Exponential and logarithmic functions

Size: px
Start display at page:

Download "Exponential and logarithmic functions"

Transcription

1 Exponential and logarithmic functions, حصه الرومي الطالبات.. ندى الغميز, الزهراني مالك المسعد خديجه, األستاذة.. يسرى

2 Modeling with Exponential and Logarithmic Functions

3 Exponential Growth and Decay Models The mathematical model for exponential growth or decay is given by f (t) = A 0 e kt or A = A 0 e kt. If k > 0, the function models the amount or size of a growing entity. A 0 is the original amount or size of the growing entity at time t = 0. A is the amount at time t, and k is a constant representing the growth rate. If k < 0, the function models the amount or size of a decaying entity. A 0 is the original amount or size of the decaying entity at time t = 0. A is the amount at time t, and k is a constant representing the decay rate.

4 Population (millions) Example The graph below shows the growth of the Mexico City metropolitan area from 1970 through In 1970, the population of Mexico City was 9.4 million. By 1990, it had grown to 20.2 million Year Find the exponential growth function that models the data. By what year will the population reach 40 million?

5 Example cont a. We use the exponential growth model A = A 0 e kt in which t is the number of years since This means that 1970 corresponds to t = 0. At that time there were 9.4 million inhabitants, so we substitute 9.4 for A 0 in the growth model. A = 9.4 e kt We are given that there were 20.2 million inhabitants in Because 1990 is 20 years after 1970, when t = 20 the value of A is Substituting these numbers into the growth model will enable us to find k, the growth rate. We know that k > 0 because the problem involves growth. Use the growth model with A 0 = 9.4. When t = 20, A = Substitute these values. A = 9.4 e kt 20.2 = 9.4 e k 20

6 Example cont Isolate the exponential factor by dividing both sides by / 9.4 = e k 20 Take the natural logarithm on both sides. Simplify the right side by using ln e x = x. Divide both sides by 20 and solve for k. ln(20.2/ 9.4) = lne k / 9.4 = 20k = k We substitute for k in the growth model to obtain the exponential growth function for Mexico City. It is A = 9.4 e 0.038t where t is measured in years since 1970.

7 Example cont b. To find the year in which the population will grow to 40 million, we substitute 40 in for A in the model from part (a) and solve for t. This is the model from part (a). Substitute 40 for A. Divide both sides by 9.4. Take the natural logarithm on both sides. Simplify the right side by using ln e x = x. A = 9.4 e 0.038t 40 = 9.4 e 0.038t 40/9.4 = e 0.038t ln(40/9.4) = lne 0.038t ln(40/9.4) =0.038t Solve for t by dividing both sides by ln(40/9.4)/0.038 =t Because 38 is the number of years after 1970, the model indicates that the population of Mexico City will reach 40 million by 2008 ( ).

8 Text Example Use the fact that after 5715 years a given amount of carbon-14 will have decayed to half the original amount to find the exponential decay model for carbon-14. In 1947, earthenware jars containing what are known as the Dead Sea Scrolls were found by an Arab Bedouin herdsman. Analysis indicated that the scroll wrappings contained 76% of their original carbon-14. Estimate the age of the Dead Sea Scrolls. Solution We begin with the exponential decay model A = A 0 e kt. We know that k < 0 because the problem involves the decay of carbon-14. After 5715 years (t = 5715), the amount of carbon-14 present, A, is half of the original amount A 0. Thus we can substitute A 0 /2 for A in the exponential decay model. This will enable us to find k, the decay rate.

9 Text Example cont After 5715 years, A = A 0 /2 Solution Divide both sides of the equation by A 0. A 0 /2= A 0 e k5715 1/2= e kt5715 Take the natural logarithm on both sides.ln(1/2) = ln e k5715 ln e x = x. Solve for k. ln(1/2) = 5715k k = ln(1/2)/5715= Substituting for k in the decay model, the model for carbon-14 is A = A 0 e t.

10 Exponential Functions

11 The Exponential Function w/ base a for a > 0 f x a x

12 f x a x * For a 1, - Domain: (, ) - Range: (0, )

13 f x a x for a > 1

14 f x a x for 0 < a < 1

15 Natural Exponential Function f x e x with base e

16 Compound Interest t r n A P( 1 ) nt -A(t) = amount after t years -P = Principal -r = interest rate -n = # of times interest is compounded per year -t = number of years

17 Continually Compounded Interest A t Pe rt -A(t) = amount after t years -P = Principal -r = interest rate -t = number of years

18 Ex 1: If $350,000 is invested at a rate of 5½% per year, find the amount of the investment at the end of 10 years for the following compounding methods: - Quarterly - Monthly - Continuously

19 Exponential Growth n t n o e rt n(t) = population at time t n o = initial size of population r = rate of growth t = time

20 Logarithmic Functions

21 The Log Function is the inverse of the Exponential Function, so If fx a x Then f 1 x log a x

22 And for fx log a x Domain: (0, ) Range: (, )

23 logarithmic form exponential form log a x y a y x base exponent base exponent a is positive with a 1

24 Common Logarithm (base 10) log x log10 x

25 Natural Logarithm (base e) ln x log e x ln x y e y x

26 Properties of Logs 1) log a 1 0 2) log a 1 a 3) 4) log a x a a loga x x x

27 Properties of Natural Logs 1) ln1 0 2) 3) 4) ln e 1 ln e x x e ln x x

28 Exponential and Logarithmic Functions Exponential Functions

29 Exponential Functions These functions model rapid growth or decay: - # of users on the Internet 16 million (1995) 957 million (late 2005) - Compound interest - Population growth or decline

30 Comparison - Linear Functions Rate of change is constant - Exponential Functions Change at a constant percent rate.

31 The Exponential Function y = ab x b is the base: - It must be greater than 0 - It cannot equal 1. x can be any real number

32 Identify Exponential Functions * Which of the following are exponential functions? y = 3 x yes y = x 3 no y = 2(7) x yes y = 2(-7) x no

33 Identify the Base * Identify the base in each of the following. y = 3 x y = 2(7) x y = 4 x - 3 y = 3a x

34 Evaluate Exponential Functions y = 3 x for x = 4 y = 2(7) x for x = 3 y = -2(4 x ) for x = 3/2

35 y Graph Exponential Functions (b > 1) * Graph y = 2 x for x = -3 to 3 x y Graph of y = 2^x -3 1/ / / x

36 y Graph Exponential Functions (0< b < 1) * Graph y = (1/2) x for x = -3 to 3 x y -3 8 Graph of y = (1/2)^x / / / x

37 Summary y = ab x - x can be any value - The resulting y value will always be positive. - The y-intercept is always (0,1) - When b > 1, as x increases, y increases. - When 0 < b < 1, as x increases, y decreases.

38 Practice * Using Microsoft Excel: - Graph the function y = 3 x for x = -3 to 3 (in 0.5 increments) - Graph the function y = (1/3) x for x = -3 to 3 (in 0.5 increments)

39 Practice: Graph using Excel - Result: Graphing Exponential Functions

40 Exponential Functions

41 Example Suppose you are a salaried employee, that is, you are paid a fixed sum each pay period no matter how many hours you work. Moreover, suppose your union contract guarantees you a 5% cost-of-living raise each year. Then your annual salary is an increasing function of the number of years you have been employed, because your annual salary will increase by some amount each year. However, the amount of the increase is different from year to year, because as your salary increases, the amount of your 5% raise increases too. This phenomenon is known as compounding.

42 Example Assume your starting salary is $28,000 per year. Let S(t) be your annual salary after full years of employment. Therefore, S(0) is interpreted to mean your initial salary of $28,000. How can we evaluate S(1), your salary after 1 year of employment? Since your salary is increasing by 5% each year, this means S(1) is 5% more than S(0). In other words, S(1) is 105% of S(0). Thus, we can evaluate S(1) as shown here, by changing the percentage 105% to a decimal number: S(1) = 105% of S(0) = 1.05 S(0) = S(2) = 105% of S(1) = 1.05 S(1) = S(3) = 105% of S(2) = 1.05 S(2) = S(4) = 105% of S(3) = 1.05 S(3) = S(5) = 105% of S(4) = 1.05 S(4) =

43 Graph of Exponential Functions

44 Graph of Exponential Functions

45 Exponential Functions Exponential functions have symbol rules of the form f (x) = c bx b: base or growth factor -- must be positive real number but cannot be 1, i.e. b > 0 and b 1 c: coefficient greater than 0 the domain of f is (, ) the range of f is (0, )

46 Natural Exponential Function f (x) = ex f (x) = e x

47 Example

48 Example

49 Example

50 Find the exponential function graph as shown below. whose

51 Find the exponential function graph as shown below. whose

52 Logarithmic Functions

53 Logarithmic Functions Consider the exponential function f shown here with base b = 2 and initial value c = 1 Suppose we want to find the input number for that matches the output values 8 and 15, in other words, we want to solve the equation

54 Logarithmic Functions Let's introduce a new function designed to help us express solutions to equations like the two shown here, which are solved by finding particular input numbers for the exponential function f. We give this new function a special label:

55 Logarithmic Functions helps us express inputs for the function f. Thus, for example, we evaluate, because f(3)=. Likewise, we evaluate In general, That is exponential function and logarithmic function are inverse of each other.

56 Common and Natural Logarithms A common logarithm is a logarithm with base 10, log10. A natural logarithm is a logarithm with base e, ln.

57 Properties of Logarithms

58 Graphs of Logarithmic Functions

59 Graphs of Logarithmic Functions

60 Graphs of Logarithmic Functions

61 Laws of Logarithms

62 Change of Base

63 Compound Interest If P is a principal of an investment with an interest r for a period of t years, then the amount A of the investment is

64 Modeling with Exponential and Logarithmic Functions

65 Exponential Growth Model A population that experiences exponential growth increases according to the model where population at time t initial size of population relative rate of growth time

66 Radioactive Decay Model If m0 is the initial mass of a radioactive substance with half-life h, then the remaining mass of radioactive at time t is modeled by where

67 Total differential of Q using logs

68 68 dl L dk K da A Q dq dl L dk K da A Q dq L d K d A d Q d L K A Q L AK Q 1 1 ln ln ln ln ln ln ln ln

69 Exponent example 69 * * 1 1 and K for L Solve 0 5) 0 4) 3) 5 2) 1) pp ) 5, (Example firm a of decisions Input 11.6(c) P-r K L α π P-w K L α π -wl-rk K L P π. α K L Q PQ-wL-rK R-C π α α K α α L α α α α

70 Maximization conditions

71 71 25 years % ) let ( ). ( t r r t r t r t r t bottle $148.38/ 1218 bottle $12.18/ bottle $1/ ) let ( V e. $ V Ae V e A(t) e A(t) k ke A(t) ) )( (. rt. ) )(( (. rt t ½

72 10.6(c) Timber cutting problem plot of.5(t) -.5 ln(2)=r, r=.05, t=48 72

73 10.7(b) Rate of growth of a combination of functions; Example 3 consumption & pop. v v u u v u v u v u u z z z z r s r s r v u v r v u u r vr t g ur t f t f t f r if t g t f v u r t g t f dt d v u r v u dt d v u r v u dt d z dt d r v u z t g v t f u v u z ) '( and, ) '( then, ) ( ) '( ) ( )) '( ) '( ( 1 )) ( ) ( ( 1 ) ( 1 ) ( ) ln( ) ln( ) ln( ) ( ) ( t f t f dt t f d ln

74 Trigonometric, Logarithmic, and Exponential Functions

75 In this tutorial, we review trigonometric, logarithmic, and exponential functions with a focus on those properties which will be useful in future math and science applications. Trigonometric Functions Geometrically, there are two ways to describe trigonometric functions:

76 Trigonometric Functions Geometrically, there are two ways to describe trigonometric functions: Polar Angle x=cos y=sin Measure in radians: =radiusarc length For example,180=rr= radians Radians=180degrees

77 (0< b < 1) Graph Exponential Functions

78 y Graph y = (1/2) x for x = -3 to 3 : x y Graph of y = (1/2)^x /2 1/4 1/ x

79 Summary y = ab x x can be any value The resulting y value will always be positive. The y-intercept is always (0,1) When b > 1, as x increases, y increases. When 0 < b < 1, as x increases, y decreases.

80 Text Example cont Solution A 0 /2= A 0 e k5715 After 5715 years, A = A 0 /2 1/2= e kt5715 Divide both sides of the equation by A 0. ln(1/2) = ln e k5715 Take the natural logarithm on both sides. ln(1/2) = 5715k ln e x = x. k = ln(1/2)/5715= Solve for k. Substituting for k in the decay model, the model for carbon-14 is A = A 0 e t.

81 Text Example cont. Solution A = A 0 e t This is the decay model for carbon A 0 = A 0 e t A =.76A 0 since 76% of the initial amount remains = e t Divide both sides of the equation by A 0. ln 0.76 = ln e t Take the natural logarithm on both sides. ln 0.76 = t ln e x = x. t=ln(0.76)/( ) Solver for t. The Dead Sea Scrolls are approximately 2268 years old plus the number of years between 1947 and the current year.

82 Finally we hope you can understand the logarithmic function, and we hope you like our project =)

Exponential and Logarithmic Functions. Exponential Functions. Example. Example

Exponential and Logarithmic Functions. Exponential Functions. Example. Example Eponential and Logarithmic Functions Math 1404 Precalculus Eponential and 1 Eample Eample Suppose you are a salaried employee, that is, you are paid a fied sum each pay period no matter how many hours

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Chapter 4: 4.1: Exponential Functions Definition: Graphs of y = b x Exponential and Logarithmic Functions The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Graph:

More information

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years. Exam 4 Review Approximate the number using a calculator. Round your answer to three decimal places. 1) 2 1.7 2) e -1.4 Use the compound interest formulas A = P 1 + r n nt and A = Pe rt to solve. 3) Find

More information

lim a, where and x is any real number. Exponential Function: Has the form y Graph y = 2 x Graph y = -2 x Graph y = Graph y = 2

lim a, where and x is any real number. Exponential Function: Has the form y Graph y = 2 x Graph y = -2 x Graph y = Graph y = 2 Precalculus Notes Da 1 Eponents and Logarithms Eponential Function: Has the form a, where and is an real number. Graph = 2 Graph = -2 +2 + 1 1 1 Graph = 2 Graph = 3 1 2 2 2 The Natural Base e (Euler s

More information

Section Exponential Functions

Section Exponential Functions 121 Section 4.1 - Exponential Functions Exponential functions are extremely important in both economics and science. It allows us to discuss the growth of money in a money market account as well as the

More information

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved.

Exponential and Logarithmic Functions. Copyright Cengage Learning. All rights reserved. 3 Exponential and Logarithmic Functions Copyright Cengage Learning. All rights reserved. 3.1 Exponential Functions and Their Graphs Copyright Cengage Learning. All rights reserved. What You Should Learn

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper)

Exponential and Logarithmic Functions. 3. Pg #17-57 column; column and (need graph paper) Algebra 2/Trig Unit 6 Notes Packet Name: Period: # Exponential and Logarithmic Functions 1. Worksheet 2. Worksheet 3. Pg 483-484 #17-57 column; 61-73 column and 76-77 (need graph paper) 4. Pg 483-484 #20-60

More information

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas Math 80 Chapter 4 Lecture Notes Professor Miguel Ornelas M. Ornelas Math 80 Lecture Notes Section 4. Section 4. Inverse Functions Definition of One-to-One Function A function f with domain D and range

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

The units on the average rate of change in this situation are. change, and we would expect the graph to be. ab where a 0 and b 0.

The units on the average rate of change in this situation are. change, and we would expect the graph to be. ab where a 0 and b 0. Lesson 9: Exponential Functions Outline Objectives: I can analyze and interpret the behavior of exponential functions. I can solve exponential equations analytically and graphically. I can determine the

More information

OBJECTIVE 4 EXPONENTIAL FORM SHAPE OF 5/19/2016. An exponential function is a function of the form. where b > 0 and b 1. Exponential & Log Functions

OBJECTIVE 4 EXPONENTIAL FORM SHAPE OF 5/19/2016. An exponential function is a function of the form. where b > 0 and b 1. Exponential & Log Functions OBJECTIVE 4 Eponential & Log Functions EXPONENTIAL FORM An eponential function is a function of the form where > 0 and. f ( ) SHAPE OF > increasing 0 < < decreasing PROPERTIES OF THE BASIC EXPONENTIAL

More information

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Date: Objectives: SWBAT (Graph Exponential Functions) Main Ideas: Mother Function Exponential Assignment: Parent Function: f(x) = b

More information

171S5.6o Applications and Models: Growth and Decay; and Compound Interest November 21, 2011

171S5.6o Applications and Models: Growth and Decay; and Compound Interest November 21, 2011 MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic Functions

More information

DIFFERENTIATION RULES

DIFFERENTIATION RULES 3 DIFFERENTIATION RULES DIFFERENTIATION RULES 3.8 Exponential Growth and Decay In this section, we will: Use differentiation to solve real-life problems involving exponentially growing quantities. EXPONENTIAL

More information

17 Exponential and Logarithmic Functions

17 Exponential and Logarithmic Functions 17 Exponential and Logarithmic Functions Concepts: Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions Exponential Growth

More information

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24)

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24) Math 5 Trigonometry Sec 9.: Exponential Functions Properties of Exponents a = b > 0, b the following statements are true: b x is a unique real number for all real numbers x f(x) = b x is a function with

More information

Part 4: Exponential and Logarithmic Functions

Part 4: Exponential and Logarithmic Functions Part 4: Exponential and Logarithmic Functions Chapter 5 I. Exponential Functions (5.1) II. The Natural Exponential Function (5.2) III. Logarithmic Functions (5.3) IV. Properties of Logarithms (5.4) V.

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

( ) ( ) x. The exponential function f(x) with base b is denoted by x

( ) ( ) x. The exponential function f(x) with base b is denoted by x Page of 7 Eponential and Logarithmic Functions Eponential Functions and Their Graphs: Section Objectives: Students will know how to recognize, graph, and evaluate eponential functions. The eponential function

More information

for every x in the gomain of g

for every x in the gomain of g Section.7 Definition of Inverse Function Let f and g be two functions such that f(g(x)) = x for every x in the gomain of g and g(f(x)) = x for every x in the gomain of f Under these conditions, the function

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

Properties of Logarithms. Example Expand the following: The Power Rule for Exponents - (b m ) n = b mn. Example Expand the following: b) ln x

Properties of Logarithms. Example Expand the following: The Power Rule for Exponents - (b m ) n = b mn. Example Expand the following: b) ln x Properties of Logarithms The Product Rule for Exponents - b m b n = b m+n Example Expand the following: a) log 4 (7 5) log b MN = log b M + log b N b) log (10x) The Power Rule for Exponents - (b m ) n

More information

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28}

Mock Final Exam Name. Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) A) {- 30} B) {- 6} C) {30} D) {- 28} Mock Final Exam Name Solve and check the linear equation. 1) (-8x + 8) + 1 = -7(x + 3) 1) A) {- 30} B) {- 6} C) {30} D) {- 28} First, write the value(s) that make the denominator(s) zero. Then solve the

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Independent Study Project: Chapter 4 Exponential and Logarithmic Functions

Independent Study Project: Chapter 4 Exponential and Logarithmic Functions Name: Date: Period: Independent Study Project: Chapter 4 Exponential and Logarithmic Functions Part I: Read each section taken from the Algebra & Trigonometry (Blitzer 2014) textbook. Fill in the blanks

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Öğr. Gör. Volkan ÖĞER FBA 1021 Calculus 1/ 40 Exponential and Logarithmic Functions Exponential Functions The functions of the form f(x) = b x, for constant b, are important in mathematics, business, economics,

More information

Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions

Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions Inverse function (interchange x and y): Find the equation of the inverses for: y = 2x + 5 ; y = x 2 + 4 Function: (Vertical

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products 8.1 Apply Exponent Properties Involving Products Learning Outcome To use properties of exponents involving products Product of Powers Property Let a be a real number, and let m and n be positive integers.

More information

8-1 Exploring Exponential Models

8-1 Exploring Exponential Models 8- Eploring Eponential Models Eponential Function A function with the general form, where is a real number, a 0, b > 0 and b. Eample: y = 4() Growth Factor When b >, b is the growth factor Eample: y =

More information

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved.

Logarithmic, Exponential, and Other Transcendental Functions. Copyright Cengage Learning. All rights reserved. 5 Logarithmic, Exponential, and Other Transcendental Functions Copyright Cengage Learning. All rights reserved. 5.5 Bases Other Than e and Applications Copyright Cengage Learning. All rights reserved.

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

Objectives. Use the number e to write and graph exponential functions representing realworld

Objectives. Use the number e to write and graph exponential functions representing realworld Objectives Use the number e to write and graph exponential functions representing realworld situations. Solve equations and problems involving e or natural logarithms. natural logarithm Vocabulary natural

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

The function is defined for all values of x. Therefore, the domain is set of all real numbers.

The function is defined for all values of x. Therefore, the domain is set of all real numbers. Graph each function. State the domain and range. 1. f (x) = 3 x 3 + 2 The function is defined for all values of x. Therefore, the domain is set of all real numbers. The value of f (x) tends to 2 as x tends

More information

Exponential Functions

Exponential Functions Exponential Functions MATH 160, Precalculus J. Robert Buchanan Department of Mathematics Fall 2011 Objectives In this lesson we will learn to: recognize and evaluate exponential functions with base a,

More information

MAC Module 9 Exponential and Logarithmic Functions II. Rev.S08

MAC Module 9 Exponential and Logarithmic Functions II. Rev.S08 MAC 1105 Module 9 Exponential and Logarithmic Functions II Learning Objective Upon completing this module, you should be able to: 1. Learn and apply the basic properties of logarithms. 2. Use the change

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

EXPONENTS AND LOGS (CHAPTER 10)

EXPONENTS AND LOGS (CHAPTER 10) EXPONENTS AND LOGS (CHAPTER 0) POINT SLOPE FORMULA The point slope formula is: y y m( ) where, y are the coordinates of a point on the line and m is the slope of the line. ) Write the equation of a line

More information

Unit 5: Exponential and Logarithmic Functions

Unit 5: Exponential and Logarithmic Functions 71 Rational eponents Unit 5: Eponential and Logarithmic Functions If b is a real number and n and m are positive and have no common factors, then n m m b = b ( b ) m n n Laws of eponents a) b) c) d) e)

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x)

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x) M60 (Precalculus) ch5 practice test Evaluate the expression using the values given in the table. 1) (f g)(6) 1) x 1 4 8 1 f(x) -4 8 0 15 x -5-4 1 6 g(x) 1-5 4 8 For the given functions f and g, find the

More information

Math M111: Lecture Notes For Chapter 10

Math M111: Lecture Notes For Chapter 10 Math M: Lecture Notes For Chapter 0 Sections 0.: Inverse Function Inverse function (interchange and y): Find the equation of the inverses for: y = + 5 ; y = + 4 3 Function (from section 3.5): (Vertical

More information

Logarithmic Functions and Models Power Functions Logistic Function. Mathematics. Rosella Castellano. Rome, University of Tor Vergata

Logarithmic Functions and Models Power Functions Logistic Function. Mathematics. Rosella Castellano. Rome, University of Tor Vergata Mathematics Rome, University of Tor Vergata The logarithm is used to model real-world phenomena in numerous elds: i.e physics, nance, economics, etc. From the equation 4 2 = 16 we see that the power to

More information

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x Inverse Functions Definition 1. The exponential function f with base a is denoted by f(x) = a x where a > 0, a 1, and x is any real number. Example 1. In the same coordinate plane, sketch the graph of

More information

PRECAL REVIEW DAY 11/14/17

PRECAL REVIEW DAY 11/14/17 PRECAL REVIEW DAY 11/14/17 COPY THE FOLLOWING INTO JOURNAL 1 of 3 Transformations of logs Vertical Transformation Horizontal Transformation g x = log b x + c g x = log b x c g x = log b (x + c) g x = log

More information

MATH 1113 Exam 2 Review. Spring 2018

MATH 1113 Exam 2 Review. Spring 2018 MATH 1113 Exam 2 Review Spring 2018 Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5:

More information

MATH 120 Elementary Functions Test #2

MATH 120 Elementary Functions Test #2 MATH 120 Elementary Functions Test #2 There are two forms of the test; both are included below. 1. [20 points] Find the domain and range of the function f ( x ) = log( 25 x 2 ). Sketch a graph of the curve

More information

in terms of p, q and r.

in terms of p, q and r. Logarithms and Exponents 1. Let ln a = p, ln b = q. Write the following expressions in terms of p and q. ln a 3 b ln a b 2. Let log 10 P = x, log 10 Q = y and log 10 R = z. Express P log 10 QR 3 2 in terms

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08 MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Chapter 2 Functions and Graphs

Chapter 2 Functions and Graphs Chapter 2 Functions and Graphs Section 5 Exponential Functions Objectives for Section 2.5 Exponential Functions The student will be able to graph and identify the properties of exponential functions. The

More information

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions

Continuously Compounded Interest. Simple Interest Growth. Simple Interest. Logarithms and Exponential Functions Exponential Models Clues in the word problems tell you which formula to use. If there s no mention of compounding, use a growth or decay model. If your interest is compounded, check for the word continuous.

More information

MATH 1431-Precalculus I

MATH 1431-Precalculus I MATH 43-Precalculus I Chapter 4- (Composition, Inverse), Eponential, Logarithmic Functions I. Composition of a Function/Composite Function A. Definition: Combining of functions that output of one function

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

Exponential Functions Concept Summary See pages Vocabulary and Concept Check.

Exponential Functions Concept Summary See pages Vocabulary and Concept Check. Vocabulary and Concept Check Change of Base Formula (p. 548) common logarithm (p. 547) exponential decay (p. 524) exponential equation (p. 526) exponential function (p. 524) exponential growth (p. 524)

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

Logarithmic and Exponential Equations and Inequalities College Costs

Logarithmic and Exponential Equations and Inequalities College Costs Logarithmic and Exponential Equations and Inequalities ACTIVITY 2.6 SUGGESTED LEARNING STRATEGIES: Summarize/ Paraphrase/Retell, Create Representations Wesley is researching college costs. He is considering

More information

Math 137 Exam #3 Review Guide

Math 137 Exam #3 Review Guide Math 7 Exam # Review Guide The third exam will cover Sections.-.6, 4.-4.7. The problems on this review guide are representative of the type of problems worked on homework and during class time. Do not

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

Business and Life Calculus

Business and Life Calculus Business and Life Calculus George Voutsadakis 1 1 Mathematics and Computer Science Lake Superior State University LSSU Math 112 George Voutsadakis (LSSU) Calculus For Business and Life Sciences Fall 2013

More information

1. Graph each of the given equations, state the domain and range, and specify all intercepts and symmetry. a) y 3x

1. Graph each of the given equations, state the domain and range, and specify all intercepts and symmetry. a) y 3x MATH 94 Final Exam Review. Graph each of the given equations, state the domain and range, and specify all intercepts and symmetry. a) y x b) y x 4 c) y x 4. Determine whether or not each of the following

More information

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Section 2.3: Logarithmic Functions Lecture 3 MTH 124 Procedural Skills Learning Objectives 1. Build an exponential function using the correct compounding identifiers (annually, monthly, continuously etc...) 2. Manipulate exponents algebraically. e.g. Solving

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions?

UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS. Qu: What do you remember about exponential and logarithmic functions? UNIT 5: DERIVATIVES OF EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS 5.1 DERIVATIVES OF EXPONENTIAL FUNCTIONS, y = e X Qu: What do you remember about exponential and logarithmic functions? e, called Euler s

More information

Study Guide and Review - Chapter 7

Study Guide and Review - Chapter 7 Choose a word or term from the list above that best completes each statement or phrase. 1. A function of the form f (x) = b x where b > 1 is a(n) function. exponential growth 2. In x = b y, the variable

More information

MATH 1113 Exam 2 Review

MATH 1113 Exam 2 Review MATH 1113 Exam 2 Review Section 3.1: Inverse Functions Topics Covered Section 3.2: Exponential Functions Section 3.3: Logarithmic Functions Section 3.4: Properties of Logarithms Section 3.5: Exponential

More information

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday

Day Date Assignment. 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday 1 Day Date Assignment Friday Monday /09/18 (A) /1/18 (B) 7.1 Notes Exponential Growth and Decay HW: 7.1 Practice Packet Tuesday Wednesday Thursday Friday Tuesday Wednesday Thursday Friday Monday /1/18

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

1. The dosage in milligrams D of a heartworm preventive for a dog who weighs X pounds is given by D x. Substitute 28 in place of x to get:

1. The dosage in milligrams D of a heartworm preventive for a dog who weighs X pounds is given by D x. Substitute 28 in place of x to get: 1. The dosage in milligrams D of a heartworm preventive for a dog who weighs X pounds is given by D x 28 pounds. ( ) = 136 ( ). Find the proper dosage for a dog that weighs 25 x Substitute 28 in place

More information

Review of Exponential Relations

Review of Exponential Relations Review of Exponential Relations Integrated Math 2 1 Concepts to Know From Video Notes/ HW & Lesson Notes Zero and Integer Exponents Exponent Laws Scientific Notation Analyzing Data Sets (M&M Lab & HW/video

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Exam Name SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. You are planning on purchasing a new car and have your eye on a specific model. You know that

More information

, identify what the letters P, r, n and t stand for.

, identify what the letters P, r, n and t stand for. 1.In the formula At p 1 r n nt, identify what the letters P, r, n and t stand for. 2. Find the exponential function whose graph is given f(x) = a x 3. State the domain and range of the function (Enter

More information

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1 Set-Builder Notation

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1  Set-Builder Notation y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Example 1 Exponential Functions Graphing Exponential Functions For each exponential function: i) Complete the table of values

More information

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer.

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Math 131 Group Review Assignment (5.5, 5.6) Print Name SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation.

More information

Section 4.4 Logarithmic and Exponential Equations

Section 4.4 Logarithmic and Exponential Equations Section 4.4 Logarithmic and Exponential Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation 2 x = 7. Solution 1: We

More information

Math 101 Final Exam Review Solutions. Eric Schmutz

Math 101 Final Exam Review Solutions. Eric Schmutz Math 101 Final Exam Review Solutions Eric Schmutz Problem 1. Write an equation of the line passing through (,7) and (-1,1). Let (x 1, y 1 ) = (, 7) and (x, y ) = ( 1, 1). The slope is m = y y 1 x x 1 =

More information

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions.

8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 8.1 Multiplication Properties of Exponents Objectives 1. Use properties of exponents to multiply exponential expressions. 2. Use powers to model real life problems. Multiplication Properties of Exponents

More information

5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS

5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS 5.1. EXPONENTIAL FUNCTIONS AND THEIR GRAPHS 1 What You Should Learn Recognize and evaluate exponential functions with base a. Graph exponential functions and use the One-to-One Property. Recognize, evaluate,

More information

THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS: e x, ln x

THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS: e x, ln x Mathematics Revision Guides The Exponential and Natural Log Functions Page 1 of 17 M.K. HOME TUITION Mathematics Revision Guides Level: A-Level Year 1 / AS THE EXPONENTIAL AND NATURAL LOGARITHMIC FUNCTIONS:

More information

Exponential Functions and Their Graphs (Section 3-1)

Exponential Functions and Their Graphs (Section 3-1) Exponential Functions and Their Graphs (Section 3-1) Essential Question: How do you graph an exponential function? Students will write a summary describing the steps for graphing an exponential function.

More information

EXPONENTIAL, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS

EXPONENTIAL, LOGARITHMIC, AND TRIGONOMETRIC FUNCTIONS Calculus for the Life Sciences nd Edition Greenwell SOLUTIONS MANUAL Full download at: https://testbankreal.com/download/calculus-for-the-life-sciences-nd-editiongreenwell-solutions-manual-/ Calculus for

More information

5.6 Applications and Models: Exponential Growth and Decay

5.6 Applications and Models: Exponential Growth and Decay 5.6 Applications and Models: Exponential Growth and Decay Many natural (and business/financial) processes build on themselves exponentially. We will see several examples. All of these examples are functions

More information

MATH 111: EXAM 03 BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA

MATH 111: EXAM 03 BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA MATH 111: EXAM 03 BLAKE FARMAN UNIVERSITY OF SOUTH CAROLINA Answer the questions in the spaces provided on the question sheets and turn them in at the end of the class period Unless otherwise stated, all

More information

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions.

Homework 3. (33-40) The graph of an exponential function is given. Match each graph to one of the following functions. Homework Section 4. (-40) The graph of an exponential function is given. Match each graph to one of the following functions. (a)y = x (b)y = x (c)y = x (d)y = x (e)y = x (f)y = x (g)y = x (h)y = x (46,

More information

Page Points Score Total: 100

Page Points Score Total: 100 Math 1130 Spring 2019 Sample Midterm 2a 2/28/19 Name (Print): Username.#: Lecturer: Rec. Instructor: Rec. Time: This exam contains 10 pages (including this cover page) and 9 problems. Check to see if any

More information

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1

4. Sketch the graph of the function. Ans: A 9. Sketch the graph of the function. Ans B. Version 1 Page 1 Name: Online ECh5 Prep Date: Scientific Calc ONLY! 4. Sketch the graph of the function. A) 9. Sketch the graph of the function. B) Ans B Version 1 Page 1 _ 10. Use a graphing utility to determine which

More information

7.1. Calculus of inverse functions. Text Section 7.1 Exercise:

7.1. Calculus of inverse functions. Text Section 7.1 Exercise: Contents 7. Inverse functions 1 7.1. Calculus of inverse functions 2 7.2. Derivatives of exponential function 4 7.3. Logarithmic function 6 7.4. Derivatives of logarithmic functions 7 7.5. Exponential

More information

Assignment #3; Exponential Functions

Assignment #3; Exponential Functions AP Calculus Assignment #3; Exponential Functions Name: The equation identifies a family of functions called exponential functions. Notice that the ratio of consecutive amounts of outputs always stay the

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Philippe B. Laval Kennesaw State University October 30, 2000 Abstract In this handout, exponential and logarithmic functions are first defined. Then, their properties

More information