Logarithmic Functions and Models Power Functions Logistic Function. Mathematics. Rosella Castellano. Rome, University of Tor Vergata

Size: px
Start display at page:

Download "Logarithmic Functions and Models Power Functions Logistic Function. Mathematics. Rosella Castellano. Rome, University of Tor Vergata"

Transcription

1 Mathematics Rome, University of Tor Vergata

2 The logarithm is used to model real-world phenomena in numerous elds: i.e physics, nance, economics, etc. From the equation 4 2 = 16 we see that the power to which we need to raise 4 in order to get 16 is 2. Another way of writing the equation 4 2 = 16 is log 4 16 = 2. Base b Logarithm The base b logarithm of x, log b x, is the power to which we need to raise b in order to get x. Symbolically: log b x = y means b y = x.

3 Example The following table lists some exponential equations and their equivalent logarithmic forms:

4 Common Logarithm log 10 x = logx Natural Logarithm log e x = lnx Examples Logarithmic Form Exponential Form 1. log10, 000 = = 10, ln e = 1 e 1 = e

5 In general, consider the exponential equation b x = a with a, b 2 < and x unknown. Given a > 0, b 6= 1, b > 0 it exists one and only one real number x such that b x = a. De nition x which solves b x = a is the logarithm in base b of a: log b a. It is basically a power! 2 5 = 32 log 2 32 = 5

6 log b a = log a log b = ln a ln b Example log 11 9 = log 9 log 11 = ln 9 ln

7 A logarithmic function has the form: f (x) = log b x + C, f (x) = log x or, alternatively, f (x) = A ln x + C. f (x) = ln x 5

8 The logarithm function with base b is the function y = log b x. with b > 0 and b 6= 1. The function is de ned for all x > 0.

9 Note the following: For any base, the x-intercept is 1; The graph passes through the point (b, 1); The graph is below the x-axis the logarithm is negative for 0 < x < 1; The function is de ned only for positive values of x.

10 Simple Logarithm Properties 1 log a xy = log a x + log a y 2 log x a y = log a x log a y 3 log a (x) k = k log a x 4 log a a = 1; log a 1 = 0 5 log a 1 x = loga x 6 log a x = log b x log b a

11 Example 1 log 4 28 = log log log = log2 15 log log 2 (7 15 ) = 15 log log 5 5 = 1; ln e = 1; log 11 1 = 0 5 log = log2 5 6 log 4 28 = log 5 28 log 5 4 = log 28 log 4

12 The following two identities demonstrate that the operations of taking the base b logarithm and raising b to a power are inverse to each other. The inverse of any exponential function is a logarithmic function for any base b: 1 log b (b x ) = x, log 2 (2 7 ) = 7 2 b log b x = x 5 log 5 8 = 8 Identity 2) embodies the de nition of a logarithm: log b x is the exponent to which b must be raised to produce x.

13 These identities satisfy the de nition of a pair of inverse functions. Therefore for any base b, the functions f (x) = b x and g(x) = log b x are inverses.

14 Example Global bonds sold by Mexico are yielding an average of 2.51% per year. At that interest rate, how long will it take a $1, 000 investment to be worth $1, 200 if the interest is compounded monthly?

15 Solution: Substituting FV = 1, 200, PV = 1, 000, r = , and m = 12 in the compound interest equation gives FV = PV 1 + r mt m 1, 200 = 1, t 12 t = ln ( )

16 An exponential decay function has the form Q(t) = Q 0 e kt, Q, k > 0 Q 0 represents the value of Q at time t = 0, and k is the decay constant. The decay constant k and half-life t h for Q are related by t h k = ln 2

17 Example If t h = 10 years, then 10k = ln 2, so k = ln 2 10 decay model is and the Q(t) = Q 0 e t

18 Exponential Growth Model and Doubling Time An exponential growth function has the form: Q(t) = Q 0 e kt Q 0 represents the value of Q at time t = 0, and k is the growth constant. The growth constant k and doubling time t d for Q are related by t d k = ln 2. Example P(t) = 1, 000e 0.05t

19 The following table shows the total spent on research and development by universities and colleges in the U.S., in billions of dollars, for the period (t is the number of years since 1990). Find the best- t logarithmic model of the form S(t) = A ln t + C and use it to project total spending on research by universities and colleges in 2012, assuming the trend continues.

20 We use technology to get the following regression model: S(t) = 19.3 ln t Because 2012 is represented by t = 22, we have S(22) = 19.3 ln(22)

21 A function of the form f (x) = x a where a is a constant is called a power function. a = n where n is a positive integer. The graphs of f (x) = x n can be obtained cosidering polynomials with only one terms: the general shape depends if n is even or odd. a = 1 n. the function f (x) = x 1 n = np x is a root function. For instance f (x) = p x for a = 1 we have the reciprocal function f (x) = 1 x

22 Power functions (graphs) a = n where n is a positive integer. n=1,2,3,4,5, y x 100

23 Power functions (graph) a = 1 n For instance f (x) = p x y x

24 Modeling with the Logistic Regression A logistic function has the form N f (x) = 1 + Ab x for nonzero constants N, A, and b (A and b positive and b 6= 1). Example N = 6, A = 2, b = 1.1 gives f (x) = (1.1 x ) the y intercept is N/(1 + A): f (0) = = 2 when x is large, f (x) N: 6 f (1, 000) = 1+2(1.1 1,000 ) = 6 = N

25 Modeling with the Logistic Regression

26 Modeling with the Logistic Regression Properties of the Logistic Curve The graph is an S shaped curve sandwiched between the horizontal lines y = 0 and y = N. N is called the limiting value of the logistic curve. If b > 1 the graph rises; if b < 1, the graph falls. The y-intercept is N 1+A The curve is steepest when t = ln A ln b

27 Modeling with the Logistic Regression for small x and the role of b For small values of x, we have: N N 1 + Ab x b x. 1 + A Thus, for small x, the logistic function grows approximately exponentially with base b.

28 Modeling with the Logistic Regression 50 Let f (x) = 1+24(3 x ) Then f (x) (3x ) = 2 (3 x ) for small values of x. The following gure compares their graphs: Figure: The blue curve is the exponential

29 Modeling with the Logistic Regression A u epidemic is spreading through the U.S. population. An estimated 150 million people are susceptible to this particular strain, and it is predicted that all susceptible people will eventually become infected. There are 10,000 people already infected, and the number is doubling every 2 weeks. Use a logistic function to model the number of people infected. Hence predict when, to the nearest week, 1 million people will be infected.

30 Modeling with the Logistic Regression Solution Let t be time in weeks, and let P(t) be the total number of people infected at time t. We want to express P as a logistic function of t, so that P (t) = N 1+Ab t. We are told that, in the long run, 150 million people will be infected, so that N = 150, 000, 000 (limiting value of P). At the current time (t = 0), 10, 000 people are infected, so 10, 000 = N 1+A = 150,000,000 1+A (value of P when t = 0).

31 Modeling with the Logistic Regression Solving for A gives 10, 000(1 + A) = 150, 000, A = 15, 000 A = 14, 999. What about b? At the beginning of the epidemic (t near 0), P is growing approximately exponentially, doubling every 2 weeks. We found that the exponential curve passing through the points (0, 10, 000) and (2, 20, 000) is: so b = p 2 p t y = 10, 000 2

32 Modeling with the Logistic Regression Now that we have the constants N, A, and b, we can write down the logistic model: The graph of this function is: 150, 000, 000 P (t) = p t

33 Modeling with the Logistic Regression Now we tackle the question of prediction: When will 1 million people be infected? In other words: when is P(t) = 1, 000, 000?

34 Modeling with the Logistic Regression Let us consider some data on the percentage of Internet-connected households with broadband and try to estimate the percentage of households that will have broadband in the long term. Since we require a model for the data, we need to do some form of regression. See Excel File Logistic Regr.

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number

The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Chapter 4: 4.1: Exponential Functions Definition: Graphs of y = b x Exponential and Logarithmic Functions The Exponential function f with base b is f (x) = b x where b > 0, b 1, x a real number Graph:

More information

Intermediate Algebra Chapter 12 Review

Intermediate Algebra Chapter 12 Review Intermediate Algebra Chapter 1 Review Set up a Table of Coordinates and graph the given functions. Find the y-intercept. Label at least three points on the graph. Your graph must have the correct shape.

More information

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas

Math 180 Chapter 4 Lecture Notes. Professor Miguel Ornelas Math 80 Chapter 4 Lecture Notes Professor Miguel Ornelas M. Ornelas Math 80 Lecture Notes Section 4. Section 4. Inverse Functions Definition of One-to-One Function A function f with domain D and range

More information

7.1 Exponential Functions

7.1 Exponential Functions 7.1 Exponential Functions 1. What is 16 3/2? Definition of Exponential Functions Question. What is 2 2? Theorem. To evaluate a b, when b is irrational (so b is not a fraction of integers), we approximate

More information

Chapter 6: Exponential and Logarithmic Functions

Chapter 6: Exponential and Logarithmic Functions Section 6.1: Algebra and Composition of Functions #1-9: Let f(x) = 2x + 3 and g(x) = 3 x. Find each function. 1) (f + g)(x) 2) (g f)(x) 3) (f/g)(x) 4) ( )( ) 5) ( g/f)(x) 6) ( )( ) 7) ( )( ) 8) (g+f)(x)

More information

Math Analysis - Chapter 5.4, 5.5, 5.6. (due the next day) 5.4 Properties of Logarithms P.413: 7,9,13,15,17,19,21,23,25,27,31,33,37,41,43,45

Math Analysis - Chapter 5.4, 5.5, 5.6. (due the next day) 5.4 Properties of Logarithms P.413: 7,9,13,15,17,19,21,23,25,27,31,33,37,41,43,45 Math Analysis - Chapter 5.4, 5.5, 5.6 Mathlete: Date Assigned Section Homework (due the next day) Mon 4/17 Tue 4/18 5.4 Properties of Logarithms P.413: 7,9,13,15,17,19,21,23,25,27,31,33,37,41,43,45 5.5

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Graduate T.A. Department of Mathematics Dynamical Systems and Chaos San Diego State University April 9, 11 Definition (Exponential Function) An exponential function with base a is a function of the form

More information

Exponential and Logarithmic Functions

Exponential and Logarithmic Functions Exponential and Logarithmic Functions Learning Targets 1. I can evaluate, analyze, and graph exponential functions. 2. I can solve problems involving exponential growth & decay. 3. I can evaluate expressions

More information

Section 4.2 Logarithmic Functions & Applications

Section 4.2 Logarithmic Functions & Applications 34 Section 4.2 Logarithmic Functions & Applications Recall that exponential functions are one-to-one since every horizontal line passes through at most one point on the graph of y = b x. So, an exponential

More information

Example. Determine the inverse of the given function (if it exists). f(x) = 3

Example. Determine the inverse of the given function (if it exists). f(x) = 3 Example. Determine the inverse of the given function (if it exists). f(x) = g(x) = p x + x We know want to look at two di erent types of functions, called logarithmic functions and exponential functions.

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number.

Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions. Recall that a power function has the form f(x) = x r where r is a real number. L7-1 Lecture 7: Sections 2.3 and 2.4 Rational and Exponential Functions Recall that a power function has the form f(x) = x r where r is a real number. f(x) = x 1/2 f(x) = x 1/3 ex. Sketch the graph of

More information

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises

CHAPTER FIVE. Solutions for Section 5.1. Skill Refresher. Exercises CHAPTER FIVE 5.1 SOLUTIONS 265 Solutions for Section 5.1 Skill Refresher S1. Since 1,000,000 = 10 6, we have x = 6. S2. Since 0.01 = 10 2, we have t = 2. S3. Since e 3 = ( e 3) 1/2 = e 3/2, we have z =

More information

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x?

2.6 Logarithmic Functions. Inverse Functions. Question: What is the relationship between f(x) = x 2 and g(x) = x? Inverse Functions Question: What is the relationship between f(x) = x 3 and g(x) = 3 x? Question: What is the relationship between f(x) = x 2 and g(x) = x? Definition (One-to-One Function) A function f

More information

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above.

INTERNET MAT 117 Review Problems. (1) Let us consider the circle with equation. (b) Find the center and the radius of the circle given above. INTERNET MAT 117 Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (b) Find the center and

More information

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years.

nt and A = Pe rt to solve. 3) Find the accumulated value of an investment of $10,000 at 4% compounded semiannually for 5 years. Exam 4 Review Approximate the number using a calculator. Round your answer to three decimal places. 1) 2 1.7 2) e -1.4 Use the compound interest formulas A = P 1 + r n nt and A = Pe rt to solve. 3) Find

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer.

SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Math 131 Group Review Assignment (5.5, 5.6) Print Name SHORT ANSWER. Answer the question, including units in your answer if needed. Show work and circle your final answer. Solve the logarithmic equation.

More information

COLLEGE ALGEBRA FINAL REVIEW 9) 4 = 7. 13) 3log(4x 4) + 8 = ) Write as the sum of difference of logarithms; express powers as factors.

COLLEGE ALGEBRA FINAL REVIEW 9) 4 = 7. 13) 3log(4x 4) + 8 = ) Write as the sum of difference of logarithms; express powers as factors. Solve. 1) x 1 8 ) ( x ) x x 9 ) x 1 x 4) x + x 0 ) x + 9y 6) t t 4 7) y 8 4 x COLLEGE ALGEBRA FINAL REVIEW x 8) 81 x + 9) 4 7.07 x 10) 10 + 1e 10 11) solve for L P R K M + K L T 1) a) log x log( x+ 6)

More information

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS

GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS GUIDED NOTES 6.1 EXPONENTIAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Evaluate exponential functions. Find the equation of an exponential function. Use compound interest formulas. Evaluate

More information

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x

f(x) = 2x + 5 3x 1. f 1 (x) = x + 5 3x 2. f(x) = 102x x 1. Let f(x) = x 3 + 7x 2 x 2. Use the fact that f( 1) = 0 to factor f completely. (2x-1)(3x+2)(x+1). 2. Find x if log 2 x = 5. x = 1/32 3. Find the vertex of the parabola given by f(x) = 2x 2 + 3x 4. (Give

More information

Math 111: Final Review

Math 111: Final Review Math 111: Final Review Suggested Directions: Start by reviewing the new material with the first portion of the review sheet. Then take every quiz again as if it were a test. No book. No notes. Limit yourself

More information

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08

MAC Module 8 Exponential and Logarithmic Functions I. Rev.S08 MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions

MAC Module 8. Exponential and Logarithmic Functions I. Learning Objectives. - Exponential Functions - Logarithmic Functions MAC 1105 Module 8 Exponential and Logarithmic Functions I Learning Objectives Upon completing this module, you should be able to: 1. Distinguish between linear and exponential growth. 2. Model data with

More information

Properties of Logarithms. Example Expand the following: The Power Rule for Exponents - (b m ) n = b mn. Example Expand the following: b) ln x

Properties of Logarithms. Example Expand the following: The Power Rule for Exponents - (b m ) n = b mn. Example Expand the following: b) ln x Properties of Logarithms The Product Rule for Exponents - b m b n = b m+n Example Expand the following: a) log 4 (7 5) log b MN = log b M + log b N b) log (10x) The Power Rule for Exponents - (b m ) n

More information

Section 2.3: Logarithmic Functions Lecture 3 MTH 124

Section 2.3: Logarithmic Functions Lecture 3 MTH 124 Procedural Skills Learning Objectives 1. Build an exponential function using the correct compounding identifiers (annually, monthly, continuously etc...) 2. Manipulate exponents algebraically. e.g. Solving

More information

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products

8.1 Apply Exponent Properties Involving Products. Learning Outcome To use properties of exponents involving products 8.1 Apply Exponent Properties Involving Products Learning Outcome To use properties of exponents involving products Product of Powers Property Let a be a real number, and let m and n be positive integers.

More information

Section 6.1: Composite Functions

Section 6.1: Composite Functions Section 6.1: Composite Functions Def: Given two function f and g, the composite function, which we denote by f g and read as f composed with g, is defined by (f g)(x) = f(g(x)). In other words, the function

More information

Sec. 4.2 Logarithmic Functions

Sec. 4.2 Logarithmic Functions Sec. 4.2 Logarithmic Functions The Logarithmic Function with Base a has domain all positive real numbers and is defined by Where and is the inverse function of So and Logarithms are inverses of Exponential

More information

Exponential function and equations Exponential equations, logarithm, compound interest

Exponential function and equations Exponential equations, logarithm, compound interest Exercises 10 Exponential function and equations Exponential equations, logarithm, compound interest Objectives - be able to determine simple logarithms without a calculator. - be able to solve simple exponential

More information

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2

INTERNET MAT 117. Solution for the Review Problems. (1) Let us consider the circle with equation. x 2 + 2x + y 2 + 3y = 3 4. (x + 1) 2 + (y + 3 2 INTERNET MAT 117 Solution for the Review Problems (1) Let us consider the circle with equation x 2 + y 2 + 2x + 3y + 3 4 = 0. (a) Find the standard form of the equation of the circle given above. (i) Group

More information

Section 3.1 Exercises

Section 3.1 Exercises Section Exponential and Logistic Functions Chapter Exponential, Logistic, and Logarithmic Functions Section Exponential and Logistic Functions Exploration The point (0, ) is common to all four graphs,

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

Exam 4 Review. 1. Determine if the relation defines y as a one-to-one function of x. a. {( 10, 4), ( 2, 2), (6, 0), (14, 2)} b.

Exam 4 Review. 1. Determine if the relation defines y as a one-to-one function of x. a. {( 10, 4), ( 2, 2), (6, 0), (14, 2)} b. Exam 4 Review 1. Determine if the relation defines y as a one-to-one function of x. a. {( 10, 4), ( 2, 2), (6, 0), (14, 2)} b. c. 2. Determine if the function is one-to-one. Give an explanation supporting

More information

Section 4.4 Logarithmic and Exponential Equations

Section 4.4 Logarithmic and Exponential Equations Section 4.4 Logarithmic and Exponential Equations Exponential Equations An exponential equation is one in which the variable occurs in the exponent. EXAMPLE: Solve the equation 2 x = 7. Solution 1: We

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. ( x 1 + x 2 2., y 1 + y 2. (x h) 2 + (y k) 2 = r 2. m = y 2 y 1 x 2 x 1 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions

Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions Math M110: Lecture Notes For Chapter 12 Section 12.1: Inverse and Composite Functions Inverse function (interchange x and y): Find the equation of the inverses for: y = 2x + 5 ; y = x 2 + 4 Function: (Vertical

More information

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions

Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Graphing Exponentials 6.0 Topic: Graphing Growth and Decay Functions Date: Objectives: SWBAT (Graph Exponential Functions) Main Ideas: Mother Function Exponential Assignment: Parent Function: f(x) = b

More information

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2

Internet Mat117 Formulas and Concepts. d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2., y 1 + y 2. ( x 1 + x 2 2 Internet Mat117 Formulas and Concepts 1. The distance between the points A(x 1, y 1 ) and B(x 2, y 2 ) in the plane is d(a, B) = (x 2 x 1 ) 2 + (y 2 y 1 ) 2. 2. The midpoint of the line segment from A(x

More information

Skill 6 Exponential and Logarithmic Functions

Skill 6 Exponential and Logarithmic Functions Skill 6 Exponential and Logarithmic Functions Skill 6a: Graphs of Exponential Functions Skill 6b: Solving Exponential Equations (not requiring logarithms) Skill 6c: Definition of Logarithms Skill 6d: Graphs

More information

Chapter 3 Exponential and Logarithmic Functions

Chapter 3 Exponential and Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions Overview: 3.1 Exponential Functions and Their Graphs 3.2 Logarithmic Functions and Their Graphs 3.3 Properties of Logarithms 3.4 Solving Exponential and

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) x 8. C) y = x + 3 2

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) x 8. C) y = x + 3 2 Precalculus Fall Final Exam Review Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Simplify the expression. Assume that the variables

More information

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16.

GOOD LUCK! 2. a b c d e 12. a b c d e. 3. a b c d e 13. a b c d e. 4. a b c d e 14. a b c d e. 5. a b c d e 15. a b c d e. 6. a b c d e 16. MA109 College Algebra Fall 2018 Practice Final Exam 2018-12-12 Name: Sec.: Do not remove this answer page you will turn in the entire exam. You have two hours to do this exam. No books or notes may be

More information

Logarithmic Functions

Logarithmic Functions Logarithmic Functions Definition 1. For x > 0, a > 0, and a 1, y = log a x if and only if x = a y. The function f(x) = log a x is called the logarithmic function with base a. Example 1. Evaluate the following

More information

Concept Category 2. Exponential and Log Functions

Concept Category 2. Exponential and Log Functions Concept Category 2 Exponential and Log Functions Concept Category 2 Check List *Find the inverse and composition of functions *Identify an exponential from a table, graph and equation *Identify the difference

More information

Chapter 3. Exponential and Logarithmic Functions. 3.2 Logarithmic Functions

Chapter 3. Exponential and Logarithmic Functions. 3.2 Logarithmic Functions Chapter 3 Exponential and Logarithmic Functions 3.2 Logarithmic Functions 1/23 Chapter 3 Exponential and Logarithmic Functions 3.2 4, 8, 14, 16, 18, 20, 22, 30, 31, 32, 33, 34, 39, 42, 54, 56, 62, 68,

More information

4. Find x, log 4 32 = x. 5. ln e ln ln e. 8. log log log 3 243

4. Find x, log 4 32 = x. 5. ln e ln ln e. 8. log log log 3 243 Session #5 Logarithms What is a log? it is the inverse of an exponential equation. When you take the inverse of an exponential equation with a base of e, you have a natural logarithm, written as ln. 1.

More information

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24)

FLC Ch 9. Ex 2 Graph each function. Label at least 3 points and include any pertinent information (e.g. asymptotes). a) (# 14) b) (# 18) c) (# 24) Math 5 Trigonometry Sec 9.: Exponential Functions Properties of Exponents a = b > 0, b the following statements are true: b x is a unique real number for all real numbers x f(x) = b x is a function with

More information

Chapter 3 Exponential, Logistic, and Logarithmic Functions

Chapter 3 Exponential, Logistic, and Logarithmic Functions Chapter Exponential, Logistic, and Logarithmic Functions Section. Exponential and Logistic Functions 75 Section. Exponential and Logistic Functions Exploration. The point (0, ) is common to all four graphs,

More information

Math 1101 Exam 3 Practice Problems

Math 1101 Exam 3 Practice Problems Math 1101 Exam 3 Practice Problems These problems are not intended to cover all possible test topics. These problems should serve as an activity in preparing for your test, but other study is required

More information

in terms of p, q and r.

in terms of p, q and r. Logarithms and Exponents 1. Let ln a = p, ln b = q. Write the following expressions in terms of p and q. ln a 3 b ln a b 2. Let log 10 P = x, log 10 Q = y and log 10 R = z. Express P log 10 QR 3 2 in terms

More information

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains?

Topic 33: One-to-One Functions. Are the following functions one-to-one over their domains? Topic 33: One-to-One Functions Definition: A function f is said to be one-to-one if for every value f(x) in the range of f there is exactly one corresponding x-value in the domain of f. Ex. Are the following

More information

Math 095 Final Exam Review - MLC

Math 095 Final Exam Review - MLC Math 095 Final Exam Review - MLC Although this is a comprehensive review, you should also look over your old reviews from previous modules, the readings, and your notes. Round to the thousandth unless

More information

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts.

The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Math 141 Review for Final The final is cumulative, but with more emphasis on chapters 3 and 4. There will be two parts. Part 1 (no calculator) graphing (polynomial, rational, linear, exponential, and logarithmic

More information

Another enormous super-family of functions are exponential functions.

Another enormous super-family of functions are exponential functions. Hartfield College Algebra (Version 2018 - Thomas Hartfield) Unit FIVE Page - 1 - of 39 Topic 37: Exponential Functions In previous topics we ve discussed power functions, n functions of the form f x x,

More information

Solutions to MAT 117 Test #3

Solutions to MAT 117 Test #3 Solutions to MAT 7 Test #3 Because there are two versions of the test, solutions will only be given for Form C. Differences from the Form D version will be given. (The values for Form C appear above those

More information

Chapter 11 Logarithms

Chapter 11 Logarithms Chapter 11 Logarithms Lesson 1: Introduction to Logs Lesson 2: Graphs of Logs Lesson 3: The Natural Log Lesson 4: Log Laws Lesson 5: Equations of Logs using Log Laws Lesson 6: Exponential Equations using

More information

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7

HW#1. Unit 4B Logarithmic Functions HW #1. 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 HW#1 Name Unit 4B Logarithmic Functions HW #1 Algebra II Mrs. Dailey 1) Which of the following is equivalent to y=log7 x? (1) y =x 7 (3) x = 7 y (2) x =y 7 (4) y =x 1/7 2) If the graph of y =6 x is reflected

More information

Pre-Calculus Final Exam Review Units 1-3

Pre-Calculus Final Exam Review Units 1-3 Pre-Calculus Final Exam Review Units 1-3 Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Find the value for the function. Find f(x - 1) when f(x) = 3x

More information

Population Changes at a Constant Percentage Rate r Each Time Period

Population Changes at a Constant Percentage Rate r Each Time Period Concepts: population models, constructing exponential population growth models from data, instantaneous exponential growth rate models, logistic growth rate models. Population can mean anything from bacteria

More information

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x

Inverse Functions. Definition 1. The exponential function f with base a is denoted by. f(x) = a x Inverse Functions Definition 1. The exponential function f with base a is denoted by f(x) = a x where a > 0, a 1, and x is any real number. Example 1. In the same coordinate plane, sketch the graph of

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) 6x + 4 Math1420 Review Comprehesive Final Assessment Test Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Add or subtract as indicated. x + 5 1) x2

More information

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1 Set-Builder Notation

y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Lesson Notes Example 1  Set-Builder Notation y = b x Exponential and Logarithmic Functions LESSON ONE - Exponential Functions Example 1 Exponential Functions Graphing Exponential Functions For each exponential function: i) Complete the table of values

More information

PRECAL REVIEW DAY 11/14/17

PRECAL REVIEW DAY 11/14/17 PRECAL REVIEW DAY 11/14/17 COPY THE FOLLOWING INTO JOURNAL 1 of 3 Transformations of logs Vertical Transformation Horizontal Transformation g x = log b x + c g x = log b x c g x = log b (x + c) g x = log

More information

Practice Questions for Final Exam - Math 1060Q - Fall 2014

Practice Questions for Final Exam - Math 1060Q - Fall 2014 Practice Questions for Final Exam - Math 1060Q - Fall 01 Before anyone asks, the final exam is cumulative. It will consist of about 50% problems on exponential and logarithmic functions, 5% problems on

More information

Teacher: Mr. Chafayay. Name: Class & Block : Date: ID: A. 3 Which function is represented by the graph?

Teacher: Mr. Chafayay. Name: Class & Block : Date: ID: A. 3 Which function is represented by the graph? Teacher: Mr hafayay Name: lass & lock : ate: I: Midterm Exam Math III H Multiple hoice Identify the choice that best completes the statement or answers the question Which function is represented by the

More information

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X MAT 107 College Algebra Fall 013 Name Final Exam, Version X EKU ID Instructor Part 1: No calculators are allowed on this section. Show all work on your paper. Circle your answer. Each question is worth

More information

OBJECTIVE 4 EXPONENTIAL FORM SHAPE OF 5/19/2016. An exponential function is a function of the form. where b > 0 and b 1. Exponential & Log Functions

OBJECTIVE 4 EXPONENTIAL FORM SHAPE OF 5/19/2016. An exponential function is a function of the form. where b > 0 and b 1. Exponential & Log Functions OBJECTIVE 4 Eponential & Log Functions EXPONENTIAL FORM An eponential function is a function of the form where > 0 and. f ( ) SHAPE OF > increasing 0 < < decreasing PROPERTIES OF THE BASIC EXPONENTIAL

More information

(C) BOARDWORK: Examples: Solve w/ & w/o calculator (approx vs exact)

(C) BOARDWORK: Examples: Solve w/ & w/o calculator (approx vs exact) (A Lesson Context BIG PICTURE of this UNIT: How do algebraically & graphically work with growth and decay applications? What are logarithms and how do we invert or undo an exponential function? How do

More information

Math 137 Exam #3 Review Guide

Math 137 Exam #3 Review Guide Math 7 Exam # Review Guide The third exam will cover Sections.-.6, 4.-4.7. The problems on this review guide are representative of the type of problems worked on homework and during class time. Do not

More information

Review of Functions A relation is a function if each input has exactly output. The graph of a function passes the vertical line test.

Review of Functions A relation is a function if each input has exactly output. The graph of a function passes the vertical line test. CA-Fall 011-Jordan College Algebra, 4 th edition, Beecher/Penna/Bittinger, Pearson/Addison Wesley, 01 Chapter 5: Exponential Functions and Logarithmic Functions 1 Section 5.1 Inverse Functions Inverse

More information

10 Exponential and Logarithmic Functions

10 Exponential and Logarithmic Functions 10 Exponential and Logarithmic Functions Concepts: Rules of Exponents Exponential Functions Power Functions vs. Exponential Functions The Definition of an Exponential Function Graphing Exponential Functions

More information

NONLINEAR FUNCTIONS A. Absolute Value Exercises: 2. We need to scale the graph of Qx ( )

NONLINEAR FUNCTIONS A. Absolute Value Exercises: 2. We need to scale the graph of Qx ( ) NONLINEAR FUNCTIONS A. Absolute Value Eercises:. We need to scale the graph of Q ( ) f ( ) =. The graph is given below. = by the factor of to get the graph of 9 - - - - -. We need to scale the graph of

More information

Chapter 3 Exponential, Logistic, and Logarithmic Functions

Chapter 3 Exponential, Logistic, and Logarithmic Functions ch0_p_6qxd /8/0 :5 PM Page Section Exponential and Logistic Functions Chapter Exponential, Logistic, and Logarithmic Functions Section Exponential and Logistic Functions Exploration The point (0, ) is

More information

4 Exponential and Logarithmic Functions

4 Exponential and Logarithmic Functions 4 Exponential and Logarithmic Functions 4.1 Exponential Functions Definition 4.1 If a > 0 and a 1, then the exponential function with base a is given by fx) = a x. Examples: fx) = x, gx) = 10 x, hx) =

More information

Transformations of Functions and Exponential Functions January 24, / 35

Transformations of Functions and Exponential Functions January 24, / 35 Exponential Functions January 24, 2017 Exponential Functions January 24, 2017 1 / 35 Review of Section 1.2 Reminder: Week-in-Review, Help Sessions, Oce Hours Mathematical Models Linear Regression Function

More information

171S5.6o Applications and Models: Growth and Decay; and Compound Interest November 21, 2011

171S5.6o Applications and Models: Growth and Decay; and Compound Interest November 21, 2011 MAT 171 Precalculus Algebra Dr. Claude Moore Cape Fear Community College CHAPTER 5: Exponential and Logarithmic Functions 5.1 Inverse Functions 5.2 Exponential Functions and Graphs 5.3 Logarithmic Functions

More information

1. Find all relations which are functions. 2. Find all one to one functions.

1. Find all relations which are functions. 2. Find all one to one functions. 1 PRACTICE PROBLEMS FOR FINAL (1) Function or not (vertical line test or y = x expression) 1. Find all relations which are functions. (A) x + y = (C) y = x (B) y = x 1 x+ (D) y = x 5 x () One to one function

More information

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2)

2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Completely factor 2x 4 14x 2 36 2(x 4 7x 2 18) 2(x 2 9)(x 2 + 2) 2(x 3)(x + 3)(x 2 + 2) Add and simplify Simplify as much as possible Subtract and simplify Determine the inverse of Multiply and simplify

More information

Section Exponential Functions

Section Exponential Functions 121 Section 4.1 - Exponential Functions Exponential functions are extremely important in both economics and science. It allows us to discuss the growth of money in a money market account as well as the

More information

Growth 23%

Growth 23% y 100 0. 4 x Decay 23% Math 109C - Fall 2012 page 16 39. Write the quantity 12,600,000,000 miles in scientific notation. The result is: (A) 12. 6 x 10 9 miles (B) 12. 6 x 10 9 miles (C) 1. 26 x 10 10 miles

More information

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3

2. (10 points) Find an equation for the line tangent to the graph of y = e 2x 3 at the point (3/2, 1). Solution: y = 2(e 2x 3 so m = 2e 2 3 November 24, 2009 Name The total number of points available is 145 work Throughout this test, show your 1 (10 points) Find an equation for the line tangent to the graph of y = ln(x 2 +1) at the point (1,

More information

1 Functions And Change

1 Functions And Change 1 Functions And Change 1.1 What Is a Function? * Function A function is a rule that takes certain numbers as inputs and assigns to each a definite output number. The set of all input numbers is called

More information

MATH 1431-Precalculus I

MATH 1431-Precalculus I MATH 43-Precalculus I Chapter 4- (Composition, Inverse), Eponential, Logarithmic Functions I. Composition of a Function/Composite Function A. Definition: Combining of functions that output of one function

More information

Math 1120, Section 6 Calculus Test 3

Math 1120, Section 6 Calculus Test 3 November 15, 2012 Name The total number of points available is 158 Throughout this test, show your work Using a calculator to circumvent ideas discussed in class will generally result in no credit In general

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Decide if the function is an exponential function. If it is, state the initial value and

More information

EXAM 3 Tuesday, March 18, 2003

EXAM 3 Tuesday, March 18, 2003 MATH 12001 Precalculus: Algebra & Trigonometry Spring 2003 Sections 2 & 3 Darci L. Kracht Name: Score: /100. 115 pts available EXAM 3 Tuesday, March 18, 2003 Part I: NO CALCULATORS. (You must turn this

More information

Unit 4 Exponents and Exponential Functions

Unit 4 Exponents and Exponential Functions Unit 4 Exponents and Exponential Functions Test Date: Name: By the end of this unit, you will be able to Multiply and divide monomials using properties of exponents Simplify expressions containing exponents

More information

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers

An equation of the form y = ab x where a 0 and the base b is a positive. x-axis (equation: y = 0) set of all real numbers Algebra 2 Notes Section 7.1: Graph Exponential Growth Functions Objective(s): To graph and use exponential growth functions. Vocabulary: I. Exponential Function: An equation of the form y = ab x where

More information

Page 1 of 10 MATH 120 Final Exam Review

Page 1 of 10 MATH 120 Final Exam Review Page 1 of 1 MATH 12 Final Exam Review Directions Part 1: Calculators will NOT be allowed on this part of the final exam. Unless the question asks for an estimate, give exact answers in completely reduced

More information

5.2 Exponential and Logarithmic Functions in Finance

5.2 Exponential and Logarithmic Functions in Finance 5. Exponential and Logarithmic Functions in Finance Question 1: How do you convert between the exponential and logarithmic forms of an equation? Question : How do you evaluate a logarithm? Question 3:

More information

You identified, graphed, and described several parent functions. (Lesson 1-5)

You identified, graphed, and described several parent functions. (Lesson 1-5) You identified, graphed, and described several parent functions. (Lesson 1-5) Evaluate, analyze, and graph exponential functions. Solve problems involving exponential growth and decay. algebraic function

More information

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals

Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals Honors Advanced Algebra Chapter 8 Exponential and Logarithmic Functions and Relations Target Goals By the end of this chapter, you should be able to Graph exponential growth functions. (8.1) Graph exponential

More information

Doug Clark The Learning Center 100 Student Success Center learningcenter.missouri.edu Overview

Doug Clark The Learning Center 100 Student Success Center learningcenter.missouri.edu Overview Math 1400 Final Exam Review Saturday, December 9 in Ellis Auditorium 1:00 PM 3:00 PM, Saturday, December 9 Part 1: Derivatives and Applications of Derivatives 3:30 PM 5:30 PM, Saturday, December 9 Part

More information

Final Exam Study Aid

Final Exam Study Aid Math 112 Final Exam Study Aid 1 of 33 Final Exam Study Aid Note: This study aid is intended to help you review for the final exam. It covers the primary concepts in the course, with a large emphasis on

More information

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x)

Evaluate the expression using the values given in the table. 1) (f g)(6) x f(x) x g(x) M60 (Precalculus) ch5 practice test Evaluate the expression using the values given in the table. 1) (f g)(6) 1) x 1 4 8 1 f(x) -4 8 0 15 x -5-4 1 6 g(x) 1-5 4 8 For the given functions f and g, find the

More information

Exponential Functions and Their Graphs (Section 3-1)

Exponential Functions and Their Graphs (Section 3-1) Exponential Functions and Their Graphs (Section 3-1) Essential Question: How do you graph an exponential function? Students will write a summary describing the steps for graphing an exponential function.

More information

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0.

Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3. 2) y = 2x, x = -3. 3) y = 243x, x = ) y = 16x, x = -0. MAT 205-01C TEST 4 REVIEW (CHAP 13) NAME Evaluate the exponential function at the specified value of x. 1) y = 4x, x = 3 2) y = 2x, x = -3 3) y = 243x, x = 0.2 4) y = 16x, x = -0.25 Solve. 5) The number

More information

Final Exam Review Part 2

Final Exam Review Part 2 Final Exam Review Part 2 Exponential & Logarithmic Functions and Equations Polynomial & Sinusoidal Functions Rational Expressions and Equations Exponential Functions To describe, orally and in written

More information

Logarithmic and Exponential Equations and Change-of-Base

Logarithmic and Exponential Equations and Change-of-Base Logarithmic and Exponential Equations and Change-of-Base MATH 101 College Algebra J. Robert Buchanan Department of Mathematics Summer 2012 Objectives In this lesson we will learn to solve exponential equations

More information