3 µ 2 M. Grepl (RWTH Aachen) 14

43 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? n u n X µ 3 = arg max µ D s 2 (µ) u 2 (µ) X where D s D is a finite train sample µ 1 µ 3 µ 2 X 3 = span{u(µ 1 ) u(µ 2 ) u(µ 3 )} M. Grepl (RWTH Aachen) 14

44 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? n u n X µ 3 = arg max µ D s 2 (µ) u 2 (µ) X where D s D is a finite train sample µ 1 µ 3 µ 2 X 3 = span{u(µ 1 ) u(µ 2 ) u(µ 3 )} M. Grepl (RWTH Aachen) 14

45 (4) (Weak) Greedy Algorithm Given X 2 = span{u(µ 1 ), u(µ 2 )}, how do we choose µ 3? n u n X µ 3 = arg max µ D s 2 (µ) u 2 (µ) X where D s D is a finite train sample µ 1 µ 3 µ 2 X 3 = span{u(µ 1 ) u(µ 2 ) u(µ 3 )} Key points: n (µ) is sharp and inexpensive to compute (online) Error bounds enable choice of good approximation spaces M. Grepl (RWTH Aachen) 14

46 Summary The reduced basis method provides accurate u N u APPROX reliable N u u N X ERR EST efficient surrogates cost O(N ) DECOMP N small to solutions of parametrized PDEs for the many-query, real-time, GREEDY and slim-computing contexts. M. Grepl (RWTH Aachen) 15

47 Extensions & References Review Articles: [RHP08], [QRM11],... Book: [HRS15] Reduced Basis Methods for: elliptic coercive [PRV + 02], [PRVP02],... elliptic noncoercive [VPRP03], [MPR02],... saddle point (Stokes) [Rov03], [RV07], [GV12],... parabolic [GP05], [RMM06], [HO08], [UP14],... hyperbolic (transport-dominated) [PR07], [HKP11], [DPW14],... Disclaimer: List contains to the best of my knowledge only the first papers on these topics and is thus not meant to be exhaustive References to nonaffine and nonlinear problems to follow... M. Grepl (RWTH Aachen) 16

48 Extensions & References References by topic for: error bounds (adjoint techniques) [PRV + 02], [GP05],... stability factor lower bounds [VRP02], [HRSP07], [HKC + 10], [CHMR09], a priori convergence [MPT02],... greedy algorithm original papger [VPRP03] convergence analysis [BMP + 12], [BCD + 11], [DPW12], [Haa13],... variations (hprb,...) [EPR10], [BTWGvBW07], [BTWG08],... geometry parametrization [RHP08], [LR10],... multiscale problems [Ngu08] stochastic problems [BBM + 09], [BBL + 10]... Disclaimer: see previous slide... M. Grepl (RWTH Aachen) 17

49 Part II Nonlinear (and Nonaffine) Problems M. Grepl (RWTH Aachen) 18

50 Nonlinear Problems Distinguish between problems involving quadratic nonlinearities higher-order or nonpolynomial nonlinearities M. Grepl (RWTH Aachen) 19

51 Nonlinear Problems Distinguish between problems involving quadratic nonlinearities (Petrov-)Galerkin projection A posteriori error bounds: Brezzi-Rappaz-Raviart [BRR80] Offline/online: dominant online cost O(N 4 ) Ref.: [VPP03], [VP05], [Dep08], [DL12], [RG12], [MPU14], [Yan14],... higher-order or nonpolynomial nonlinearities M. Grepl (RWTH Aachen) 19

52 Nonlinear Problems Distinguish between problems involving quadratic nonlinearities (Petrov-)Galerkin projection A posteriori error bounds: Brezzi-Rappaz-Raviart [BRR80] Offline/online: dominant online cost O(N 4 ) Ref.: [VPP03], [VP05], [Dep08], [DL12], [RG12], [MPU14], [Yan14],... higher-order or nonpolynomial nonlinearities Additional approximation of nonlinearity (EIM) A posteriori error estimation (in general no bounds) Offline-online decomposition possible References: to follow... M. Grepl (RWTH Aachen) 19

53 Problem Statement We wish to compute, for any parameter µ D, s(µ) = l(u(µ); µ) where u(µ) X satisfies a(u, v; µ) + g nl (u; x; µ) v = f(v), v X, and Ω f(v; µ), l(v; µ) are bounded linear functionals a(, ; µ) : X X R is continuous and coercive and the nonlinearity satisfies g nl : R Ω D R continuous; g nl (u 1 ; x; µ) g nl (u 2 ; x; µ), u 1 u 2 ; u g nl (u; x; µ) 0, u R, for any x Ω, µ D. M. Grepl (RWTH Aachen) 20

54 RB-Galerkin Approximation We let X N = span { u(µ i ) }{{}, i = 1,..., n } SNAPSHOTS and compute our approximation as where u N (µ) X N a(u N, v; µ) + s N (µ) = l(u N (µ); µ) satisfies Ω g nl (u N ; x; µ) v = f(v), v X N. M. Grepl (RWTH Aachen) 21

55 RB-Galerkin Approximation We let X N = span { u(µ i ) }{{}, i = 1,..., n } SNAPSHOTS and compute our approximation as where u N (µ) X N a(u N, v; µ) + s N (µ) = l(u N (µ); µ) satisfies Ω g nl (u N ; x; µ) v = f(v), v X N. Can we still compute u N efficiently? M. Grepl (RWTH Aachen) 21

56 RB-Galerkin Approximation Sample Computation: N We expand u N (µ) = u N j (µ) ζ j, j=1 and obtain (v = ζ i, 1 i N ) ( N ) g nl (u N (µ); x; µ) ζ i = g nl u N j (µ) ζ j ; x; µ Ω Ω j=1 ζ i M. Grepl (RWTH Aachen) 22

57 RB-Galerkin Approximation Sample Computation: N We expand u N (µ) = u N j (µ) ζ j, j=1 and obtain (v = ζ i, 1 i N ) ( N ) g nl (u N (µ); x; µ) ζ i = g nl u N j (µ) ζ j ; x; µ Ω Ω j=1 Issues Online assembly requires N -dependent cost ζ i M. Grepl (RWTH Aachen) 22

58 RB-Galerkin Approximation Sample Computation: N We expand u N (µ) = u N j (µ) ζ j, j=1 and obtain (v = ζ i, 1 i N ) ( N ) g nl (u N (µ); x; µ) ζ i = g nl u N j (µ) ζ j ; x; µ Issues Ω Ω j=1 Online assembly requires N -dependent cost Similar to nonaffine problems: assume g na is nonaffine, then b(ζ i ; µ) = g na x µ ( (x; µ) ζ i e.g. e σ )2 Ω ζ i requires N -dependent cost. M. Grepl (RWTH Aachen) 22

59 Empirical Interpolation Method Main Idea: g na (x; µ) g na (x; µ) = M M Then: b(ζ i ; µ) = Ω = M m=1 m=1 g na (x; µ) ζ i ϕ M m (µ) }{{} EIM Ω ϕ M m (µ) q m (x) ζ i, Ω q m (x) }{{} Collateral RB g na M (x; µ) ζ i M. Grepl (RWTH Aachen) 23

60 Empirical Interpolation Method Main Idea: g na (x; µ) g na (x; µ) = M M Then: b(ζ i ; µ) = Ω = M m=1 m=1 g na (x; µ) ζ i ϕ M m (µ) }{{} EIM Ω ϕ M m (µ) q m (x) ζ i, Ω q m (x) }{{} Collateral RB g na M (x; µ) ζ i Issues How do we choose X g M = span{q m (x), m = 1,..., M}? M. Grepl (RWTH Aachen) 23

61 Empirical Interpolation Method Main Idea: g na (x; µ) g na (x; µ) = M M Then: b(ζ i ; µ) = Issues Ω = M m=1 How do we choose X g M m=1 g na (x; µ) ζ i ϕ M m (µ) }{{} EIM Ω ϕ M m (µ) q m (x) ζ i, Ω q m (x) }{{} Collateral RB g na M (x; µ) ζ i = span{q m (x), m = 1,..., M}? Can we compute the coefficients ϕ M m (µ) efficiently? M. Grepl (RWTH Aachen) 23

62 Empirical Interpolation Method Main Idea: g na (x; µ) g na (x; µ) = M M Then: b(ζ i ; µ) = Issues Ω = M m=1 How do we choose X g M m=1 g na (x; µ) ζ i ϕ M m (µ) }{{} EIM Ω ϕ M m (µ) q m (x) ζ i, Ω q m (x) }{{} Collateral RB g na M (x; µ) ζ i = span{q m (x), m = 1,..., M}? Can we compute the coefficients ϕ M m (µ) efficiently? How do we quantify the (interpolation) error introduced? M. Grepl (RWTH Aachen) 23

63 Empirical Interpolation Method Greedy Procedure Initialize: Choose µ g 1 D and set x T 1 = arg max x Ω g(x; µg 1 ), q 1 = g(x; µg 1 ) g(x T 1 ; µg 1 ). [MNPP07] M. Grepl (RWTH Aachen) 24

64 Empirical Interpolation Method Greedy Procedure Initialize: Choose µ g 1 D and set x T 1 For 1 M M max 1: = arg max x Ω g(x; µg 1 ), q 1 = g(x; µg 1 ) g(x T 1 ; µg 1 ). [MNPP07] M. Grepl (RWTH Aachen) 24

65 Empirical Interpolation Method Greedy Procedure Initialize: Choose µ g 1 D and set x T 1 For 1 M M max 1: Sample Set = arg max x Ω g(x; µg 1 ), q 1 = g(x; µg 1 ) g(x T 1 ; µg 1 ). µ g M +1 arg max g( ; µ) g µ Ξ g M ( ; µ) L (Ω) train [MNPP07] M. Grepl (RWTH Aachen) 24

66 Empirical Interpolation Method Greedy Procedure Initialize: Choose µ g 1 D and set x T 1 For 1 M M max 1: Sample Set = arg max x Ω g(x; µg 1 ), q 1 = g(x; µg 1 ) g(x T 1 ; µg 1 ). µ g M +1 arg max g( ; µ) g µ Ξ g M ( ; µ) L (Ω) train Interpolation Points x T = arg max r M +1 M +1(x), x Ω where r M +1 (x) = g(x; µ g M +1) g M (x; µ g M +1) [MNPP07] M. Grepl (RWTH Aachen) 24

67 Empirical Interpolation Method Greedy Procedure Initialize: Choose µ g 1 D and set x T 1 For 1 M M max 1: Sample Set = arg max x Ω g(x; µg 1 ), q 1 = g(x; µg 1 ) g(x T 1 ; µg 1 ). µ g M +1 arg max g( ; µ) g µ Ξ g M ( ; µ) L (Ω) train Interpolation Points x T = arg max r M +1 M +1(x), x Ω where r M +1 (x) = g(x; µ g M +1) g M (x; µ g M +1) EIM Space q M +1 (x) = r M +1(x) r M +1 (x T M +1 ) [MNPP07] M. Grepl (RWTH Aachen) 24

68 Empirical Interpolation Method Interpolation Points, Samples, and Spaces: T g M = {x T 1 Ω,..., xt M Ω}, S g M {µ g 1 D,..., µg M D}, and associated X g M = span{q 1,..., q M }, 1 M M max, chosen by greedy procedure. M. Grepl (RWTH Aachen) 25

69 Empirical Interpolation Method Interpolation Points, Samples, and Spaces: T g M = {x T 1 Ω,..., xt M Ω}, S g M {µ g 1 D,..., µg M D}, and associated X g M = span{q 1,..., q M }, 1 M M max, chosen by greedy procedure. Approximation: for given µ D where M m=1 g(x; µ) g M (x; µ) = M m=1 ϕ M m (µ) q m (x), q m (x T n ) ϕ M m(µ) = g(x T n ; µ), 1 n M. Note: Bnm M = q m(x T n ) lower triangular and invertible. M. Grepl (RWTH Aachen) 25

70 Empirical Interpolation Method Interpolation Points, Samples, and Spaces: T g M = {x T 1 Ω,..., xt M Ω}, S g M {µ g 1 D,..., µg M D}, and associated X g M = span{q 1,..., q M }, 1 M M max, chosen by greedy procedure. Approximation: for given µ D where M m=1 g(x; µ) g M (x; µ) = M m=1 ϕ M m (µ) q m (x), q m (x T n ) ϕ M m(µ) = g(x T n ; µ), 1 n M. Note: Bnm M = q m(x T n ) lower triangular and invertible. How do we quantify the (interpolation) error? M. Grepl (RWTH Aachen) 25

71 Empirical Interpolation Method Next Point Estimator Given an approximation g M (x; µ) for M M max 1, we define ˆε M (µ) g(x T ; µ) g M +1 M(x T ; µ) M +1 and, if g( ; µ) X g M +1, we have g( ; µ) g M ( ; µ) L (Ω) ˆε M (µ). M. Grepl (RWTH Aachen) 26

72 Empirical Interpolation Method Next Point Estimator Given an approximation g M (x; µ) for M M max 1, we define ˆε M (µ) g(x T ; µ) g M +1 M(x T ; µ) M +1 and, if g( ; µ) X g M +1, we have g( ; µ) g M ( ; µ) L (Ω) ˆε M (µ). Note The estimator ˆε M (µ) is very cheap to evaluate M. Grepl (RWTH Aachen) 26

73 Empirical Interpolation Method Next Point Estimator Given an approximation g M (x; µ) for M M max 1, we define ˆε M (µ) g(x T M +1 ; µ) g M(x T M +1 ; µ) and, if g( ; µ) X g M +1, we have Note g( ; µ) g M ( ; µ) L (Ω) ˆε M (µ). The estimator ˆε M (µ) is very cheap to evaluate In general g( ; µ) X g M +1, and hence our estimator ˆε M (µ) is indeed a lower bound M. Grepl (RWTH Aachen) 26

74 Empirical Interpolation Method Next Point Estimator Given an approximation g M (x; µ) for M M max 1, we define ˆε M (µ) g(x T M +1 ; µ) g M(x T M +1 ; µ) and, if g( ; µ) X g M +1, we have Note g( ; µ) g M ( ; µ) L (Ω) ˆε M (µ). The estimator ˆε M (µ) is very cheap to evaluate In general g( ; µ) X g M +1, and hence our estimator ˆε M (µ) is indeed a lower bound An a posteriori error bound exists [EGP10], but does not extend to the nonlinear case M. Grepl (RWTH Aachen) 26

75 EIM-RB-Galerkin Approximation Given µ D, we evaluate s N,M (µ) = l(u N,M (µ); µ) where u N,M (µ) X N satisfies a(u N,M, v; µ) + g nl,u N,M M (x; µ) v = f(v), v X N. and with M j=1 Ω g nl,u N,M M (x; µ) M m=1 ϕ M m (µ)q m (x), Bij M ϕ M j(µ) = g nl (u N,M (x T i ; µ); xt i ; µ), 1 i M. M. Grepl (RWTH Aachen) 27

76 EIM-RB-Galerkin Approximation Given µ D, we evaluate s N,M (µ) = l(u N,M (µ); µ) where u N,M (µ) X N satisfies a(u N,M, v; µ) + g nl,u N,M M (x; µ) v = f(v), v X N. and with M j=1 Ω g nl,u N,M M (x; µ) M m=1 ϕ M m (µ)q m (x), Bij M ϕ M j(µ) = g nl (u N,M (x T i ; µ); xt i ; µ), 1 i M. Admits offline/online treatment: online cost (per Newton iteration) O(M 2 + MN 2 + N 3 ) M. Grepl (RWTH Aachen) 27

77 EIM-RB-Galerkin Approximation Given µ D, we evaluate s N,M (µ) = l(u N,M (µ); µ) where u N,M (µ) X N satisfies a(u N,M, v; µ) + g nl,u N,M M (x; µ) v = f(v), v X N. and with M j=1 Ω g nl,u N,M M (x; µ) M m=1 ϕ M m (µ)q m (x), Bij M ϕ M j(µ) = g nl (u N,M (x T i ; µ); xt i ; µ), 1 i M. Admits offline/online treatment: online cost (per Newton iteration) O(M 2 + MN 2 + N 3 ) How do we quantify the (RB+EIM) error? M. Grepl (RWTH Aachen) 27

78 Error Estimation Define the dual norm ϑ q M = sup v X Ω q M+1 v v X and the residual, for all v X, r N,M (v; µ) := f(v) a(u N,M, v; µ) Ω g nl,u N,M M (x; µ) v. M. Grepl (RWTH Aachen) 28

79 Error Estimation Define the dual norm ϑ q M = sup v X Ω q M+1 v v X and the residual, for all v X, r N,M (v; µ) := f(v) a(u N,M, v; µ) Ω g nl,u N,M M (x; µ) v. If g nl (u N,M ; x; µ) X g M +1, the error, e N,M := u u N,M, is bounded by 1 ( e N,M (µ) X rn,m ( ; µ) X + ˆε M (µ)ϑ q ) M. α LB (µ) M. Grepl (RWTH Aachen) 28

80 Error Estimation Define the dual norm ϑ q M = sup v X Ω q M+1 v v X and the residual, for all v X, r N,M (v; µ) := f(v) a(u N,M, v; µ) Ω g nl,u N,M M (x; µ) v. If g nl (u N,M ; x; µ) X g M +1, the error, e N,M := u u N,M, is bounded by 1 ( e N,M (µ) X rn,m ( ; µ) X + ˆε M (µ)ϑ q ) M. α LB (µ) Note Admits offline/online treatment: online cost O(M 2 N 2 ) M. Grepl (RWTH Aachen) 28

81 Error Estimation Define the dual norm ϑ q M = sup v X Ω q M+1 v v X and the residual, for all v X, r N,M (v; µ) := f(v) a(u N,M, v; µ) Ω g nl,u N,M M (x; µ) v. If g nl (u N,M ; x; µ) X g M +1, the error, e N,M := u u N,M, is bounded by 1 ( e N,M (µ) X rn,m ( ; µ) X + ˆε M (µ)ϑ q ) M. α LB (µ) Note Admits offline/online treatment: online cost O(M 2 N 2 ) In general g nl (u N,M ; x; µ) X g M +1, and hence the bound is more like an estimator M. Grepl (RWTH Aachen) 28

82 Nonlinear Parabolic Problems We wish to compute, for any µ D, s(t; µ) = l(u(t; µ)) where u(t; µ) Y, satisfies u(0; µ) = 0 m( u(t; µ), v; µ) + a(u(t; µ), v; µ) + g nl (u(t; µ); x; µ) v = b(v)u(t), v Y. Key Ingredients: Ω M. Grepl (RWTH Aachen) 29

83 Nonlinear Parabolic Problems We wish to compute, for any µ D, s(t; µ) = l(u(t; µ)) where u(t; µ) Y, satisfies u(0; µ) = 0 m( u(t; µ), v; µ) + a(u(t; µ), v; µ) + g nl (u(t; µ); x; µ) v = b(v)u(t), v Y. Key Ingredients: FE[x]-FD[t] truth approximation Ω M. Grepl (RWTH Aachen) 29

84 Nonlinear Parabolic Problems We wish to compute, for any µ D, s(t; µ) = l(u(t; µ)) where u(t; µ) Y, satisfies u(0; µ) = 0 m( u(t; µ), v; µ) + a(u(t; µ), v; µ) + g nl (u(t; µ); x; µ) v = b(v)u(t), v Y. Ω Key Ingredients: FE[x]-FD[t] truth approximation POD/Greedy algorithm to construct X N and X g M M. Grepl (RWTH Aachen) 29

85 Nonlinear Parabolic Problems We wish to compute, for any µ D, s(t; µ) = l(u(t; µ)) where u(t; µ) Y, satisfies u(0; µ) = 0 m( u(t; µ), v; µ) + a(u(t; µ), v; µ) + g nl (u(t; µ); x; µ) v = b(v)u(t), v Y. Key Ingredients: FE[x]-FD[t] truth approximation Ω POD/Greedy algorithm to construct X N and X g M Error bound/estimator for space-time energy norm M. Grepl (RWTH Aachen) 29

86 Nonlinear Parabolic Problems We wish to compute, for any µ D, s(t; µ) = l(u(t; µ)) where u(t; µ) Y, satisfies u(0; µ) = 0 m( u(t; µ), v; µ) + a(u(t; µ), v; µ) + g nl (u(t; µ); x; µ) v = b(v)u(t), v Y. Key Ingredients: FE[x]-FD[t] truth approximation Ω POD/Greedy algorithm to construct X N and X g M Error bound/estimator for space-time energy norm Online cost: O(M 2 + MN 2 + N 3 ) plus O(KM 2 N 2 ). Cost per Newton iteration per timestep. M. Grepl (RWTH Aachen) 29

87 Extensions & References Empirical Interpolation Method: methodology [BMNP04], [GMNP07], [MNPP07],... error bounds [EGP10], [EGPR13],... generalized EIM [MM13], [MMPY15],... variations [CS10],... Related Methods: best points interpolation [NPP08],... adaptive cross approximation [Beb00], [Beb11],... gappy POD [ES95], [BTDW04], [Wil06], [GFWG10],... missing point estimation [AWWB08],... For a comparison of these methods: [BMS14] M. Grepl (RWTH Aachen) 30

88 Extensions & References RB for nonaffine problems: elliptic [BMNP04], [GMNP07], [Ngu07], [Roz09],... parabolic [GMNP07], [Gre12a], [KGV12],... RB for nonlinear problems: elliptic [GMNP07], [NP08], [CTU09],... parabolic [GMNP07], [Gre12a], [DHO12], [Gre12b],... Issues Convergence and stability of EIM-RB approximation Greedy EIM algorithm requires (truth) solution at all µ D s Simultaneous EIM + RB [DP15] M. Grepl (RWTH Aachen) 31

89 Model Problem Given µ = (µ 1, µ 2 ) D [0.01, 10] 2, evaluate Ω =]0, 1[ 2 s k (µ) = u k (µ) where u k (µ) X, 1 k K, satisfies u 0 (µ) = 0 1 t m(uk (µ) u k 1 (µ), v) + a(u k (µ), v) + g nl (u k (µ); x; µ) v = b(v) sin(2πt k ), v X, Ω with g nl (u k (µ); x; µ) = µ 1 e µ 2 u k (µ) 1 µ 2. Truth Approximation: Space: X X e H0 1 (Ω) with dimension N = 2601; Time: Ī = (0, 2], t = 0.01, and thus K = 200. M. Grepl (RWTH Aachen) 32 Ω

90 Sample Results Truth solution u(t k ; µ) at time t k = 25 t and µ = (0.01, 0.01) µ = (10, 10) Solution for µ = (0.01,0.01), t k = 25 t Solution for µ = (10,10), t k = 25 t y k (µ) x (2) 0 0 x (1) y k (µ) x (2) 0 0 x (1) b(v) = 100 Ω v sin(2πx 1) sin(2πx 2 ) M. Grepl (RWTH Aachen) 33

91 Convergence: Energy Norm ε N,M,max,rel y M = 10 M = M = 40 M = M = 80 M = N N,M,max,rel y M = 20 M = M = 70 M = M = 130 M = N Results for sample Ξ test D of size 225. Plateau in curves for M fixed. Knees reflect balanced contribution of both error terms. Sharp bounds require conservative choice of M. M. Grepl (RWTH Aachen) 34

92 Convergence: Energy Norm & Output N M ɛ y N,M,max,rel y N,M,max,rel η y N,M E E E E E E E E E E N M ɛ s N,M,max,rel s N,M,max,rel η N,M s E E E E E E E E E E Results for sample Ξ test D of size 225. M. Grepl (RWTH Aachen) 35

93 Online Computational Times N M s N,M (µ, t k ) s N,M (µ, tk ) s(µ, t k ) E E E E E E E E E E 04 1 Average CPU times for sample Ξ test D of size 225. Computational savings O(10 3 ) for s N,M,max,rel < 1%. But offline stage much more expensive than for linear case. M. Grepl (RWTH Aachen) 36

94 Nonlinear Reaction-Diffusion Systems General formulation: y(x, t; µ) = (D(µ) y(x, t; µ)) + f(y(x, t; µ); µ) t Self-ignition of a coal stockpile [Gre12b] T (x,t) t = 2 T (x, t) + β Φ 2 (c(x, t) + 1) e γ/(t (x,t)+1), c(x,t) t = Le 2 c(x, t) Φ 2 (c(x, t) + 1) e γ/(t (x,t)+1), where γ : Arrhenius number, β : Prater temperature, Le : Lewis number, Φ : Thiele modulus. 1 s 1 s 2 T (x, t) c(x, t) x Nonlinearity not monotonic: a posterior error bounds not valid. M. Grepl (RWTH Aachen) 37

95 Nonlinear Reaction-Diffusion Systems Very complex dynamic behavior (depending on parameters). Here: µ γ [12, 12.6], all other parameters fixed, N = 501 Output Temperature and Concentration: γ = 12.0 Outputs, µ = 12 s 1 (t;µ): Temperature s 2 (t;µ): Concentration Time t Concentration s 2 (t;µ) Phase Plot: µ = Temperature s 1 (t;µ) M. Grepl (RWTH Aachen) 38

96 Nonlinear Reaction-Diffusion Systems Very complex dynamic behavior (depending on parameters). Here: µ γ [12, 12.6], all other parameters fixed, N = 501 Output Temperature and Concentration: γ = 12.5 Outputs, µ = 12.5 s 1 (t;µ): Temperature s 2 (t;µ): Concentration Time t Concentration s 2 (t;µ) Phase Plot: µ = Temperature s 1 (t;µ) M. Grepl (RWTH Aachen) 38

97 Nonlinear Reaction-Diffusion Systems Very complex dynamic behavior (depending on parameters). Here: µ γ [12, 12.6], all other parameters fixed, N = 501 Output Temperature and Concenctration: γ = Outputs, µ = s 1 (t;µ): Temperature s 2 (t;µ): Concentration Time t Concentration s 2 (t;µ) Phase Plot: µ = Temperature s 1 (t;µ) M. Grepl (RWTH Aachen) 38

98 Nonlinear Reaction-Diffusion Systems Rel. Error in s 1 (t;µ) Very complex dynamic behavior (depending on parameters). Here: µ γ [12, 12.6], all other parameters fixed, N = 501 N T = N c = 16, M = 36: t RB /t FEM = 5.12 E 03 Output s 1 (t;µ) FEM solution and RB approximation: γ = 12.6 Temperature, µ = 12.6 s 1 (t;µ) s 1,N (t;µ) Time t Time t Output s 2 (t;µ) Rel. Error in s 2 (t;µ) Concentration, µ = s 2 (t;µ) 0.6 s (t;µ) 2,N Time t Time t M. Grepl (RWTH Aachen) 38

99 Nonlinear Reaction-Diffusion Systems Very complex dynamic behavior (depending on parameters). Here: µ γ [12, 12.6], all other parameters fixed, N = 501 N T = N c = 16, M = 36: t RB /t FEM = 5.12 E 03 FEM, RB, and output interpolation: γ = 12.5 Rel. Error in s 1 (t;µ) Output s 1 (t;µ) Temperature, µ = Time t s 1 (t;µ) s 1,N (t;µ) s 1,int (t;µ) 10 6 RB Int. Time t Output s 2 (t;µ) Rel. Error in s 2 (t;µ) Concentration, µ = Time t s 2 (t;µ) s 2,N (t;µ) s 2,int (t;µ) RB Int. Time t M. Grepl (RWTH Aachen) 38

100 Nonlinear Reaction-Diffusion Systems Very complex dynamic behavior (depending on parameters). Here: µ γ [12, 12.6], all other parameters fixed, N = 501 N T = N c = 16, M = 36: t RB /t FEM = 5.12 E 03 FEM, RB, and output interpolation: γ = 12.5 Output s 1 (t;µ) Temperature, µ = 12.5 s 1 (t;µ) s 1,N (t;µ) s 1,int (t;µ) Time t Output s 2 (t;µ) Concentration, µ = s 2 (t;µ) 0.6 s (t;µ) 2,N 0.4 s 2,int (t;µ) Time t Rel. Error in s 1 (t;µ) RB Int Time t Rel. Error in s 2 (t;µ) RB Int Time t M. Grepl (RWTH Aachen) 38

101 References I [AWWB08] [BBL + 10] [BBM + 09] [BCD + 11] P. Astrid, S. Weiland, K. Willcox, and T. Backx. Missing point estimation in models described by proper orthogonal decomposition. IEEE Transactions on Automatic Control, 53(10): , S. Boyaval, C. Le Bris, T. Lelièvre, Y. Maday, N.C. Nguyen, and A.T. Patera. Reduced basis techniques for stochastic problems. Arch. Comput. Method. E., 17: , S. Boyaval, C. Le Bris, Y. Maday, N.C. Nguyen, and A.T. Patera. A reduced basis approach for variational problems with stochastic parameters: Application to heat conduction with variable robin coefficient. Comput. Methods Appl. Mech. Engrg., 198(41-44): , P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Convergence rates for greedy algorithms in reduced basis methods. SIAM J. Math. Anal., 43(3): , [Beb00] M. Bebendorf. Approximation of boundary element matrices. Numer. Math., 86(4): , [Beb11] M. Bebendorf. Adaptive cross approximation of multivariate functions. Constr. Approx., 34(2): , [BMNP04] [BMP + 12] [BMS14] [BRR80] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera. An empirical interpolation method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math., 339(9): , A. Buffa, Y. Maday, A.T. Patera, C. Prud homme, and G. Turinici. A priori convergence of the greedy algorithm for the parametrized reduced basis method. ESAIM: Math. Model. Num., 46(03): , M. Bebendorf, Y. Maday, and B. Stamm. Comparison of some reduced representation approximations. In A. Quarteroni and G. Rozza, editors, Reduced Order Methods for Modeling and Computational Reduction, volume 9 of MS&A - Modeling, Simulation and Applications, pages Springer International Publishing, F. Brezzi, J. Rappaz, and P. A. Raviart. Finite dimensional approximation of nonlinear problems. Numer. Math., 38(1):1 30, /BF M. Grepl (RWTH Aachen) 39

102 References II [BTDW04] [BTWG08] [BTWGvBW07] [CHMR09] [CS10] [CTU09] [Dep08] [DHO12] [DL12] [DP15] T. Bui-Thanh, M. Damodaran, and K. Willcox. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition. AIAA Journal, 42(8): , T. Bui-Thanh, K. Willcox, and O. Ghattas. Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput., 30: , October T. Bui-Thanh, K. Willcox, O. Ghattas, and B. van Bloemen Waanders. Goal-oriented, model-constrained optimization for reduction of large-scale systems. J. Comput. Phys., 224(2): , Y. Chen, J.S. Hesthaven, Y. Maday, and J. Rodríguez. Improved successive constraint method based a posteriori error estimate for reduced basis approximation of 2d maxwell s problem. ESAIM: Math. Model. Num., null: , S. Chaturantabut and D.C. Sorensen. Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput., 32(5): , C. Canuto, T. Tonn, and K. Urban. A-posteriori error analysis of the reduced basis method for non-affine parameterized nonlinear pde s. SIAM J. Numer. Anal., 47: , S. Deparis. Reduced basis error bound computation of parameter-dependent Navier-Stokes equations by the natural norm approach. SIAM Journal of Numerical Analysis, 46(4): , M. Drohmann, B. Haasdonk, and M. Ohlberger. Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput., 34(2):A937 A969, S. Deparis and A.E. Løvgren. Stabilized reduced basis approximation of incompressible three-dimensional Navier-Stokes equations in parametrized deformed domains. J. Sci. Comput., 50: , /s C. Daversin and C. Prud homme. Simultaneous empirical interpolation and reduced basis method for non-linear problems. Technical report, arxiv: [math.ap], M. Grepl (RWTH Aachen) 40

103 References III [DPW12] [DPW14] [EGP10] [EGPR13] [EPR10] R. DeVore, G. Petrova, and P. Wojtaszczyk. Greedy algorithms for reduced bases in Banach spaces. Constr. Approx., W. Dahmen, C. Plesken, and G. Welper. Double greedy algorithms: Reduced basis methods for transport dominated problems. ESAIM: Mathematical Modelling and Numerical Analysis, 48: , J.L. Eftang, M.A. Grepl, and A.T. Patera. A posteriori error bounds for the empirical interpolation method. C. R. Math., 348: , J.L. Eftang, M.A. Grepl, A.T. Patera, and E.M. Rønquist. Approximation of parametric derivatives by the empirical interpolation method. Foundations of Computational Mathematics, 13(5): , J.L. Eftang, A.T. Patera, and E.M. Rønquist. An hp certified reduced basis method for parametrized elliptic partial differential equations. SIAM J. Sci. Comput., 32: , [ES95] R. Everson and L. Sirovich. Karhunen-Loeve procedure for gappy data. JOSA A, 12(8): , [GFWG10] [GMNP07] [GP05] [Gre12a] [Gre12b] D. Galbally, K. Fidkowski, K. Willcox, and O. Ghattas. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. Int. J. Numer. Meth. Engng, 81(12): , M.A. Grepl, Y. Maday, N.C. Nguyen, and A.T. Patera. Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: Math. Model. Num., 41(3): , M.A. Grepl and A.T. Patera. A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. ESAIM: Math. Model. Num., 39(1): , M.A. Grepl. Certified reduced basis methods for nonaffine linear time-varying and nonlinear parabolic partial differential equations. M3AS: Mathematical Models and Methods in Applied Sciences, 22(3):40, M.A. Grepl. Model order reduction of parametrized nonlinear reaction-diffusion systems. Computers and Chemical Engineering, 43(0):33 44, M. Grepl (RWTH Aachen) 41

104 References IV [GV12] A.-L. Gerner and K. Veroy. Certified reduced basis methods for parametrized saddle point problems. SIAM J. Sci. Comput., 34(5):A2812 A2836, [Haa13] B. Haasdonk. Convergence rates of the pod-greedy method. ESAIM: Math. Model. Num., 47: , [HKC + 10] [HKP11] [HO08] [HRS15] [HRSP07] [KGV12] [LR10] D. B. P. Huynh, D. J. Knezevic, Y. Chen, J.S. Hesthaven, and A.T. Patera. A natural-norm successive constraint method for inf-sup lower bounds. Comput. Methods Appl. Mech. Engrg., 199(29-32): , D. P. B. Huynh, D. J. Knezevic, and A. T. Patera. A laplace transform certified reduced basis method; application to the heat equation and wave equation. C. R. Math., 349: , B. Haasdonk and M. Ohlberger. Reduced basis method for finite volume approximations of parametrized linear evolution equations. ESAIM: Math. Model. Num., 42(02): , J.S. Hesthaven, G. Rozza, and B. Stamm. Certified Reduced Basis Methods for Parametrized Problems. Springer Briefs in Mathematics. Springer, D. B. P. Huynh, G. Rozza, S. Sen, and A. T. Patera. A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math., 345(8): , D. Klindworth, M.A. Grepl, and G. Vossen. Certified reduced basis methods for parametrized parabolic partial differential equations with non-affine source terms. Comput. Methods Appl. Mech. Engrg., (0): , T. Lassila and G. Rozza. Parametric free-form shape design with pde models and reduced basis method. Comput. Methods Appl. Mech. Engrg., 199(23-24): , M. Grepl (RWTH Aachen) 42

105 References V [MM13] [MMPY15] [MNPP07] [MPR02] [MPT02] [MPU14] [Ngu07] [Ngu08] [NP08] Y. Maday and O. Mula. A generalized empirical interpolation method: Application of reduced basis techniques to data assimilation. In Analysis and Numerics of Partial Differential Equations, volume 4 of Springer INdAM Series, pages Springer Milan, Y. Maday, O. Mula, A.T. Patera, and M. Yano. The generalized empirical interpolation method: Stability theory on hilbert spaces with an application to the stokes equation. Computer Methods in Applied Mechanics and Engineering, 287(0): , Y. Maday, N.C. Nguyen, A.T. Patera, and G.S.H. Pau. A general, multipurpose interpolation procedure: the magic points. Communications on Pure and Applied Analysis (CPAA), 8: , Y. Maday, A. T. Patera, and D. V. Rovas. A blackbox reduced-basis output bound method for noncoercive linear problems. Studies in Mathematics and its Applications, D. Cioranescu and J. L. Lions, eds., Elsevier Science B.V., 31: , Y. Maday, A.T. Patera, and G. Turinici. Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations. C. R. Math., 335(3): , M.Yano, A.T. Patera, and K. Urban. A space-time hp-interpolation-based certified reduced basis method for burgers equation. Mathematical Models and Methods in Applied Sciences, 0(0):1 33, N. C. Nguyen. A posteriori error estimation and basis adaptivity for reduced-basis approximation of nonaffine-parametrized linear elliptic partial differential equations. J. Comput. Phys., 227: , December N.C. Nguyen. A multiscale reduced-basis method for parametrized elliptic partial differential equations with multiple scales. J. Comput. Phys., 227(23): , N. C. Nguyen and J. Peraire. An efficient reduced-order modeling approach for non-linear parametrized partial differential equations. Int. J. Numer. Methods Eng., 76:27 55, M. Grepl (RWTH Aachen) 43

106 References VI [NPP08] [PR07] [PRV + 02] [PRVP02] [QRM11] [RG12] [RHP08] [RMM06] [Rov03] N. C. Nguyen, A. T. Patera, and J. Peraire. A best points interpolation method for efficient approximation of parametrized functions. Int. J. Numer. Methods Eng., 73(4): , Anthony T. Patera and Einar M. Ronquist. Reduced basis approximation and a posteriori error estimation for a boltzmann model. Comput. Methods Appl. Mech. Engrg., 196(29-30): , C. Prud homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, and G. Turinici. Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods. J. Fluid. Eng., 124(1):70 80, C. Prud homme, D.V. Rovas, K. Veroy, and A.T. Patera. A mathematical and computational framework for reliable real-time solution of parametrized partial differential equations. ESAIM: Math. Model. Num., 36: , A. Quarteroni, G. Rozza, and A. Manzoni. Certified reduced basis approximation for parametrized partial differential equations and applications. Journal of Mathematics in Industry, 1(3):1 49, M. Rasty and M.A. Grepl. Efficient reduced basis solution of quadratically nonlinear diffusion equations. In Proceedings of 7th Vienna Conference on Mathematical Modelling MATHMOD 2012, accepted. G. Rozza, D.B.P. Huynh, and A.T. Patera. Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations. Archives of Computational Methods in Engineering, 15(3): , D. V. Rovas, L. Machiels, and Y. Maday. Reduced-basis output bound methods for parabolic problems. IMA J. Numer. Anal., 26(3): , D.V. Rovas. Reduced-Basis Output Bound Methods for Parametrized Partial Differential Equations. PhD thesis, Massachusetts Institute of Technology, February M. Grepl (RWTH Aachen) 44

107 References VII [Roz09] [RV07] [UP14] [VP05] [VPP03] [VPRP03] [VRP02] [Wil06] [Yan14] G. Rozza. Reduced basis methods for stokes equations in domains with non-affine parameter dependence. Computing and Visualization in Science, 12:23 35, /s G. Rozza and K. Veroy. On the stability of the reduced basis method for Stokes equations in parametrized domains. Comput. Methods Appl. Mech. Engrg., 196(7): , K. Urban and A.T. Patera. An improved error bound for reduced basis approximation of linear parabolic problems. Math. Comp., 83: , K. Veroy and A. T. Patera. Certified real-time solution of the parametrized steady incompressible Navier-Stokes equations: rigorous reduced-basis a posteriori error bounds. Internat. J. Numer. Methods Fluids, 47: , K. Veroy, C. Prud homme, and A.T. Patera. Reduced-basis approximation of the viscous burgers equation: rigorous a posteriori error bounds. C. R. Math., 337(9): , K. Veroy, C. Prud homme, D. V. Rovas, and A. T. Patera. A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, AIAA Paper K. Veroy, D.V. Rovas, and A.T. Patera. A posteriori error estimation for reduced-basis approximation of parametrized elliptic coercive partial differential equations: convex inverse bound conditioners. ESAIM: Contr. Optim. Ca., 8: , Special Volume: A tribute to J.L. Lions. K. Willcox. Unsteady flow sensing and estimation via the gappy proper orthogonal decomposition. Computers and Fluids, 35(2): , M. Yano. A space-time petrov galerkin certified reduced basis method: Application to the boussinesq equations. SIAM J. Sci. Comput., 36(1):A232 A266, M. Grepl (RWTH Aachen) 45

108 Thank you for your attention! For questions or comments: M. Grepl (RWTH Aachen) 46

109 Part III Extra Slides M. Grepl (RWTH Aachen) 47

110 Offline/Online Decomposition: Error Bounds Crucial ingredient: Dual norm of residual r N ( ; µ) X We expand u N (µ) = N j=1 u N j (µ) ζ j and obtain from the definition of the residual and affine dependence r N (v; µ) = f(v) a(u N (µ), v; µ) ( N ) = f(v) a u N n (µ)ζ n, v; µ n=1 = f(v) N u N n (µ) a ( ζ n, v; µ ) n=1 = f(v) N n=1 u N n (µ) Q a q=1 θ q a (µ) aq( ζ n, v ) For simplicity, we assume here that f(v) does not depend on µ. M. Grepl (RWTH Aachen) 48

111 Offline/Online Decomposition: Error Bounds Riesz representation: (ê(µ), v) X = r N (v; µ) = f(v) Q a N q=1 n=1 θ q a (µ)u N n(µ)a q( ζ n, v ), M. Grepl (RWTH Aachen) 49

112 Offline/Online Decomposition: Error Bounds Riesz representation: (ê(µ), v) X = r N (v; µ) Linear Superposition: where = f(v) ê(µ) = C + Q a N q=1 n=1 Q a N q=1 n=1 (C, v) X = f(v), v X ; (A q n, v) X = a q (ζ n, v), v X, θ q a (µ)u N n(µ)a q( ζ n, v ), θ q a (µ)u N n(µ)a q n 1 n N, 1 q Q a. M. Grepl (RWTH Aachen) 49

113 Offline/Online Decomposition: Error Bounds Thus ê(µ) 2 X = (C + Q a N q=1 n=1 θ q a (µ)u N n(µ)a q n, ) X = M. Grepl (RWTH Aachen) 50

114 Offline/Online Decomposition: Error Bounds Thus ê(µ) 2 X = (C + Q a N q=1 n=1 = (C, C) X + Q a 2(C, A q n ) X + θ q a (µ)u N n(µ)a q n, ) N q=1 n=1 Q a q =1 n =1 { θa q(µ)u N n(µ) N X } θa q (µ)u N n (µ)(aq n, Aq n ) X M. Grepl (RWTH Aachen) 50

115 Offline/Online Decomposition: Error Bounds Offline: once, parameter independent Compute C, A q n, 1 n N max, 1 q Q a, from (C, v) X = f(v), v X ; (A q n, v) X = a q (ζ n, v), v X, 1 n N, 1 q Q a. M. Grepl (RWTH Aachen) 51

116 Offline/Online Decomposition: Error Bounds Offline: once, parameter independent Compute C, A q n, 1 n N max, 1 q Q a, from (C, v) X = f(v), v X ; (A q n, v) X = a q (ζ n, v), v X, 1 n N, 1 q Q a. Form/Store (C, C) X, (C, A q n ) X, (A q n, Aq n ) X, 1 n, n N max, 1 q, q Q a. Complexity depends on N, Q a, and N. M. Grepl (RWTH Aachen) 51

117 Offline/Online Decomposition: Error Bounds Online: many times, for each new µ Evaluate ê(µ) 2 X = (C, C) X + Q a 2(C, A q n ) X + N q=1 n=1 Q a q =1 n =1 (and associated solution u N (µ)) { θa q(µ)u N n(µ) N } θa q (µ)u N n (µ)(aq n, Aq n ) X O(Q 2 a N 2 ) Complexity depends on N, Q a, but not N. M. Grepl (RWTH Aachen) 52

118 Offline/Online Decomposition: Error Bounds Summary of computational cost: OFFLINE O(Q a N max N ) + O(Q 2 a N 2 max N ) solve Poisson problems form µ-independent inner products ; ONLINE O(Q 2 a N 2 ) evaluate ê(µ) X -sum ; Online cost is independent of N. M. Grepl (RWTH Aachen) 53

The Reduced Basis Method:

The Reduced Basis Method: The Reduced Basis Method: Application to Problems in Fluid and Solid Mechanics ++ Aachen Institute for Advanced Study in Computational Engineering Science K. Veroy-Grepl 31 January 2014 AICES & MOR I The

More information

Bounding Stability Constants for Affinely Parameter-Dependent Operators

Bounding Stability Constants for Affinely Parameter-Dependent Operators Bounding Stability Constants for Affinely Parameter-Dependent Operators Robert O Connor a a RWTH Aachen University, Aachen, Germany Received *****; accepted after revision +++++ Presented by Abstract In

More information

REDUCED BASIS METHOD

REDUCED BASIS METHOD REDUCED BASIS METHOD approximation of PDE s, interpolation, a posteriori estimates Yvon Maday Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie, Paris, France, Institut Universitaire de

More information

The Generalized Empirical Interpolation Method: Analysis of the convergence and application to data assimilation coupled with simulation

The Generalized Empirical Interpolation Method: Analysis of the convergence and application to data assimilation coupled with simulation The Generalized Empirical Interpolation Method: Analysis of the convergence and application to data assimilation coupled with simulation Y. Maday (LJLL, I.U.F., Brown Univ.) Olga Mula (CEA and LJLL) G.

More information

Reduced basis method for the reliable model reduction of Navier-Stokes equations in cardiovascular modelling

Reduced basis method for the reliable model reduction of Navier-Stokes equations in cardiovascular modelling Reduced basis method for the reliable model reduction of Navier-Stokes equations in cardiovascular modelling Toni Lassila, Andrea Manzoni, Gianluigi Rozza CMCS - MATHICSE - École Polytechnique Fédérale

More information

Empirical Interpolation of Nonlinear Parametrized Evolution Operators

Empirical Interpolation of Nonlinear Parametrized Evolution Operators MÜNSTER Empirical Interpolation of Nonlinear Parametrized Evolution Operators Martin Drohmann, Bernard Haasdonk, Mario Ohlberger 03/12/2010 MÜNSTER 2/20 > Motivation: Reduced Basis Method RB Scenario:

More information

A SEAMLESS REDUCED BASIS ELEMENT METHOD FOR 2D MAXWELL S PROBLEM: AN INTRODUCTION

A SEAMLESS REDUCED BASIS ELEMENT METHOD FOR 2D MAXWELL S PROBLEM: AN INTRODUCTION A SEAMLESS REDUCED BASIS ELEMENT METHOD FOR 2D MAXWELL S PROBLEM: AN INTRODUCTION YANLAI CHEN, JAN S. HESTHAVEN, AND YVON MADAY Abstract. We present a reduced basis element method (RBEM) for the time-harmonic

More information

Empirical Interpolation Methods

Empirical Interpolation Methods Empirical Interpolation Methods Yvon Maday Laboratoire Jacques-Louis Lions - UPMC, Paris, France IUF and Division of Applied Maths Brown University, Providence USA Doctoral Workshop on Model Reduction

More information

Some recent developments on ROMs in computational fluid dynamics

Some recent developments on ROMs in computational fluid dynamics Some recent developments on ROMs in computational fluid dynamics F. Ballarin 1, S. Ali 1, E. Delgado 2, D. Torlo 1,3, T. Chacón 2, M. Gómez 2, G. Rozza 1 1 mathlab, Mathematics Area, SISSA, Trieste, Italy

More information

A Two-Step Certified Reduced Basis Method

A Two-Step Certified Reduced Basis Method A Two-Step Certified Reduced Basis Method The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Eftang,

More information

Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems. Giulia Fabrini Laura Iapichino Stefan Volkwein

Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems. Giulia Fabrini Laura Iapichino Stefan Volkwein Universität Konstanz Reduced-Order Greedy Controllability of Finite Dimensional Linear Systems Giulia Fabrini Laura Iapichino Stefan Volkwein Konstanzer Schriften in Mathematik Nr. 364, Oktober 2017 ISSN

More information

A certified trust region reduced basis approach to PDE-constrained optimization

A certified trust region reduced basis approach to PDE-constrained optimization J U E 2 0 1 6 P R E P R I T 4 5 3 A certified trust region reduced basis approach to PDE-constrained optimization Elizabeth Qian *, Martin Grepl, Karen Veroy and Karen Willcox * Institut für Geometrie

More information

Chapitre 1. Cours Reduced Basis Output Bounds Methodes du 1er Semestre

Chapitre 1. Cours Reduced Basis Output Bounds Methodes du 1er Semestre Chapitre 1 Cours Methodes du 1er Semestre 2007-2008 Pr. Christophe Prud'homme christophe.prudhomme@ujf-grenoble.fr Université Joseph Fourier Grenoble 1 1.1 1 2 FEM Approximation Approximation Estimation

More information

Model reduction for multiscale problems

Model reduction for multiscale problems Model reduction for multiscale problems Mario Ohlberger Dec. 12-16, 2011 RICAM, Linz , > Outline Motivation: Multi-Scale and Multi-Physics Problems Model Reduction: The Reduced Basis Approach A new Reduced

More information

A CERTIFIED TRUST REGION REDUCED BASIS APPROACH TO PDE-CONSTRAINED OPTIMIZATION

A CERTIFIED TRUST REGION REDUCED BASIS APPROACH TO PDE-CONSTRAINED OPTIMIZATION A CERTIFIED TRUST REGIO REDUCED BASIS APPROACH TO PDE-COSTRAIED OPTIMIZATIO ELIZABETH QIA, MARTI GREPL, KARE VEROY, AD KARE WILLCOX Abstract. Parameter optimization problems constrained by partial differential

More information

MODEL ORDER REDUCTION

MODEL ORDER REDUCTION MODEL ORDER REDUCTION Approximate yet accurate surrogates for large-scale simulation KAREN E. WILLCOX Science at Extreme Scales: Where Big Data Meets Large-Scale Computing Tutorials Institute for Pure

More information

Model Reduction Methods

Model Reduction Methods Martin A. Grepl 1, Gianluigi Rozza 2 1 IGPM, RWTH Aachen University, Germany 2 MATHICSE - CMCS, Ecole Polytechnique Fédérale de Lausanne, Switzerland Summer School "Optimal Control of PDEs" Cortona (Italy),

More information

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 05.2013 February 2013 (NEW 10.2013 A weighted empirical

More information

Certified Reduced Basis Methods for Parametrized Distributed Optimal Control Problems

Certified Reduced Basis Methods for Parametrized Distributed Optimal Control Problems Certified Reduced Basis Methods for Parametrized Distributed Optimal Control Problems Mark Kärcher, Martin A. Grepl and Karen Veroy Preprint o. 402 July 2014 Key words: Optimal control, reduced basis method,

More information

Goal-oriented error estimation for the reduced basis method, with application to sensitivity analysis

Goal-oriented error estimation for the reduced basis method, with application to sensitivity analysis Goal-oriented error estimation for the reduced basis method, with application to sensitivity analysis Alexandre Janon Maëlle Nodet Clémentine Prieur July 10, 2014 Abstract The reduced basis method is a

More information

A REDUCED BASIS METHOD FOR THE HAMILTON-JACOBI-BELLMAN EQUATION WITH APPLICATION TO THE EUROPEAN UNION EMISSION TRADING SCHEME

A REDUCED BASIS METHOD FOR THE HAMILTON-JACOBI-BELLMAN EQUATION WITH APPLICATION TO THE EUROPEAN UNION EMISSION TRADING SCHEME A REDUCED BASIS METHOD FOR THE HAMILTO-JACOBI-BELLMA EQUATIO WITH APPLICATIO TO THE EUROPEA UIO EMISSIO TRADIG SCHEME SEBASTIA STECK AD KARSTE URBA Abstract. This paper draws on two sources of motivation:

More information

Multiobjective PDE-constrained optimization using the reduced basis method

Multiobjective PDE-constrained optimization using the reduced basis method Multiobjective PDE-constrained optimization using the reduced basis method Laura Iapichino1, Stefan Ulbrich2, Stefan Volkwein1 1 Universita t 2 Konstanz - Fachbereich Mathematik und Statistik Technischen

More information

Received *****; accepted after revision Presented by. arxiv: v1 [math.ap] 23 Apr 2015

Received *****; accepted after revision Presented by. arxiv: v1 [math.ap] 23 Apr 2015 , Received *****; accepted after revision +++++ Presented by arxiv:1504.06131v1 [math.ap] 23 Apr 2015 1 Simultaneous Empirical Interpolation and Reduced Basis method for non-linear problems Cécile Daversin,

More information

Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws

Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws Proceedings of Symposia in Applied Mathematics Reduced Basis Method for Explicit Finite Volume Approximations of Nonlinear Conservation Laws Bernard Haasdonk and Mario Ohlberger Abstract. The numerical

More information

POD-DEIM APPROACH ON DIMENSION REDUCTION OF A MULTI-SPECIES HOST-PARASITOID SYSTEM

POD-DEIM APPROACH ON DIMENSION REDUCTION OF A MULTI-SPECIES HOST-PARASITOID SYSTEM POD-DEIM APPROACH ON DIMENSION REDUCTION OF A MULTI-SPECIES HOST-PARASITOID SYSTEM G. Dimitriu Razvan Stefanescu Ionel M. Navon Abstract In this study, we implement the DEIM algorithm (Discrete Empirical

More information

A CERTIFIED TRUST REGION REDUCED BASIS APPROACH TO PDE-CONSTRAINED OPTIMIZATION

A CERTIFIED TRUST REGION REDUCED BASIS APPROACH TO PDE-CONSTRAINED OPTIMIZATION SIAM J. SCI. COMPUT. Vol. 39, o. 5, pp. S434 S460 c 2017 Elizabeth Qian, Martin Grepl, Karen Veroy & Karen Willcox A CERTIFIED TRUST REGIO REDUCED BASIS APPROACH TO PDE-COSTRAIED OPTIMIZATIO ELIZABETH

More information

Certified Reduced Basis Approximation for Parametrized Partial Differential Equations and Applications

Certified Reduced Basis Approximation for Parametrized Partial Differential Equations and Applications Certified Reduced Basis Approximation for Parametrized Partial Differential Equations and Applications Alfio Quarteroni,, Gianluigi Rozza and Andrea Manzoni Modelling and Scientific Computing, CMCS, Mathematics

More information

UNITEXT La Matematica per il 3+2

UNITEXT La Matematica per il 3+2 UNITEXT La Matematica per il 3+2 Volume 92 Editor-in-chief A. Quarteroni Series editors L. Ambrosio P. Biscari C. Ciliberto M. Ledoux W.J. Runggaldier More information about this series at http://www.springer.com/series/5418

More information

Reduced order modelling in multi-parametrized system: applications to inverse problems and optimal control

Reduced order modelling in multi-parametrized system: applications to inverse problems and optimal control Reduced order modelling in multi-parametrized system: applications to inverse problems and optimal control Gianluigi Rozza in collaboration with Federico Negri, Andrea Manzoni SISSA Mathlab EPFL - MATHICSE

More information

Submitted to SISC; revised August A SPACE-TIME PETROV-GALERKIN CERTIFIED REDUCED BASIS METHOD: APPLICATION TO THE BOUSSINESQ EQUATIONS

Submitted to SISC; revised August A SPACE-TIME PETROV-GALERKIN CERTIFIED REDUCED BASIS METHOD: APPLICATION TO THE BOUSSINESQ EQUATIONS Submitted to SISC; revised August 2013. A SPACE-TIME PETROV-GALERKI CERTIFIED REDUCED BASIS METHOD: APPLICATIO TO THE BOUSSIESQ EQUATIOS MASAYUKI YAO Abstract. We present a space-time certified reduced

More information

Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants

Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants Reduced basis approximation and a posteriori error estimation for Stokes flows in parametrized geometries: roles of the inf-sup stability constants The MIT Faculty has made this article openly available.

More information

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems Mark Kärcher 1 and Martin A. Grepl Bericht r. 361 April 013 Keywords: Optimal control, reduced

More information

Model reduction of parametrized aerodynamic flows: discontinuous Galerkin RB empirical quadrature procedure. Masayuki Yano

Model reduction of parametrized aerodynamic flows: discontinuous Galerkin RB empirical quadrature procedure. Masayuki Yano Model reduction of parametrized aerodynamic flows: discontinuous Galerkin RB empirical quadrature procedure Masayuki Yano University of Toronto Institute for Aerospace Studies Acknowledgments: Anthony

More information

Reduced Modeling in Data Assimilation

Reduced Modeling in Data Assimilation Reduced Modeling in Data Assimilation Peter Binev Department of Mathematics and Interdisciplinary Mathematics Institute University of South Carolina Challenges in high dimensional analysis and computation

More information

REDUCED ORDER METHODS

REDUCED ORDER METHODS REDUCED ORDER METHODS Elisa SCHENONE Legato Team Computational Mechanics Elisa SCHENONE RUES Seminar April, 6th 5 team at and of Numerical simulation of biological flows Respiration modelling Blood flow

More information

Reduced basis techniques for stochastic problems

Reduced basis techniques for stochastic problems Noname manuscript No. (will be inserted by the editor) Reduced basis techniques for stochastic problems S. Boyaval 1, C. Le Bris 1, T. Lelièvre 1, Y. Maday 2, N.C. Nguyen 3, A.T. Patera 3 1 Université

More information

The Certified Reduced-Basis Method for Darcy Flows in Porous Media

The Certified Reduced-Basis Method for Darcy Flows in Porous Media The Certified Reduced-Basis Method for Darcy Flows in Porous Media S. Boyaval (1), G. Enchéry (2), R. Sanchez (2), Q. H. Tran (2) (1) Laboratoire Saint-Venant (ENPC - EDF R&D - CEREMA) & Matherials (INRIA),

More information

Evaluation of Flux Integral Outputs for the Reduced Basis Method

Evaluation of Flux Integral Outputs for the Reduced Basis Method Evaluation of Flux Integral Outputs for the Reduced Basis Method Jens L. Eftang and Einar M. Rønquist 20th October 2009 Abstract In this paper, we consider the evaluation of flux integral outputs from

More information

A reduced basis method with an exact solution certificate and spatio-parameter adaptivity: application to linear elasticity

A reduced basis method with an exact solution certificate and spatio-parameter adaptivity: application to linear elasticity A reduced basis method with an exact solution certificate and spatio-parameter adaptivity: application to linear elasticity Masayuki Yano Abstract We present a reduced basis method for parametrized linear

More information

Model reduction of parametrized aerodynamic flows: stability, error control, and empirical quadrature. Masayuki Yano

Model reduction of parametrized aerodynamic flows: stability, error control, and empirical quadrature. Masayuki Yano Model reduction of parametrized aerodynamic flows: stability, error control, and empirical quadrature Masayuki Yano University of Toronto Institute for Aerospace Studies Acknowledgments: Anthony Patera;

More information

Reduced-Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis

Reduced-Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis Reduced-Basis Approximations and A Posteriori Error Bounds for Nonaffine and Nonlinear Partial Differential Equations: Application to Inverse Analysis by Nguyen Ngoc Cuong B.Eng., HCMC University of Technology

More information

A Reduced-Basis Approach to the Reduction of Computations in Multiscale Models & Uncertainty Quantification

A Reduced-Basis Approach to the Reduction of Computations in Multiscale Models & Uncertainty Quantification A Reduced-Basis Approach to the Reduction of Computations in Multiscale Models & Uncertainty Quantification Sébastien Boyaval1,2,3 1 Univ. Paris Est, Laboratoire d hydraulique Saint-Venant (EDF R&D Ecole

More information

A Natural Norm Successive Constraint Method for Inf-Sup Lower Bounds

A Natural Norm Successive Constraint Method for Inf-Sup Lower Bounds A Natural Norm Successive Constraint Method for Inf-Sup Lower Bounds D.B.P. Huynh a, D.J. Knezevic b, Y. Chen c, J.S. Hesthaven c, A.T. Patera,b a Mechanical Engineering Department, National University

More information

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems

Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Nonlinear Model Reduction for Uncertainty Quantification in Large-Scale Inverse Problems Krzysztof Fidkowski, David Galbally*, Karen Willcox* (*MIT) Computational Aerospace Sciences Seminar Aerospace Engineering

More information

Greedy control. Martin Lazar University of Dubrovnik. Opatija, th Najman Conference. Joint work with E: Zuazua, UAM, Madrid

Greedy control. Martin Lazar University of Dubrovnik. Opatija, th Najman Conference. Joint work with E: Zuazua, UAM, Madrid Greedy control Martin Lazar University of Dubrovnik Opatija, 2015 4th Najman Conference Joint work with E: Zuazua, UAM, Madrid Outline Parametric dependent systems Reduced basis methods Greedy control

More information

Yanlai Chen 1, Jan S. Hesthaven 1,YvonMaday 1, 2 and Jerónimo Rodríguez 3

Yanlai Chen 1, Jan S. Hesthaven 1,YvonMaday 1, 2 and Jerónimo Rodríguez 3 ESAIM: M2AN 43 (2009) 099 6 DOI: 0.05/m2an/2009037 ESAIM: Mathematical Modelling and Numerical Analysis www.esaim-m2an.org IMPROVED SUCCESSIVE CONSTRAINT METHOD BASED A POSTERIORI ERROR ESTIMATE FOR REDUCED

More information

Model Reduction Methods

Model Reduction Methods Martin A. Grepl 1, Gianluigi Rozza 2 1 IGPM, RWTH Aachen University, Germany 2 MATHICSE - CMCS, Ecole Polytechnique Fédérale de Lausanne, Switzerland Summer School "Optimal Control of PDEs" Cortona (Italy),

More information

Reduced Basis Approximation and. A Posteriori Error Estimation for. Parametrized Partial Differential Equations

Reduced Basis Approximation and. A Posteriori Error Estimation for. Parametrized Partial Differential Equations Reduced Basis Approximation and A Posteriori Error Estimation for Parametrized Partial Differential Equations Anthony T. Patera Gianluigi Rozza Massachusetts Institute of Technology Department of Mechanical

More information

A-Posteriori Error Estimation for Parameterized Kernel-Based Systems

A-Posteriori Error Estimation for Parameterized Kernel-Based Systems A-Posteriori Error Estimation for Parameterized Kernel-Based Systems Daniel Wirtz Bernard Haasdonk Institute for Applied Analysis and Numerical Simulation University of Stuttgart 70569 Stuttgart, Pfaffenwaldring

More information

Greedy Control. Enrique Zuazua 1 2

Greedy Control. Enrique Zuazua 1 2 Greedy Control Enrique Zuazua 1 2 DeustoTech - Bilbao, Basque Country, Spain Universidad Autónoma de Madrid, Spain Visiting Fellow of LJLL-UPMC, Paris enrique.zuazua@deusto.es http://enzuazua.net X ENAMA,

More information

Convergence Rates for Greedy Algorithms in Reduced Basis Methods

Convergence Rates for Greedy Algorithms in Reduced Basis Methods Convergence Rates for Greedy Algorithms in Reduced Basis Methods Peter Binev, Albert Cohen, Wolfgang Dahmen, Ronald DeVore, Guergana Petrova, and Przemyslaw Wojtaszczyk October 4, 2010 Abstract The reduced

More information

September 22, :50 WSPC/INSTRUCTION FILE KNP Boussinesq revised extended

September 22, :50 WSPC/INSTRUCTION FILE KNP Boussinesq revised extended Mathematical Models and Methods in Applied Sciences c World Scientific Publishing Company REDUCED BASIS APPROXIMATIO AD A POSTERIORI ERROR ESTIMATIO FOR THE PARAMETRIZED USTEADY BOUSSIESQ EQUATIOS DAVID

More information

Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion

Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion Bernard Haasdonk, Karsten Urban und Bernhard Wieland Preprint Series:

More information

A reduced basis method and ROM-based optimization for batch chromatography

A reduced basis method and ROM-based optimization for batch chromatography MAX PLANCK INSTITUTE MedRed, 2013 Magdeburg, Dec 11-13 A reduced basis method and ROM-based optimization for batch chromatography Yongjin Zhang joint work with Peter Benner, Lihong Feng and Suzhou Li Max

More information

Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation

Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation M A R C H 2 0 1 7 P R E P R I T 4 6 3 Reduced basis approximation and a posteriori error bounds for 4D-Var data assimilation Mark Kärcher, Sébastien Boyaval, Martin A. Grepl and Karen Veroy Institut für

More information

Certified Reduced Basis Methods for Parametrized Partial Differential Equations

Certified Reduced Basis Methods for Parametrized Partial Differential Equations Jan S Hesthaven, Gianluigi Rozza, Benjamin Stamm Certified Reduced Basis Methods for Parametrized Partial Differential Equations Monograph Springer Briefs in Mathematics June 23, 2015 Springer To our

More information

Reduced Basis Method for Parametric

Reduced Basis Method for Parametric 1/24 Reduced Basis Method for Parametric H 2 -Optimal Control Problems NUMOC2017 Andreas Schmidt, Bernard Haasdonk Institute for Applied Analysis and Numerical Simulation, University of Stuttgart andreas.schmidt@mathematik.uni-stuttgart.de

More information

Toni Lassila 1, Andrea Manzoni 1 and Gianluigi Rozza 1

Toni Lassila 1, Andrea Manzoni 1 and Gianluigi Rozza 1 Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher ON THE APPROIMATION OF STABILITY FACTORS FOR GENERAL PARAMETRIZED PARTIAL DIFFERENTIAL

More information

Peng Chen 1, Alfio Quarteroni 1,2 and Gianluigi Rozza 3

Peng Chen 1, Alfio Quarteroni 1,2 and Gianluigi Rozza 3 ESAI: 2AN 48 (214 943 953 DOI: 1.151/m2an/213128 ESAI: athematical odelling and Numerical Analysis www.esaim-m2an.org A WEIGHTED EPIRICAL INTERPOLATION ETHOD: APRIORI CONVERGENCE ANALYSIS AND APPLICATIONS

More information

Christophe Prud homme 8 avril 2014

Christophe Prud homme 8 avril 2014 Reduced Basis methods: an introduction Christophe Prud homme prudhomme@unistra.fr CeMosis - http://www.cemosis.fr IRMA Université de Strasbourg 8 avril 2014 1 Motivations and Framework 2 3 Non Compliant

More information

Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods

Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods Efficient greedy algorithms for high-dimensional parameter spaces with applications to empirical interpolation and reduced basis methods Jan S. Hesthaven Benjamin Stamm Shun Zhang September 9, 211 Abstract.

More information

Parameterized Partial Differential Equations and the Proper Orthogonal D

Parameterized Partial Differential Equations and the Proper Orthogonal D Parameterized Partial Differential Equations and the Proper Orthogonal Decomposition Stanford University February 04, 2014 Outline Parameterized PDEs The steady case Dimensionality reduction Proper orthogonal

More information

Certified reduced basis approximation for parametrized partial differential equations and applications

Certified reduced basis approximation for parametrized partial differential equations and applications Journal of Mathematics in Industry (2011) 1:3 DOI 10.1186/2190-5983-1-3 RESEARCH OpenAccess Certified reduced basis approximation for parametrized partial differential equations and applications Alfio

More information

Reduced Basis Approximation and A Posteriori Error. Estimation for the Time-Dependent Viscous Burgers Equation

Reduced Basis Approximation and A Posteriori Error. Estimation for the Time-Dependent Viscous Burgers Equation Calcolo manuscript o. (will be inserted by the editor) Reduced Basis Approximation and A Posteriori Error Estimation for the Time-Dependent Viscous Burgers Equation goc-cuong guyen 1, Gianluigi Rozza 1,,

More information

Reduced basis method for multi-parameter dependent steady Navier Stokes equations: applications to natural convection in a cavity

Reduced basis method for multi-parameter dependent steady Navier Stokes equations: applications to natural convection in a cavity Reduced basis method for multi-parameter dependent steady Navier Stokes equations: applications to natural convection in a cavity Simone Deparis, Gianluigi Rozza Ecole Polytechnique Fédérale de Lausanne,

More information

A general, multipurpose interpolation procedure: the magic points

A general, multipurpose interpolation procedure: the magic points A general, multipurpose interpolation procedure: the magic points Yvon aday, Ngoc Cuong Nguyen, Anthony T. Patera, George S.H. Pau To cite this version: Yvon aday, Ngoc Cuong Nguyen, Anthony T. Patera,

More information

ENGINEERING analysis requires prediction of outputs

ENGINEERING analysis requires prediction of outputs Reduced Basis Method for nd Order Wave Equation: Application to One-Dimensional Seismic Problem Alex Y.K. Tan and A.T. Patera Abstract We solve the nd order wave equation, hyperbolic and linear in nature,

More information

POD/DEIM 4DVAR Data Assimilation of the Shallow Water Equation Model

POD/DEIM 4DVAR Data Assimilation of the Shallow Water Equation Model nonlinear 4DVAR 4DVAR Data Assimilation of the Shallow Water Equation Model R. Ştefănescu and Ionel M. Department of Scientific Computing Florida State University Tallahassee, Florida May 23, 2013 (Florida

More information

THE LOCALIZED REDUCED BASIS MULTISCALE METHOD

THE LOCALIZED REDUCED BASIS MULTISCALE METHOD Proceedings of ALGORITMY 212 pp. 393 43 THE LOCALIZED REDUCED BASIS MULTISCALE METHOD FELIX ALBRECHT, BERNARD HAASDONK, SVEN KAULMANN OHLBERGER, AND MARIO Abstract. In this paper we introduce the Localized

More information

Feasibility and Competitiveness of a Reduced Basis Approach for Rapid Electronic Structure Calculations in Quantum Chemistry

Feasibility and Competitiveness of a Reduced Basis Approach for Rapid Electronic Structure Calculations in Quantum Chemistry Centre de Recherches Mathématiques CRM Proceedings and Lecture Notes Feasibility and Competitiveness of a Reduced Basis Approach for Rapid Electronic Structure Calculations in Quantum Chemistry E. Cancès,

More information

Approximation of Parametric Derivatives by the Empirical Interpolation Method

Approximation of Parametric Derivatives by the Empirical Interpolation Method Approximation of Parametric Derivatives by the Empirical Interpolation ethod Jens L. Eftang, artin A. Grepl, Anthony T. Patera and Einar. Rønquist Bericht Nr. 330 September 2011 Key words: function approximation;

More information

arxiv: v2 [math.na] 15 May 2014

arxiv: v2 [math.na] 15 May 2014 A nonintrusive Reduced Basis Method applied to aeroacoustic simulations arxiv:1401.3684v2 [math.na] 15 May 2014 March 26, 2018 Fabien Casenave 1, Alexandre Ern 1, and Tony Lelièvre 1,2 1 Université Paris-Est,

More information

Reduced Basis Methods for Parametrized PDEs A Tutorial Introduction for Stationary and Instationary Problems

Reduced Basis Methods for Parametrized PDEs A Tutorial Introduction for Stationary and Instationary Problems B. Haasdonk Reduced Basis Methods for Parametrized PDEs A Tutorial Introduction for Stationary and Instationary Problems Stuttgart, March 2014, revised version March 2016 Institute of Applied Analysis

More information

AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES

AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES AN ADAPTIVE REDUCED BASIS COLLOCATION METHOD BASED ON PCM ANOVA DECOMPOSITION FOR ANISOTROPIC STOCHASTIC PDES Heyrim Cho & Howard Elman 2 Department of Mathematics, University of Maryland, College Park,

More information

arxiv: v1 [math.na] 8 Mar 2016

arxiv: v1 [math.na] 8 Mar 2016 arxiv:1603.02652v1 [math.na] 8 Mar 2016 ROBUST MODEL REDUCTION OF HYPERBOLIC PROBLEMS BY L 1 -NORM MINIMIZATION AND DICTIONARY APPROXIMATION R. ABGRALL (1), D. AMSALLEM (2) AND R. CRISOVAN (1) (1): INSTITUT

More information

CME 345: MODEL REDUCTION

CME 345: MODEL REDUCTION CME 345: MODEL REDUCTION Methods for Nonlinear Systems Charbel Farhat & David Amsallem Stanford University cfarhat@stanford.edu 1 / 65 Outline 1 Nested Approximations 2 Trajectory PieceWise Linear (TPWL)

More information

Reduced basis approximation and a posteriori error estimation for stress intensity factors

Reduced basis approximation and a posteriori error estimation for stress intensity factors INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. J. Numer. Meth. Engng 2006; 00:1 6 [Version: 2002/09/18 v2.02] Reduced basis approximation and a posteriori error estimation for stress intensity

More information

RICE UNIVERSITY. Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut

RICE UNIVERSITY. Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut RICE UNIVERSITY Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Alf Emil Løvgren. Reduced basis modeling of hierarchical flow systems. Doctoral Theses at NTNU, 2005:212 Alf Emil Løvgren

Alf Emil Løvgren. Reduced basis modeling of hierarchical flow systems. Doctoral Theses at NTNU, 2005:212 Alf Emil Løvgren Alf Emil Løvgren Doctoral Theses at NTNU, 2005:212 Alf Emil Løvgren Reduced basis modeling of hierarchical flow systems ISBN 82-471-7322-0 (printed ver.) ISBN 82-471-7321-2 (electronic ver.) ISSN 1503-8181

More information

Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

Efficient model reduction of parametrized systems by matrix discrete empirical interpolation MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 02.2015 February 2015 Efficient model reduction of

More information

Greedy algorithms for high-dimensional non-symmetric problems

Greedy algorithms for high-dimensional non-symmetric problems Greedy algorithms for high-dimensional non-symmetric problems V. Ehrlacher Joint work with E. Cancès et T. Lelièvre Financial support from Michelin is acknowledged. CERMICS, Ecole des Ponts ParisTech &

More information

An efficient technique for recovering responses of parameterized structural dynamic problems

An efficient technique for recovering responses of parameterized structural dynamic problems Acta Mech. Sin. (2011) 27(5):757 766 DOI 10.1007/s10409-011-0448-0 RESEARCH PAPER An efficient technique for recovering responses of parameterized structural dynamic problems Zheng Zhang Xu Han Chao Jiang

More information

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018

WWU. Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models. living knowledge. Mario Ohlberger, Stephan Rave ECMI 2018 M Ü N S T E R Efficient Reduced Order Simulation of Pore-Scale Lithium-Ion Battery Models Mario Ohlberger, Stephan Rave living knowledge ECMI 2018 Budapest June 20, 2018 M Ü N S T E R Reduction of Pore-Scale

More information

recent developments of approximation theory and greedy algorithms

recent developments of approximation theory and greedy algorithms recent developments of approximation theory and greedy algorithms Peter Binev Department of Mathematics and Interdisciplinary Mathematics Institute University of South Carolina Reduced Order Modeling in

More information

Reduced basis method for efficient model order reduction of optimal control problems

Reduced basis method for efficient model order reduction of optimal control problems Reduced basis method for efficient model order reduction of optimal control problems Laura Iapichino 1 joint work with Giulia Fabrini 2 and Stefan Volkwein 2 1 Department of Mathematics and Computer Science,

More information

Reduced-Order Multiobjective Optimal Control of Semilinear Parabolic Problems. Laura Iapichino Stefan Trenz Stefan Volkwein

Reduced-Order Multiobjective Optimal Control of Semilinear Parabolic Problems. Laura Iapichino Stefan Trenz Stefan Volkwein Universität Konstanz Reduced-Order Multiobjective Optimal Control of Semilinear Parabolic Problems Laura Iapichino Stefan Trenz Stefan Volkwein Konstanzer Schriften in Mathematik Nr. 347, Dezember 2015

More information

Adaptive methods for control problems with finite-dimensional control space

Adaptive methods for control problems with finite-dimensional control space Adaptive methods for control problems with finite-dimensional control space Saheed Akindeinde and Daniel Wachsmuth Johann Radon Institute for Computational and Applied Mathematics (RICAM) Austrian Academy

More information

Proper Orthogonal Decomposition (POD)

Proper Orthogonal Decomposition (POD) Intro Results Problem etras Proper Orthogonal Decomposition () Advisor: Dr. Sorensen CAAM699 Department of Computational and Applied Mathematics Rice University September 5, 28 Outline Intro Results Problem

More information

Hessian-based model reduction for large-scale systems with initial condition inputs

Hessian-based model reduction for large-scale systems with initial condition inputs Hessian-based model reduction for large-scale systems with initial condition inputs O. Bashir 1, K. Willcox 1,, O. Ghattas 2, B. van Bloemen Waanders 3, J. Hill 3 1 Massachusetts Institute of Technology,

More information

A High-Performance Parallel Implementation of the Certified Reduced Basis Method

A High-Performance Parallel Implementation of the Certified Reduced Basis Method A High-Performance Parallel Implementation of the Certified Reduced Basis Method David J. Knezevic a,, John W. Peterson b a Department of Mechanical Engineering, Massachusetts Institute of Technology,

More information

DEIM-BASED PGD FOR PARAMETRIC NONLINEAR MODEL ORDER REDUCTION

DEIM-BASED PGD FOR PARAMETRIC NONLINEAR MODEL ORDER REDUCTION VI International Conference on Adaptive Modeling and Simulation ADMOS 213 J. P. Moitinho de Almeida, P. Díez, C. Tiago and N. Parés (Eds) DEIM-BASED PGD FOR PARAMETRIC NONLINEAR MODEL ORDER REDUCTION JOSE

More information

Towards parametric model order reduction for nonlinear PDE systems in networks

Towards parametric model order reduction for nonlinear PDE systems in networks Towards parametric model order reduction for nonlinear PDE systems in networks MoRePas II 2012 Michael Hinze Martin Kunkel Ulrich Matthes Morten Vierling Andreas Steinbrecher Tatjana Stykel Fachbereich

More information

arxiv: v1 [math.na] 9 Oct 2018

arxiv: v1 [math.na] 9 Oct 2018 PRIMAL-DUAL REDUCED BASIS METHODS FOR CONVEX MINIMIZATION VARIATIONAL PROBLEMS: ROBUST TRUE SOLUTION A POSTERIORI ERROR CERTIFICATION AND ADAPTIVE GREEDY ALGORITHMS arxiv:1810.04073v1 [math.na] 9 Oct 2018

More information

A Petrov-Galerkin reduced basis approximation of the Stokes equation in parametrized geometries

A Petrov-Galerkin reduced basis approximation of the Stokes equation in parametrized geometries MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 35.2014 August 2014 A Petrov-Galerkin reduced basis

More information

Electronic Transactions on Numerical Analysis Volume 32, 2008

Electronic Transactions on Numerical Analysis Volume 32, 2008 Electronic Transactions on Numerical Analysis Volume 32, 2008 Contents 1 On the role of boundary conditions for CIP stabilization of higher order finite elements. Friedhelm Schieweck. We investigate the

More information

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems

Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Analysis of Hybrid Discontinuous Galerkin Methods for Incompressible Flow Problems Christian Waluga 1 advised by Prof. Herbert Egger 2 Prof. Wolfgang Dahmen 3 1 Aachen Institute for Advanced Study in Computational

More information

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics

MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Mathematics Institute of Computational Science and Engineering School of Basic Sciences - Section of Mathematics MATHICSE Technical Report Nr. 22.2013 July 2013 Model order reduction in fluid

More information

Space-time Finite Element Methods for Parabolic Evolution Problems

Space-time Finite Element Methods for Parabolic Evolution Problems Space-time Finite Element Methods for Parabolic Evolution Problems with Variable Coefficients Ulrich Langer, Martin Neumüller, Andreas Schafelner Johannes Kepler University, Linz Doctoral Program Computational

More information

arxiv: v1 [math.na] 16 Feb 2016

arxiv: v1 [math.na] 16 Feb 2016 NONLINEAR MODEL ORDER REDUCTION VIA DYNAMIC MODE DECOMPOSITION ALESSANDRO ALLA, J. NATHAN KUTZ arxiv:62.58v [math.na] 6 Feb 26 Abstract. We propose a new technique for obtaining reduced order models for

More information

Model Order Reduction Techniques

Model Order Reduction Techniques Model Order Reduction Techniques SVD & POD M. Grepl a & K. Veroy-Grepl b a Institut für Geometrie und Praktische Mathematik b Aachen Institute for Advanced Study in Computational Engineering Science (AICES)

More information