New Multilevel Algorithms Based on Quasi-Monte Carlo Point Sets

Size: px
Start display at page:

Download "New Multilevel Algorithms Based on Quasi-Monte Carlo Point Sets"

Transcription

1 New Multilevel Based on Quasi-Monte Carlo Point Sets Michael Gnewuch Institut für Informatik Christian-Albrechts-Universität Kiel 1 February 13, 2012 Based on Joint Work with Jan Baldeaux (UTS Sydney) & Josef Dick (UNSW Sydney) 1 Supported by the German Science Foundation DFG under Grant GN 91/3-1 and GN 91/4-1. 1/14

2 Function Spaces of Integrands Analysis of multilevel algorithms on spaces of integrands depending on infinitely many variables. Spaces of integrands are constructed in the following way: Reproducing kernel Hilbert space H of univariate functions on [0, 1] Hilbert spaces H u of multivariate functions on [0, 1] u : H u = j u H for u f N, where H = span{1}. Hilbert space H γ of functions of infinitely many variables: Weights γ = (γ u ) u f N with u f N γ u < { H γ := f u u f N : f u H u, u f N u f N } γu 1 f u 2 H u < 2/14

3 Integration, & Cost Model Integration functional I on H γ : I(f) := f(x)dx [0,1] N Admissable Quadratures: Q n (f) = n i=1 a i f(t (i) v i ; 0), where t (i) v i [0, 1] vi, v i f N Variable Subspace Sampling: [Creutzig, Dereich, Müller-Gronbach & Ritter 09] cost(q n ) := n maxv i i=1 3/14

4 Multilevel For levels k = 1,...,m: v k := {1,...,2 k }. n 1 n 2 n 3. Quasi-Monte Carlo : Q 1 (f) := 1 n 1 f(t v (j,1) n 1 ; 0) 1 and, for k 2, Q k (f) := 1 n k n k j=1 j=1 ( f(t (j,k) v k ; 0) f(t v (j,k) k 1 ; 0) ). QMC-Multilevel Algorithm: Q ML m := m Q k (f). k=1 Cost: cost(q ML m ) 2 m n k 2 k. k=1 4/14

5 Multilevel Multilevel algorithms have been used for finite-dimensional and infinite-dimensional integration, e.g., by Heinrich 98 & 01; Giles 08; Avikainen 09; Creutzig, Dereich, Müller-Gronbach & Ritter 09; Giles, Higham & Mao 09; Giles & Waterhouse 09; Müller-Gronbach & Ritter 09; Hickernell, Müller-Gronbach, Niu & Ritter 10; Kuo, Sloan, Wasilkowski & Woźniakowski 10; G. 10; Baldeaux 11; Dereich 11; Dereich & Heidenreich 11; Dereich & Neuenkirch 11; Niu, Hickernell, Müller-Gronbach & Ritter 11; Plaskota & Wasilkowski 11;... [List is from July last year and not objective, but mostly from the IBC point of view und thus completely incomplete.] 5/14

6 (Deterministic) Higher Order Convergence Reproducing kernel K α of H of smoothness α 2: For x, y [0, 1]: K α (x, y) = α 1 r=1 x r y r min{x,y} r! r! + (x t) α 1 (y t) α 1 dt 0 (α 1)! (α 1)! H consists of functions f L 2 ([0, 1]) with f(0) = 0 and f (1),..., f (α) L 2 ([0, 1]). K α induces an anchored decomposition on H γ. 6/14

7 (Deterministic) Higher Order Convergence We use QMC-multilevel algorithms Q ML m based on (completely!) deterministic polynomial lattice rules. Error criterion: worst case error e wor (Q ML m ; H γ) 2 = sup I(f) Q ML m (f) 2 f Hγ 1 Nth minimal worst case error: e wor (N) = inf{e wor (Q; H γ ) Q adm. alg., cost(q) N}. Convergence rate of e wor (N): λ wor = sup{t > 0 sup e wor (N)N t < }. N N 7/14

8 Finite-Intersection Weights Finite-order weights γ of order ω: γ u = 0 for all u > ω. Finite-intersection weights γ of degree ρ: Finite-order weights with {u f N γ u > 0, u v } 1 + ρ for all v f N, γ v > 0. { decay := sup p R u f N γ 1/p u < }. Theorem [Dick, G. 11]. γ finite-intersection weights, decay > 1. Then decay 2α + 1: λ wor = α 2α + 1 > decay > 1: λ wor = decay 1 2 8/14

9 Product Weights & Finite Product Weights γ 1 γ 2 γ 3. Product weights γ: γ u = j u γ j. Finite-product weights γ of order ω: As product weights, but γ u = 0 if u > ω. Theorem [Dick, G. 11]. γ be product or finite-product weights, and decay > 1. Then decay 4α: λ wor = α 4α > decay > 2: decay 4 2 decay > 1: λ wor = λ wor min decay 1 2 { α, } decay 1 2 [Anchored Decomposition & Product weights: Earlier related results in Kuo, Sloan, Wasilkowski & Woźniakowski 10 ; Niu, Hickernell, Müller-Gronbach & Ritter 11; G. 10; Plaskota & Wasilkowski 11] 9/14

10 Randomized Setting & ANOVA Decomposition Unanchored reproducing kernel K of H: For x, y [0, 1]: K(x, y) = x2 + y 2 max{x, y} 2 H consists of functions f L 2 ([0, 1]) with 1 0 f(x)dx = 0 and f (1) L 2 ([0, 1]). K induces ANOVA-decomposition on H γ. 10/14

11 Randomized Setting & ANOVA Decomposition We use RQMC-multilevel algorithms Q ML m based on fully scrambled digital (t, m, s)-nets and fully scrambled polynomial lattice rules. Error criterion: error in randomized setting e ran (Q ML m ; H γ) 2 = sup E ( (I(f) Q ML m (f))2) f Hγ 1 Nth minimal error in randomized setting: e ran (N) = inf{e ran (Q; H γ ) Q rand. adm. alg., cost(q) N}. Convergence rate of e ran (N): λ ran = sup{t > 0 sup e ran (N)N t < }. N N 11/14

12 Product Weights Theorem [Baldeaux, G. 11]. γ be product weights, and decay > 1. Then decay 6 : λ ran = 3/2 6 > decay > 2: λ ran decay 4 2 decay > 1: λ ran decay 1 2 Comparison with previously known results for product weights: [Hickernell, Niu, Müller-Gronbach, Ritter 10]: Multilevel algorithms Q ML m based on scrambled Niederreiter (t, m, s)-nets: decay 11: λ ran = 3/2 [Baldeaux 11]: Multilevel algorithms ˆQ ML m polynomial lattice rules: decay 10: λ ran = 3/2 based on scrambled 12/14

13 Finite-Intersection Weights Theorem [Baldeaux, G. 11]. γ be finite-intersection weights, decay > 1, Q ML m based on scrambled digital (t, m, s)-nets. Then decay 4: λ ran = 3/2 4 decay > 1: λ ran decay /14

14 (Some) References for the Settings Discussed Here 1 J. Baldeaux, Scrambled polynomial lattice rules for infinite-dimensional integration, To appear Proceedings of MCQMC J. Baldeaux, J. Dick, J. Greslehner, F. Pillichshammer, Construction algorithms for higher order polynomial lattice rules, J. Complexity 27 (2011), J. Baldeaux, J. Dick, G. Leobacher, D. Nuyens, F. Pillichshammer, Efficient calculation of the worst-case error and (fast) component-by-component construction of higher order polynomial lattice rules, To appear in Numer. Alg.. 4 J. Creutzig, S. Dereich, T. Müller-Gronbach, K. Ritter, Infinite-dimensional quadrature and approximation of distributions, Found. Comput. Math. 9 (2009), M. Gnewuch, Infinite-dimensional Integration on Weighted Hilbert Spaces, To appear in Math. Comp.. 6 F. J. Hickernell, T. Müller-Gronbach, B. Niu, K. Ritter, Multi-level Monte Carlo algorithms for infinite-dimensional integration on R N, J. Complexity 26 (2010), F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, H. Woźniakowski, Liberating the dimension, J. Complexity 26 (2010), B. Niu, F. J. Hickernell, T. Müller-Gronbach, K. Ritter, Deterministic multi-level algorithms for infinite-dimensional integration on R N, J. Complexity 27 (2011), L. Plaskota, G. W. Wasilkowski, Tractability of infinite-dimensional integration in the worst case and randomized settings, J. Complexity 27 (2011), /14

Optimal Randomized Algorithms for Integration on Function Spaces with underlying ANOVA decomposition

Optimal Randomized Algorithms for Integration on Function Spaces with underlying ANOVA decomposition Optimal Randomized on Function Spaces with underlying ANOVA decomposition Michael Gnewuch 1 University of Kaiserslautern, Germany October 16, 2013 Based on Joint Work with Jan Baldeaux (UTS Sydney) & Josef

More information

Tutorial on quasi-monte Carlo methods

Tutorial on quasi-monte Carlo methods Tutorial on quasi-monte Carlo methods Josef Dick School of Mathematics and Statistics, UNSW, Sydney, Australia josef.dick@unsw.edu.au Comparison: MCMC, MC, QMC Roughly speaking: Markov chain Monte Carlo

More information

On Infinite-Dimensional Integration in Weighted Hilbert Spaces

On Infinite-Dimensional Integration in Weighted Hilbert Spaces On Infinite-Dimensional Integration in Weighted Hilbert Spaces Sebastian Mayer Universität Bonn Joint work with M. Gnewuch (UNSW Sydney) and K. Ritter (TU Kaiserslautern). HDA 2013, Canberra, Australia.

More information

Hot new directions for QMC research in step with applications

Hot new directions for QMC research in step with applications Hot new directions for QMC research in step with applications Frances Kuo f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia Frances Kuo @ UNSW Australia p.1 Outline Motivating example

More information

Liberating the Dimension for Function Approximation and Integration

Liberating the Dimension for Function Approximation and Integration Liberating the Dimension for Function Approximation and Integration G W Wasilkowski Abstract We discuss recent results on the complexity and tractability of problems dealing with -variate functions Such

More information

Quasi-Monte Carlo integration over the Euclidean space and applications

Quasi-Monte Carlo integration over the Euclidean space and applications Quasi-Monte Carlo integration over the Euclidean space and applications f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with James Nichols (UNSW) Journal of Complexity 30

More information

Application of QMC methods to PDEs with random coefficients

Application of QMC methods to PDEs with random coefficients Application of QMC methods to PDEs with random coefficients a survey of analysis and implementation Frances Kuo f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with Ivan Graham

More information

Quasi-Monte Carlo Methods for Applications in Statistics

Quasi-Monte Carlo Methods for Applications in Statistics Quasi-Monte Carlo Methods for Applications in Statistics Weights for QMC in Statistics Vasile Sinescu (UNSW) Weights for QMC in Statistics MCQMC February 2012 1 / 24 Quasi-Monte Carlo Methods for Applications

More information

Weighted Geometric Discrepancies and Numerical Integration on Reproducing Kernel Hilbert Spaces

Weighted Geometric Discrepancies and Numerical Integration on Reproducing Kernel Hilbert Spaces Weighted Geometric Discrepancies and Numerical Integration on Reproducing Kernel Hilbert Spaces ichael Gnewuch Institut für Informatik, Christian-Albrechts-Universität Kiel, Christian-Albrechts-Platz 4,

More information

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed?

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed? Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed? Xiaoqun Wang 1,2 and Ian H. Sloan 2 1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084,

More information

Multilevel Monte Carlo for Lévy Driven SDEs

Multilevel Monte Carlo for Lévy Driven SDEs Multilevel Monte Carlo for Lévy Driven SDEs Felix Heidenreich TU Kaiserslautern AG Computational Stochastics August 2011 joint work with Steffen Dereich Philipps-Universität Marburg supported within DFG-SPP

More information

Some Results on the Complexity of Numerical Integration

Some Results on the Complexity of Numerical Integration Some Results on the Complexity of Numerical Integration Erich Novak Abstract We present some results on the complexity of numerical integration. We start with the seminal paper of Bakhvalov (1959) and

More information

Approximation of High-Dimensional Numerical Problems Algorithms, Analysis and Applications

Approximation of High-Dimensional Numerical Problems Algorithms, Analysis and Applications Approximation of High-Dimensional Numerical Problems Algorithms, Analysis and Applications Christiane Lemieux (University of Waterloo), Ian Sloan (University of New South Wales), Henryk Woźniakowski (University

More information

-Variate Integration

-Variate Integration -Variate Integration G. W. Wasilkowski Department of Computer Science University of Kentucky Presentation based on papers co-authored with A. Gilbert, M. Gnewuch, M. Hefter, A. Hinrichs, P. Kritzer, F.

More information

Lattice rules and sequences for non periodic smooth integrands

Lattice rules and sequences for non periodic smooth integrands Lattice rules and sequences for non periodic smooth integrands dirk.nuyens@cs.kuleuven.be Department of Computer Science KU Leuven, Belgium Joint work with Josef Dick (UNSW) and Friedrich Pillichshammer

More information

Integration of permutation-invariant. functions

Integration of permutation-invariant. functions permutation-invariant Markus Weimar Philipps-University Marburg Joint work with Dirk Nuyens and Gowri Suryanarayana (KU Leuven, Belgium) MCQMC2014, Leuven April 06-11, 2014 un Outline Permutation-invariant

More information

DFG-Schwerpunktprogramm 1324

DFG-Schwerpunktprogramm 1324 DFG-Schwerpunktprogramm 1324 Extraktion quantifizierbarer Information aus komplexen Systemen Deterministic Multi-level Algorithms for Infinite-dimensional Integration on R N B. Niu, F.J. Hickernell, T.

More information

Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces

Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces Josef Dick, Gerhard Larcher, Friedrich Pillichshammer and Henryk Woźniakowski March 12, 2010 Abstract In this paper

More information

FOCM Workshop B5 Information Based Complexity

FOCM Workshop B5 Information Based Complexity FOCM 2014 - Workshop B5 Information Based Complexity B5 - December 15, 14:30 15:00 The ANOVA decomposition of a non-smooth function of an infinite number of variables Ian Sloan University of New South

More information

Error Analysis for Quasi-Monte Carlo Methods

Error Analysis for Quasi-Monte Carlo Methods Error Analysis for Quasi-Monte Carlo Methods Fred J. Hickernell Department of Applied Mathematics, Illinois Institute of Technology hickernell@iit.edu mypages.iit.edu/~hickernell Thanks to the Guaranteed

More information

Infinite-Dimensional Integration on Weighted Hilbert Spaces

Infinite-Dimensional Integration on Weighted Hilbert Spaces Infinite-Dimensional Integration on Weighted Hilbert Spaces Michael Gnewuch Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New Yor, NY 10027, USA Abstract We study the numerical

More information

APPLIED MATHEMATICS REPORT AMR04/2 DIAPHONY, DISCREPANCY, SPECTRAL TEST AND WORST-CASE ERROR. J. Dick and F. Pillichshammer

APPLIED MATHEMATICS REPORT AMR04/2 DIAPHONY, DISCREPANCY, SPECTRAL TEST AND WORST-CASE ERROR. J. Dick and F. Pillichshammer APPLIED MATHEMATICS REPORT AMR4/2 DIAPHONY, DISCREPANCY, SPECTRAL TEST AND WORST-CASE ERROR J. Dick and F. Pillichshammer January, 24 Diaphony, discrepancy, spectral test and worst-case error Josef Dick

More information

Tractability of Multivariate Problems

Tractability of Multivariate Problems Erich Novak University of Jena Chemnitz, Summer School 2010 1 Plan for the talk Example: approximation of C -functions What is tractability? Tractability by smoothness? Tractability by sparsity, finite

More information

Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher Order Convergence

Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher Order Convergence arxiv:121.4223v1 [math.na] 16 Oct 212 Infinite-Dimensional Integration in Weighted Hilbert Spaces: Anchored Decompositions, Optimal Deterministic Algorithms, and Higher Order Convergence Josef Dick School

More information

Progress in high-dimensional numerical integration and its application to stochastic optimization

Progress in high-dimensional numerical integration and its application to stochastic optimization Progress in high-dimensional numerical integration and its application to stochastic optimization W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Short course,

More information

ANOVA decomposition of convex piecewise linear functions

ANOVA decomposition of convex piecewise linear functions ANOVA decomposition of convex piecewise linear functions W. Römisch Abstract Piecewise linear convex functions arise as integrands in stochastic programs. They are Lipschitz continuous on their domain,

More information

Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods. W. Römisch

Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods. W. Römisch Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods W. Römisch Humboldt-University Berlin Institute of Mathematics www.math.hu-berlin.de/~romisch Chemnitzer Mathematisches

More information

Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives

Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives Art B. Owen Stanford University August 2018 Abstract This paper considers two notions of effective dimension

More information

APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION. I.H. Sloan, X. Wang and H.

APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION. I.H. Sloan, X. Wang and H. APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION I.H. Sloan, X. Wang and H. Wozniakowski Published in Journal of Complexity, Volume 20, Number 1,

More information

arxiv: v1 [math.na] 13 Jul 2017

arxiv: v1 [math.na] 13 Jul 2017 Richardson extrapolation of polynomial lattice rules Josef Dick, Takashi Goda, Takehito Yoshiki arxiv:707.03989v [math.na] 3 Jul 207 July 4, 207 Abstract We study multivariate numerical integration of

More information

arxiv: v3 [math.na] 18 Sep 2016

arxiv: v3 [math.na] 18 Sep 2016 Infinite-dimensional integration and the multivariate decomposition method F. Y. Kuo, D. Nuyens, L. Plaskota, I. H. Sloan, and G. W. Wasilkowski 9 September 2016 arxiv:1501.05445v3 [math.na] 18 Sep 2016

More information

Ian Sloan and Lattice Rules

Ian Sloan and Lattice Rules www.oeaw.ac.at Ian Sloan and Lattice Rules P. Kritzer, H. Niederreiter, F. Pillichshammer RICAM-Report 2016-34 www.ricam.oeaw.ac.at Ian Sloan and Lattice Rules Peter Kritzer, Harald Niederreiter, Friedrich

More information

Uniform Distribution and Quasi-Monte Carlo Methods

Uniform Distribution and Quasi-Monte Carlo Methods Workshop on Uniform Distribution and Quasi-Monte Carlo Methods October 14-18, 2013 as part of the Radon Special Semester 2013 on Applications of Algebra and Number Theory Metric number theory, lacunary

More information

What s new in high-dimensional integration? designing for applications

What s new in high-dimensional integration? designing for applications What s new in high-dimensional integration? designing for applications Ian H. Sloan i.sloan@unsw.edu.au The University of New South Wales UNSW Australia ANZIAM NSW/ACT, November, 2015 The theme High dimensional

More information

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules Vasile Sinescu and Pierre L Ecuyer Abstract We examine the question of constructing shifted lattice rules of rank one with

More information

On the existence of higher order polynomial. lattices with large figure of merit ϱ α.

On the existence of higher order polynomial. lattices with large figure of merit ϱ α. On the existence of higher order polynomial lattices with large figure of merit Josef Dick a, Peter Kritzer b, Friedrich Pillichshammer c, Wolfgang Ch. Schmid b, a School of Mathematics, University of

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at 3rd Workshop on High-Dimensional Approximation UNSW,

More information

FAST QMC MATRIX-VECTOR MULTIPLICATION

FAST QMC MATRIX-VECTOR MULTIPLICATION FAST QMC MATRIX-VECTOR MULTIPLICATION JOSEF DICK, FRANCES Y. KUO, QUOC T. LE GIA, CHRISTOPH SCHWAB Abstract. Quasi-Monte Carlo (QMC) rules 1/N N 1 n=0 f(y na) can be used to approximate integrals of the

More information

A Belgian view on lattice rules

A Belgian view on lattice rules A Belgian view on lattice rules Ronald Cools Dept. of Computer Science, KU Leuven Linz, Austria, October 14 18, 2013 Atomium Brussels built in 1958 height 103m figure = 2e coin 5 10 6 in circulation Body

More information

Part III. Quasi Monte Carlo methods 146/349

Part III. Quasi Monte Carlo methods 146/349 Part III Quasi Monte Carlo methods 46/349 Outline Quasi Monte Carlo methods 47/349 Quasi Monte Carlo methods Let y = (y,...,y N ) be a vector of independent uniform random variables in Γ = [0,] N, u(y)

More information

Construction Algorithms for Higher Order Polynomial Lattice Rules

Construction Algorithms for Higher Order Polynomial Lattice Rules Construction Algorithms for Higher Order Polynomial Lattice Rules Jan Baldeaux, Josef Dick, Julia Greslehner and Friedrich Pillichshammer Dedicated to Gerhard Larcher on the occasion of his 50th birthday

More information

Digital lattice rules

Digital lattice rules Digital lattice rules Multivariate integration and discrepancy estimates A thesis presented to The University of New South Wales in fulfilment of the thesis requirement for the degree of Doctor of Philosophy

More information

High-Dimensional Problems: Multivariate Linear Tensor Product Problems, Multivariate Numerical Integration, and Geometric Discrepancy

High-Dimensional Problems: Multivariate Linear Tensor Product Problems, Multivariate Numerical Integration, and Geometric Discrepancy High-Dimensional Problems: Multivariate Linear Tensor Product Problems, Multivariate Numerical Integration, and Geometric Discrepancy Habilitationsschrift vorgelegt von Michael Gnewuch Kiel 2009 1 Preface

More information

Approximation of Functions Using Digital Nets

Approximation of Functions Using Digital Nets Approximation of Functions Using Digital Nets Josef Dick 1, Peter Kritzer 2, and Frances Y. Kuo 3 1 UNSW Asia, 1 Kay Siang Road, Singapore 248922. E-mail: j.dick@unswasia.edu.sg 2 Fachbereich Mathematik,

More information

Sparse grid quadrature on products of spheres

Sparse grid quadrature on products of spheres Sparse grid quadrature on products of spheres Markus Hegland a, Paul Leopardi a, a Centre for Mathematics and its Applications, Australian National University. Abstract This paper examines sparse grid

More information

Random and Quasi-Random Point Sets

Random and Quasi-Random Point Sets Peter Hellekalek Gerhard Larcher (Editors) Random and Quasi-Random Point Sets With contributions by JözsefBeck Peter Hellekalek Fred J. Hickemell Gerhard Larcher Pierre L'Ecuyer Harald Niederreiter Shu

More information

Report on Dagstuhl-Seminar 00391: Algorithms and Complexity for Continuous Problems. September 25-29, 2000

Report on Dagstuhl-Seminar 00391: Algorithms and Complexity for Continuous Problems. September 25-29, 2000 Report on Dagstuhl-Seminar 00391: Algorithms and Complexity for Continuous Problems September 25-29, 2000 The seminar was attended by 36 scientists from 12 countries. It was devoted to the complexity of

More information

Besov Regularity and Approximation of a Certain Class of Random Fields

Besov Regularity and Approximation of a Certain Class of Random Fields Besov Regularity and Approximation of a Certain Class of Random Fields Nicolas Döhring (TU Kaiserslautern) joint work with F. Lindner, R. Schilling (TU Dresden), K. Ritter (TU Kaiserslautern), T. Raasch

More information

STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE CARLO ALGORITHMS

STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE CARLO ALGORITHMS MATHEMATICS OF COMPUTATION Volume 72, Number 242, Pages 823 838 S 0025-5718(02)01440-0 Article electronically published on June 25, 2002 STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE

More information

arxiv: v2 [math.na] 15 Aug 2018

arxiv: v2 [math.na] 15 Aug 2018 Noname manuscript No. (will be inserted by the editor) Lattice rules in non-periodic subspaces of Sobolev spaces Takashi Goda Kosuke Suzuki Takehito Yoshiki arxiv:72.2572v2 [math.na] 5 Aug 28 Received:

More information

Fast evaluation of mixed derivatives and calculation of optimal weights for integration. Hernan Leovey

Fast evaluation of mixed derivatives and calculation of optimal weights for integration. Hernan Leovey Fast evaluation of mixed derivatives and calculation of optimal weights for integration Humboldt Universität zu Berlin 02.14.2012 MCQMC2012 Tenth International Conference on Monte Carlo and Quasi Monte

More information

A MONTE CARLO ALGORITHM FOR WEIGHTED INTEGRATION OVER R d

A MONTE CARLO ALGORITHM FOR WEIGHTED INTEGRATION OVER R d MATHEMATICS OF COMPUTATION Volume 73, Number 246, Pages 813 825 S 25-5718(3)1564-3 Article electronically published on August 19, 23 A MONTE CARLO ALGORITHM FOR WEIGHTED INTEGRATION OVER R d PIOTR GAJDA,

More information

Finding Optimal Volume Subintervals with k Points and Calculating the Star Discrepancy are NP-Hard Problems

Finding Optimal Volume Subintervals with k Points and Calculating the Star Discrepancy are NP-Hard Problems Finding Optimal Volume Subintervals with k Points and Calculating the Star Discrepancy are NP-Hard Problems Michael Gnewuch Department of Computer Science, Kiel University, Christian-Albrechts-Platz 4,

More information

QMC methods in quantitative finance. and perspectives

QMC methods in quantitative finance. and perspectives , tradition and perspectives Johannes Kepler University Linz (JKU) WU Research Seminar What is the content of the talk Valuation of financial derivatives in stochastic market models using (QMC-)simulation

More information

On lower bounds for integration of multivariate permutation-invariant functions

On lower bounds for integration of multivariate permutation-invariant functions On lower bounds for of multivariate permutation-invariant functions Markus Weimar Philipps-University Marburg Oberwolfach October 2013 Research supported by Deutsche Forschungsgemeinschaft DFG (DA 360/19-1)

More information

Generalizing the Tolerance Function for Guaranteed Algorithms

Generalizing the Tolerance Function for Guaranteed Algorithms Generalizing the Tolerance Function for Guaranteed Algorithms Lluís Antoni Jiménez Rugama Joint work with Professor Fred J. Hickernell Room 120, Bldg E1, Department of Applied Mathematics Email: lluisantoni@gmail.com

More information

Stochastic Computation

Stochastic Computation Stochastic Computation A Brief Introduction Klaus Ritter Computational Stochastics TU Kaiserslautern 1/1 Objectives Objectives of Computational Stochastics: Construction and analysis of (A) algorithms

More information

Stability of Kernel Based Interpolation

Stability of Kernel Based Interpolation Stability of Kernel Based Interpolation Stefano De Marchi Department of Computer Science, University of Verona (Italy) Robert Schaback Institut für Numerische und Angewandte Mathematik, University of Göttingen

More information

arxiv: v2 [math.na] 18 May 2011

arxiv: v2 [math.na] 18 May 2011 Efficient calculation of the worst-case error and (fast component-by-component construction of higher order polynomial lattice rules arxiv:1105.2599v2 [math.na] 18 May 2011 Jan Baldeaux Josef Dick Gunther

More information

The ANOVA decomposition of a non-smooth function of infinitely many variables can have every term smooth

The ANOVA decomposition of a non-smooth function of infinitely many variables can have every term smooth Wegelerstraße 6 53115 Bonn Germany phone +49 228 73-3427 fax +49 228 73-7527 www.ins.uni-bonn.de M. Griebel, F.Y. Kuo and I.H. Sloan The ANOVA decomposition of a non-smooth function of infinitely many

More information

Reliable Error Estimation for Quasi-Monte Carlo Methods

Reliable Error Estimation for Quasi-Monte Carlo Methods Reliable Error Estimation for Quasi-Monte Carlo Methods Department of Applied Mathematics, Joint work with Fred J. Hickernell July 8, 2014 Outline 1 Motivation Reasons Problem 2 New approach Set-up of

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at ANZIAM NSW/ACT Annual Meeting, Batemans Bay. Joint

More information

Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces

Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces Christian Irrgeher joint work with G. Leobacher RICAM Special Semester Workshop 1 Uniform distribution and quasi-monte

More information

Applicability of Quasi-Monte Carlo for lattice systems

Applicability of Quasi-Monte Carlo for lattice systems Applicability of Quasi-Monte Carlo for lattice systems Andreas Ammon 1,2, Tobias Hartung 1,2,Karl Jansen 2, Hernan Leovey 3, Andreas Griewank 3, Michael Müller-Preussker 1 1 Humboldt-University Berlin,

More information

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals

Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals 1/33 Orthogonal Polynomials, Quadratures & Sparse-Grid Methods for Probability Integrals Dr. Abebe Geletu May, 2010 Technische Universität Ilmenau, Institut für Automatisierungs- und Systemtechnik Fachgebiet

More information

Discrepancy Bounds for Deterministic Acceptance-Rejection Samplers

Discrepancy Bounds for Deterministic Acceptance-Rejection Samplers Discrepancy Bounds for Deterministic Acceptance-Rejection Samplers Houying Zhu Athesisinfulfilmentoftherequirementsforthedegreeof Doctor of Philosophy School of Mathematics and Statistics Faculty of Science

More information

Henryk Wozniakowski. University of Warsaw and Columbia University. Abstract

Henryk Wozniakowski. University of Warsaw and Columbia University. Abstract Computational Complexity of Continuous Problems Columbia University Computer Science Department Report CUCS-025-96 Henryk Wozniakowski University of Warsaw and Columbia University May 20, 1996 Abstract

More information

2 FRED J. HICKERNELL the sample mean of the y (i) : (2) ^ 1 N The mean square error of this estimate may be written as a sum of two parts, a bias term

2 FRED J. HICKERNELL the sample mean of the y (i) : (2) ^ 1 N The mean square error of this estimate may be written as a sum of two parts, a bias term GOODNESS OF FIT STATISTICS, DISCREPANCIES AND ROBUST DESIGNS FRED J. HICKERNELL Abstract. The Cramer{Von Mises goodness-of-t statistic, also known as the L 2 -star discrepancy, is the optimality criterion

More information

Lifting the Curse of Dimensionality

Lifting the Curse of Dimensionality Lifting the Curse of Dimensionality Frances Y. Kuo and Ian H. Sloan Introduction Richard Bellman [1] coined the phrase the curse of dimensionality to describe the extraordinarily rapid growth in the difficulty

More information

QMC designs and covering of spheres by spherical caps

QMC designs and covering of spheres by spherical caps QMC designs and covering of spheres by spherical caps Ian H. Sloan University of New South Wales, Sydney, Australia Joint work with Johann Brauchart, Josef Dick, Ed Saff (Vanderbilt), Rob Womersley and

More information

Stability constants for kernel-based interpolation processes

Stability constants for kernel-based interpolation processes Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report 59 Stability constants for kernel-based interpolation processes Stefano De Marchi Robert Schaback Dipartimento

More information

Computational Complexity

Computational Complexity Computational Complexity (Lectures on Solution Methods for Economists II: Appendix) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 18, 2018 1 University of Pennsylvania 2 Boston College Computational

More information

ON TRACTABILITY OF WEIGHTED INTEGRATION OVER BOUNDED AND UNBOUNDED REGIONS IN R s

ON TRACTABILITY OF WEIGHTED INTEGRATION OVER BOUNDED AND UNBOUNDED REGIONS IN R s MATHEMATICS OF COMPTATION Volume 73, Number 248, Pages 1885 1901 S 0025-5718(04)01624-2 Article electronically published on January 5, 2004 ON TRACTABILITY OF WEIGHTED INTEGRATION OVER BONDED AND NBONDED

More information

Quasi-Monte Carlo methods with applications in finance

Quasi-Monte Carlo methods with applications in finance Finance Stoch (2009) 13: 307 349 DOI 10.1007/s00780-009-0095-y Quasi-Monte Carlo methods with applications in finance Pierre L Ecuyer Received: 30 May 2008 / Accepted: 20 August 2008 / Published online:

More information

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN

Weierstraß-Institut. für Angewandte Analysis und Stochastik. Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e. V. Preprint ISSN 2198-5855 Are Quasi-Monte Carlo algorithms efficient for two-stage stochastic

More information

Cubature formulas for function spaces with moderate smoothness

Cubature formulas for function spaces with moderate smoothness Cubature formulas for function spaces with moderate smoothness Michael Gnewuch, René Lindloh, Reinhold Schneider, and Anand Srivastav Institut für Informatik Christian-Albrechts-Universität zu Kiel Christian-Albrechts-Platz

More information

Absolute Value Information from IBC perspective

Absolute Value Information from IBC perspective Absolute Value Information from IBC perspective Leszek Plaskota University of Warsaw RICAM November 7, 2018 (joint work with Paweł Siedlecki and Henryk Woźniakowski) ABSOLUTE VALUE INFORMATIONFROM IBC

More information

Improved Discrepancy Bounds for Hybrid Sequences. Harald Niederreiter. RICAM Linz and University of Salzburg

Improved Discrepancy Bounds for Hybrid Sequences. Harald Niederreiter. RICAM Linz and University of Salzburg Improved Discrepancy Bounds for Hybrid Sequences Harald Niederreiter RICAM Linz and University of Salzburg MC vs. QMC methods Hybrid sequences The basic sequences Deterministic discrepancy bounds The proof

More information

High dimensional integration of kinks and jumps smoothing by preintegration. Andreas Griewank, Frances Y. Kuo, Hernan Leövey and Ian H.

High dimensional integration of kinks and jumps smoothing by preintegration. Andreas Griewank, Frances Y. Kuo, Hernan Leövey and Ian H. High dimensional integration of kinks and jumps smoothing by preintegration Andreas Griewank, Frances Y. Kuo, Hernan Leövey and Ian H. Sloan August 2017 arxiv:1712.00920v1 [math.na] 4 Dec 2017 Abstract

More information

A PIECEWISE CONSTANT ALGORITHM FOR WEIGHTED L 1 APPROXIMATION OVER BOUNDED OR UNBOUNDED REGIONS IN R s

A PIECEWISE CONSTANT ALGORITHM FOR WEIGHTED L 1 APPROXIMATION OVER BOUNDED OR UNBOUNDED REGIONS IN R s A PIECEWISE CONSTANT ALGORITHM FOR WEIGHTED L 1 APPROXIMATION OVER BONDED OR NBONDED REGIONS IN R s FRED J. HICKERNELL, IAN H. SLOAN, AND GRZEGORZ W. WASILKOWSKI Abstract. sing Smolyak s construction [5],

More information

Hochdimensionale Integration

Hochdimensionale Integration Oliver Ernst Institut für Numerische Mathematik und Optimierung Hochdimensionale Integration 14-tägige Vorlesung im Wintersemester 2010/11 im Rahmen des Moduls Ausgewählte Kapitel der Numerik Contents

More information

ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS

ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS GREGORY E. FASSHAUER, FRED J. HICKERNELL, AND HENRYK WOŹNIAKOWSKI Abstract. This article studies the problem

More information

DFG-Schwerpunktprogramm 1324

DFG-Schwerpunktprogramm 1324 DFG-Schwerpunktprogramm 1324 Extraktion quantifizierbarer Information aus kompexen Systemen Muti-eve Monte Caro Agorithms for Infinite-dimensiona Integration on R N F.J. Hickerne, T. Müer-Gronbach, B.

More information

Adaptive Wavelet Methods for Elliptic SPDEs

Adaptive Wavelet Methods for Elliptic SPDEs Adaptive Wavelet Methods for Elliptic SPDEs Klaus Ritter Computational Stochastics TU Kaiserslautern 1/1 Introduction In most papers on approximation of SPDEs non-adaptive discretization discretization

More information

Convergence guarantees for kernel-based quadrature rules in misspecified settings

Convergence guarantees for kernel-based quadrature rules in misspecified settings Convergence guarantees for kernel-based quadrature rules in misspecified settings Motonobu Kanagawa, Bharath K Sriperumbudur, Kenji Fukumizu The Institute of Statistical Mathematics, Tokyo 19-856, Japan

More information

Construction algorithms for good extensible lattice rules

Construction algorithms for good extensible lattice rules Construction algorithms for good extensible lattice rules Harald Niederreiter and Friedrich Pillichshammer Dedicated to Ian H. Sloan on the occasion of his 70th birthday Abstract Extensible olynomial lattice

More information

Workshop on Theoretical Aspects of High-Dimensional Problems and Information-Based Complexity

Workshop on Theoretical Aspects of High-Dimensional Problems and Information-Based Complexity HIM Trimester Program on Analysis and Numerics for High Dimensional Problems Book of Abstracts Workshop on Theoretical Aspects of High-Dimensional Problems and Information-Based Complexity Bonn, 20 24

More information

Advanced Algorithms for Multidimensional Sensitivity Studies of Large-scale Air Pollution Models Based on Sobol Sequences

Advanced Algorithms for Multidimensional Sensitivity Studies of Large-scale Air Pollution Models Based on Sobol Sequences Advanced Algorithms for Multidimensional Sensitivity Studies of Large-scale Air Pollution Models Based on Sobol Sequences I. Dimov a,, R. Georgieva a, Tz. Ostromsky a, Z. Zlatev b a Department of Parallel

More information

QUASI-MONTE CARLO METHODS IN NON-CUBICAL SPACES

QUASI-MONTE CARLO METHODS IN NON-CUBICAL SPACES QUASI-MONTE CARLO METHODS IN NON-CUBICAL SPACES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF STATISTICS AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

More information

Welcome to Sydney. Ian H. Sloan, Frances Y. Kuo, Josef Dick, Gareth W. Peters MCQMC 2012 Conference Organisers

Welcome to Sydney. Ian H. Sloan, Frances Y. Kuo, Josef Dick, Gareth W. Peters MCQMC 2012 Conference Organisers Welcome to Sydney We are pleased to welcome you all to Sydney for the Tenth International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. The MCQMC conference series has

More information

Approximation numbers of Sobolev embeddings - Sharp constants and tractability

Approximation numbers of Sobolev embeddings - Sharp constants and tractability Approximation numbers of Sobolev embeddings - Sharp constants and tractability Thomas Kühn Universität Leipzig, Germany Workshop Uniform Distribution Theory and Applications Oberwolfach, 29 September -

More information

Scenario generation Contents

Scenario generation Contents Scenario generation W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Page 1 of 39 Tutorial, ICSP12, Halifax, August 14, 2010 (1) Aproximation issues (2) Generation

More information

Construction algorithms for plane nets in base b

Construction algorithms for plane nets in base b Construction algorithms for plane nets in base b Gunther Leobacher, Friedrich Pillichshammer and Thomas Schell arxiv:1506.03201v1 [math.nt] 10 Jun 2015 Abstract The class of (0, m, s)-nets in base b has

More information

Scenario generation in stochastic programming

Scenario generation in stochastic programming Scenario generation in stochastic programming Werner Römisch Humboldt-University Berlin, Institute of Mathematics, 10099 Berlin, Germany, romisch@math.hu-berlin.de Abstract Stability-based methods for

More information

An intractability result for multiple integration. I.H.Sloan y and H.Wozniakowski yy. University of New South Wales. Australia.

An intractability result for multiple integration. I.H.Sloan y and H.Wozniakowski yy. University of New South Wales. Australia. An intractability result for multiple integration I.H.Sloan y and H.Wozniakowski yy Columbia University Computer Science Technical Report CUCS-019-96 y School of Mathematics University of ew South Wales

More information

Quasi-Monte Carlo Flows

Quasi-Monte Carlo Flows Quasi-Monte Carlo Flows Florian Wenzel TU Kaiserslautern Germany wenzelfl@hu-berlin.de Alexander Buchholz ENSAE-CREST, Paris France alexander.buchholz@ensae.fr Stephan Mandt Univ. of California, Irvine

More information

Regularization in Reproducing Kernel Banach Spaces

Regularization in Reproducing Kernel Banach Spaces .... Regularization in Reproducing Kernel Banach Spaces Guohui Song School of Mathematical and Statistical Sciences Arizona State University Comp Math Seminar, September 16, 2010 Joint work with Dr. Fred

More information

Report on Dagstuhl-Seminar 02401: Algorithms and Complexity for Continuous Problems. September 29 October 4, 2002

Report on Dagstuhl-Seminar 02401: Algorithms and Complexity for Continuous Problems. September 29 October 4, 2002 Report on Dagstuhl-Seminar 02401: Algorithms and Complexity for Continuous Problems September 29 October 4, 2002 The seminar was devoted to the computational solution of continuous problems. Concrete algorithms

More information

Complexity of Neural Network Approximation with Limited Information: a Worst Case Approach

Complexity of Neural Network Approximation with Limited Information: a Worst Case Approach Complexity of Neural Network Approximation with Limited Information: a Worst Case Approach Mark Kon, Boston University and Leszek Plaskota, Warsaw University June 8, 2000 Abstract In neural network theory

More information

QMC tutorial 1. Quasi-Monte Carlo. Art B. Owen Stanford University. A tutorial reflecting personal views on what is important in QMC.

QMC tutorial 1. Quasi-Monte Carlo. Art B. Owen Stanford University. A tutorial reflecting personal views on what is important in QMC. QMC tutorial 1 Quasi-Monte Carlo Art B. Owen Stanford University A tutorial reflecting personal views on what is important in QMC. MCQMC 2016 will be at Stanford, August 14-19 mcqmc2016.stanford.edu QMC

More information