Tractability of Multivariate Problems

Size: px
Start display at page:

Download "Tractability of Multivariate Problems"

Transcription

1 Erich Novak University of Jena Chemnitz, Summer School

2 Plan for the talk Example: approximation of C -functions What is tractability? Tractability by smoothness? Tractability by sparsity, finite order weights, or structure Tractability by randomization Integral equations Markov chain Monte Carlo Optimal importance sampling Chemnitz, Summer School

3 Example: approximation of C -functions Approximation of f C k ([0, 1] d ) by linear algorithms S n (f) = n L i (f) g i. i=1 Optimal methods: order of convergence is n k/d, error in L. The order is excellent if k/d is large. Does it mean that the problem is easy? What about k =? We also will allow nonlinear methods S n = φ N with continuous N : C k R n, φ : R n L. Chemnitz, Summer School

4 A class of very smooth functions F d = {f : [0, 1] d R D α f 1 for all α N d 0 }. The class is small, error bounds should be excellent. S n = φ N with continuous N : F d R n, φ : R n L, e(s n ) = sup f F d f S n (f), e(n, d) = inf S n e(s n ), n(ε, d) = inf{n e(n, d) ε}. Well known: For any d and r > 0 e(n, d) = O(n r ), n(ε, d) = O(ε 1/r ). Conventional conclusion: The problem is easy since the order of convergence is excellent. Chemnitz, Summer School

5 Tractability Information Complexity n(ε, d) = inf{n e(n, d) ε}. The problem is strongly polynomially tractable iff n(ε, d) C ε p for all ε (0, 1), d N. The problem is polynomially tractable iff n(ε, d) C d q ε p for all ε (0, 1), d N. The problem is weakly tractable iff lim ε 1 +d ln n(ε, d) ε 1 + d Introduced by Woźniakowski, 2 papers in = 0. Chemnitz, Summer School

6 Result N. & Woźniakowski, 2009 For L -approximation over F d we have e(n, d) = 1 for all n 2 d/2 1 or n(ε, d) 2 d/2 for all ε (0, 1). The problem is intractable. Chemnitz, Summer School

7 Proof Take s = d/2 and consider f : [0, 1] d R, f(x) = i {0,1} s a i (x 1 + x 2 ) i1 (x 3 + x 4 ) i2...(x 2s 1 + x 2s ) is. The space V d of such functions has dimension 2 s and f = sup α D α f for all f V d. For continuous N : V d R 2s 1, there is a f V d with f = 1 such that N(f) = N( f); follows from the Borsuk-Ulam Theorem. Hence S n (f) = φ(n(f)) = S n ( f) and e(s n ) 1 for n = 2 s 1. Chemnitz, Summer School

8 Tractability by smoothness assumptions? Usually, we cannot obtain tractability even by strong smoothness assumptions, see the L approx. problem for C functions. Sometimes: yes. Tractability of star discrepancy Can we compute I d (f) = [0, 1] d f(x) dx for f : [0, 1] d R from F d in polynomial time, i.e., cost(ε, F d ) C ε α d β? Chemnitz, Summer School

9 Star-discrepancy disc ({t 1,...,t n }) of t i [0, 1] d : sup x [0,1] d x 1 x d 1 n n 1 [0,x) (t i ) i=1 Sobolev space (or functions with bounded variation) F 1 = {f : [0, 1] R f(1) = 0, f L 1 }, f = f L1 and F d = F 1 F 1. Hlawka-Zaremba-equality yields where Q n (f) = 1 n n i=1 f(t i). disc ({t 1,...,t n }) = sup I d (f) Q n (f), f 1 Chemnitz, Summer School

10 The star-discrepancy is tractable Heinrich, N., Wasilkowski, Woźniakowski (2001) n(ε, F d ) C d ε 2. The dependence on d is optimal since n(ε, F d ) c d log(ε 1 ). Improved lower bound n(ε, F d ) c d ε 1, Hinrichs (2004). Chemnitz, Summer School

11 Sparsity or partially separable functions A function f : [0, 1] d R of many variables (d large) may be a sum of functions, that only depend on k variables (k small): f(x 1, x 2,...,x d ) = l g l (x i1, x i2,...,x ik ). In optimization such functions are called partially separable. See, e.g., N. & Ritter (1997), Dick, Sloan, Wang, Woźniakowski (2006). Important for applications, Coulomb potential... As a rule: Problems are tractable for such functions (with k fixed and d ), even if the g l are not very smooth. Chemnitz, Summer School

12 Weighted Sobolev Spaces Unit ball of the space H d,γ given by all f : [0, 1] d R with f 2 = u [d] γ 1 d,u [0,1] d ( ) u 2 f(x) dx 1 x u 0 0 = 0, where [d] := {1, 2,...,d} and γ = {γ d,u } are non-negative weights. Results for L 2 approximation for linear (or continuous) information Λ all and for function values Λ std : For equal weights γ d,u = 1 the problem is weakly tractable for Λ all and not weakly tractable for Λ std. For bounded finite order weights (γ d,u = 0 if u > k) the problem is always polynomially tractable, even for Λ std. Werschulz & Woźniakowski (2009) Chemnitz, Summer School

13 Various Weights Product weights: γ d,u = j u γ d,j. Then H(K d,γ ) = H(K 1,γd,1 ) H(K 1,γd,d ) and γ d,j moderates the influence of x j Finite-order weights: γ d,u = 0 for all u > k. Then f = u [d], u k is a sum of functions depending on at most k variables. f u We can model various properties of f by suitable weights. Chemnitz, Summer School

14 Results for Integration For product weights: γ d,u = j u γ d,j Strong Pol. Tract. iff lim sup d d j=1 γ d,j < Pol. Tract. iff lim sup d P d j=1 γ d,j ln d < Weak Tract. iff lim d P d j=1 γ d,j d = 0 For finite-order weights: γ d,u = 0 for all u > k always polynomially tractable for k 1 and γ d,u = 1 for u k: not strongly polynomially tractable. N. & Woźniakowski (2001, 2010), Sloan & Woźniakowski (1998, 2002), Gnewuch & Woźniakowski (2008) Chemnitz, Summer School

15 Tractability by randomization Integral equations Markov chain Monte Carlo Optimal importance sampling Chemnitz, Summer School

16 Solving Integral Equations with Random Bits Compute u(s), integral equation u(x) k(x, y)u(y) dy = f(x) [0,1] d on [0, 1] d with Lipschitz kernel k, k < α < 1 and right hand side. Optimal order with MC (Heinrich & Mathé 1993) e n n 1/2 1/(2d). N. & Pfeiffer (2004): With a discretized version of classical MC and results for summation we get the upper bound cost ε 2 + d (log ε 1 ) 2, only d (log ε 1 ) 2 random bits are needed. Problem is intractable for deterministic algorithms. Chemnitz, Summer School

17 Markov chain Monte Carlo Computation of E π (f) (expectation with respect to π) with a Markov chain Monte Carlo method and burn in n 0, A n,n0 (f) = 1 n n f(x k+n0 ), when it is not possible to simulate π directly. We assume that the Markov chain (X k ) is reversible and has an L 2 -spectral gap, β = P E π L2 L 2 < 1. k=1 Then it is known (ergodic theorem) that A n,n0 (f) E π (f). Error bounds? How should we choose the burn in? Chemnitz, Summer School

18 Result of Rudolf 2009 For f L p (π) with p 4 and ( ) n 0 (1 β) 1 dµ log dπ 1 the error is bounded by sup e µ (A n,n0, f) 2 f p 1 2 n(1 β) + 46 n 2 (1 β) 2. Here µ is the initial distribution, i.e., the distribution of X 1. The cost bound does not depend on d, but β = β(d) might depend on d. One obtains different tractability results depending on the behavior of β = β(d). Explicit error bounds and a recipe for the choice of n 0. Chemnitz, Summer School

19 Optimal importance sampling I(f) = f(x) (x) dx for f H, H a RKHS with R d I 2 = K(x, y) (x) (y) dxdy <. R d R d Randomized error e(a n ) = sup f H 1(E(I(f) A n (f)) 2 ) 1/2. Hinrichs 2010: If K(x, y) 0 then with importance sampling ( π ) 1/2 e(a n ) n 1/2 I. 2 Hence such problems are strongly polynomially tractable. N. and Woźniakowski (2010): under some additional assumptions, the algorithm of Hinrichs is optimal. Chemnitz, Summer School

20 Summary Many problems for functions f : [0, 1] d R are intractable, if considered in the worst case setting for classical function spaces, like C k ([0, 1] d ). Remedies: Weighted spaces, problems with a structure Randomized algorithms Chemnitz, Summer School

A NEARLY-OPTIMAL ALGORITHM FOR THE FREDHOLM PROBLEM OF THE SECOND KIND OVER A NON-TENSOR PRODUCT SOBOLEV SPACE

A NEARLY-OPTIMAL ALGORITHM FOR THE FREDHOLM PROBLEM OF THE SECOND KIND OVER A NON-TENSOR PRODUCT SOBOLEV SPACE JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 27, Number 1, Spring 2015 A NEARLY-OPTIMAL ALGORITHM FOR THE FREDHOLM PROBLEM OF THE SECOND KIND OVER A NON-TENSOR PRODUCT SOBOLEV SPACE A.G. WERSCHULZ

More information

Approximation numbers of Sobolev embeddings - Sharp constants and tractability

Approximation numbers of Sobolev embeddings - Sharp constants and tractability Approximation numbers of Sobolev embeddings - Sharp constants and tractability Thomas Kühn Universität Leipzig, Germany Workshop Uniform Distribution Theory and Applications Oberwolfach, 29 September -

More information

Tutorial on quasi-monte Carlo methods

Tutorial on quasi-monte Carlo methods Tutorial on quasi-monte Carlo methods Josef Dick School of Mathematics and Statistics, UNSW, Sydney, Australia josef.dick@unsw.edu.au Comparison: MCMC, MC, QMC Roughly speaking: Markov chain Monte Carlo

More information

On lower bounds for integration of multivariate permutation-invariant functions

On lower bounds for integration of multivariate permutation-invariant functions On lower bounds for of multivariate permutation-invariant functions Markus Weimar Philipps-University Marburg Oberwolfach October 2013 Research supported by Deutsche Forschungsgemeinschaft DFG (DA 360/19-1)

More information

Optimal Randomized Algorithms for Integration on Function Spaces with underlying ANOVA decomposition

Optimal Randomized Algorithms for Integration on Function Spaces with underlying ANOVA decomposition Optimal Randomized on Function Spaces with underlying ANOVA decomposition Michael Gnewuch 1 University of Kaiserslautern, Germany October 16, 2013 Based on Joint Work with Jan Baldeaux (UTS Sydney) & Josef

More information

Integration of permutation-invariant. functions

Integration of permutation-invariant. functions permutation-invariant Markus Weimar Philipps-University Marburg Joint work with Dirk Nuyens and Gowri Suryanarayana (KU Leuven, Belgium) MCQMC2014, Leuven April 06-11, 2014 un Outline Permutation-invariant

More information

On Infinite-Dimensional Integration in Weighted Hilbert Spaces

On Infinite-Dimensional Integration in Weighted Hilbert Spaces On Infinite-Dimensional Integration in Weighted Hilbert Spaces Sebastian Mayer Universität Bonn Joint work with M. Gnewuch (UNSW Sydney) and K. Ritter (TU Kaiserslautern). HDA 2013, Canberra, Australia.

More information

New Multilevel Algorithms Based on Quasi-Monte Carlo Point Sets

New Multilevel Algorithms Based on Quasi-Monte Carlo Point Sets New Multilevel Based on Quasi-Monte Carlo Point Sets Michael Gnewuch Institut für Informatik Christian-Albrechts-Universität Kiel 1 February 13, 2012 Based on Joint Work with Jan Baldeaux (UTS Sydney)

More information

STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE CARLO ALGORITHMS

STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE CARLO ALGORITHMS MATHEMATICS OF COMPUTATION Volume 72, Number 242, Pages 823 838 S 0025-5718(02)01440-0 Article electronically published on June 25, 2002 STRONG TRACTABILITY OF MULTIVARIATE INTEGRATION USING QUASI MONTE

More information

APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION. I.H. Sloan, X. Wang and H.

APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION. I.H. Sloan, X. Wang and H. APPLIED MATHEMATICS REPORT AMR04/16 FINITE-ORDER WEIGHTS IMPLY TRACTABILITY OF MULTIVARIATE INTEGRATION I.H. Sloan, X. Wang and H. Wozniakowski Published in Journal of Complexity, Volume 20, Number 1,

More information

Some Results on the Complexity of Numerical Integration

Some Results on the Complexity of Numerical Integration Some Results on the Complexity of Numerical Integration Erich Novak Abstract We present some results on the complexity of numerical integration. We start with the seminal paper of Bakhvalov (1959) and

More information

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed?

Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed? Low Discrepancy Sequences in High Dimensions: How Well Are Their Projections Distributed? Xiaoqun Wang 1,2 and Ian H. Sloan 2 1 Department of Mathematical Sciences, Tsinghua University, Beijing 100084,

More information

Liberating the Dimension for Function Approximation and Integration

Liberating the Dimension for Function Approximation and Integration Liberating the Dimension for Function Approximation and Integration G W Wasilkowski Abstract We discuss recent results on the complexity and tractability of problems dealing with -variate functions Such

More information

Weighted Geometric Discrepancies and Numerical Integration on Reproducing Kernel Hilbert Spaces

Weighted Geometric Discrepancies and Numerical Integration on Reproducing Kernel Hilbert Spaces Weighted Geometric Discrepancies and Numerical Integration on Reproducing Kernel Hilbert Spaces ichael Gnewuch Institut für Informatik, Christian-Albrechts-Universität Kiel, Christian-Albrechts-Platz 4,

More information

Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods. W. Römisch

Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods. W. Römisch Stochastic optimization, multivariate numerical integration and Quasi-Monte Carlo methods W. Römisch Humboldt-University Berlin Institute of Mathematics www.math.hu-berlin.de/~romisch Chemnitzer Mathematisches

More information

Tractability results for weighted Banach spaces of smooth functions

Tractability results for weighted Banach spaces of smooth functions Tractability results for weighte Banach spaces of smooth functions Markus Weimar Mathematisches Institut, Universität Jena Ernst-Abbe-Platz 2, 07740 Jena, Germany email: markus.weimar@uni-jena.e March

More information

High-Dimensional Problems: Multivariate Linear Tensor Product Problems, Multivariate Numerical Integration, and Geometric Discrepancy

High-Dimensional Problems: Multivariate Linear Tensor Product Problems, Multivariate Numerical Integration, and Geometric Discrepancy High-Dimensional Problems: Multivariate Linear Tensor Product Problems, Multivariate Numerical Integration, and Geometric Discrepancy Habilitationsschrift vorgelegt von Michael Gnewuch Kiel 2009 1 Preface

More information

-Variate Integration

-Variate Integration -Variate Integration G. W. Wasilkowski Department of Computer Science University of Kentucky Presentation based on papers co-authored with A. Gilbert, M. Gnewuch, M. Hefter, A. Hinrichs, P. Kritzer, F.

More information

Progress in high-dimensional numerical integration and its application to stochastic optimization

Progress in high-dimensional numerical integration and its application to stochastic optimization Progress in high-dimensional numerical integration and its application to stochastic optimization W. Römisch Humboldt-University Berlin Department of Mathematics www.math.hu-berlin.de/~romisch Short course,

More information

Numerical Methods in Economics MIT Press, Chapter 9 Notes Quasi-Monte Carlo Methods. Kenneth L. Judd Hoover Institution.

Numerical Methods in Economics MIT Press, Chapter 9 Notes Quasi-Monte Carlo Methods. Kenneth L. Judd Hoover Institution. 1 Numerical Methods in Economics MIT Press, 1998 Chapter 9 Notes Quasi-Monte Carlo Methods Kenneth L. Judd Hoover Institution October 26, 2002 2 Quasi-Monte Carlo Methods Observation: MC uses random sequences

More information

QMC methods in quantitative finance. and perspectives

QMC methods in quantitative finance. and perspectives , tradition and perspectives Johannes Kepler University Linz (JKU) WU Research Seminar What is the content of the talk Valuation of financial derivatives in stochastic market models using (QMC-)simulation

More information

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2.

Sobolevology. 1. Definitions and Notation. When α = 1 this seminorm is the same as the Lipschitz constant of the function f. 2. Sobolevology 1. Definitions and Notation 1.1. The domain. is an open subset of R n. 1.2. Hölder seminorm. For α (, 1] the Hölder seminorm of exponent α of a function is given by f(x) f(y) [f] α = sup x

More information

Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces

Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces Exponential Convergence and Tractability of Multivariate Integration for Korobov Spaces Josef Dick, Gerhard Larcher, Friedrich Pillichshammer and Henryk Woźniakowski March 12, 2010 Abstract In this paper

More information

ON TRACTABILITY OF WEIGHTED INTEGRATION OVER BOUNDED AND UNBOUNDED REGIONS IN R s

ON TRACTABILITY OF WEIGHTED INTEGRATION OVER BOUNDED AND UNBOUNDED REGIONS IN R s MATHEMATICS OF COMPTATION Volume 73, Number 248, Pages 1885 1901 S 0025-5718(04)01624-2 Article electronically published on January 5, 2004 ON TRACTABILITY OF WEIGHTED INTEGRATION OVER BONDED AND NBONDED

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at 3rd Workshop on High-Dimensional Approximation UNSW,

More information

Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces

Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces Adapting quasi-monte Carlo methods to simulation problems in weighted Korobov spaces Christian Irrgeher joint work with G. Leobacher RICAM Special Semester Workshop 1 Uniform distribution and quasi-monte

More information

What s new in high-dimensional integration? designing for applications

What s new in high-dimensional integration? designing for applications What s new in high-dimensional integration? designing for applications Ian H. Sloan i.sloan@unsw.edu.au The University of New South Wales UNSW Australia ANZIAM NSW/ACT, November, 2015 The theme High dimensional

More information

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains

A regeneration proof of the central limit theorem for uniformly ergodic Markov chains A regeneration proof of the central limit theorem for uniformly ergodic Markov chains By AJAY JASRA Department of Mathematics, Imperial College London, SW7 2AZ, London, UK and CHAO YANG Department of Mathematics,

More information

ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS

ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS ON DIMENSION-INDEPENDENT RATES OF CONVERGENCE FOR FUNCTION APPROXIMATION WITH GAUSSIAN KERNELS GREGORY E. FASSHAUER, FRED J. HICKERNELL, AND HENRYK WOŹNIAKOWSKI Abstract. This article studies the problem

More information

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt MA526 Homework 4 Group 4 April 26, 26 Qn 6.2 Show that H is not bounded as a map: L L. Deduce from this that H is not bounded as a map L L. Let {ϕ n } be an approximation of the identity s.t. ϕ C, sptϕ

More information

Approximation of High-Dimensional Numerical Problems Algorithms, Analysis and Applications

Approximation of High-Dimensional Numerical Problems Algorithms, Analysis and Applications Approximation of High-Dimensional Numerical Problems Algorithms, Analysis and Applications Christiane Lemieux (University of Waterloo), Ian Sloan (University of New South Wales), Henryk Woźniakowski (University

More information

Quadrature using sparse grids on products of spheres

Quadrature using sparse grids on products of spheres Quadrature using sparse grids on products of spheres Paul Leopardi Mathematical Sciences Institute, Australian National University. For presentation at ANZIAM NSW/ACT Annual Meeting, Batemans Bay. Joint

More information

Sobolev Spaces 27 PART II. Review of Sobolev Spaces

Sobolev Spaces 27 PART II. Review of Sobolev Spaces Sobolev Spaces 27 PART II Review of Sobolev Spaces Sobolev Spaces 28 SOBOLEV SPACES WEAK DERIVATIVES I Given R d, define a multi index α as an ordered collection of integers α = (α 1,...,α d ), such that

More information

Bayesian Regularization

Bayesian Regularization Bayesian Regularization Aad van der Vaart Vrije Universiteit Amsterdam International Congress of Mathematicians Hyderabad, August 2010 Contents Introduction Abstract result Gaussian process priors Co-authors

More information

QMC designs and covering of spheres by spherical caps

QMC designs and covering of spheres by spherical caps QMC designs and covering of spheres by spherical caps Ian H. Sloan University of New South Wales, Sydney, Australia Joint work with Johann Brauchart, Josef Dick, Ed Saff (Vanderbilt), Rob Womersley and

More information

Improved Discrepancy Bounds for Hybrid Sequences. Harald Niederreiter. RICAM Linz and University of Salzburg

Improved Discrepancy Bounds for Hybrid Sequences. Harald Niederreiter. RICAM Linz and University of Salzburg Improved Discrepancy Bounds for Hybrid Sequences Harald Niederreiter RICAM Linz and University of Salzburg MC vs. QMC methods Hybrid sequences The basic sequences Deterministic discrepancy bounds The proof

More information

arxiv: v3 [math.na] 18 Sep 2016

arxiv: v3 [math.na] 18 Sep 2016 Infinite-dimensional integration and the multivariate decomposition method F. Y. Kuo, D. Nuyens, L. Plaskota, I. H. Sloan, and G. W. Wasilkowski 9 September 2016 arxiv:1501.05445v3 [math.na] 18 Sep 2016

More information

Intertwinings for Markov processes

Intertwinings for Markov processes Intertwinings for Markov processes Aldéric Joulin - University of Toulouse Joint work with : Michel Bonnefont - Univ. Bordeaux Workshop 2 Piecewise Deterministic Markov Processes ennes - May 15-17, 2013

More information

Solutions to Assignment-11

Solutions to Assignment-11 Solutions to Assignment-. (a) For any sequence { } of positive numbers, show that lim inf + lim inf an lim sup an lim sup +. Show from this, that the root test is stronger than the ratio test. That is,

More information

Quasi-Monte Carlo Methods for Applications in Statistics

Quasi-Monte Carlo Methods for Applications in Statistics Quasi-Monte Carlo Methods for Applications in Statistics Weights for QMC in Statistics Vasile Sinescu (UNSW) Weights for QMC in Statistics MCQMC February 2012 1 / 24 Quasi-Monte Carlo Methods for Applications

More information

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n

Econ Lecture 3. Outline. 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n Econ 204 2011 Lecture 3 Outline 1. Metric Spaces and Normed Spaces 2. Convergence of Sequences in Metric Spaces 3. Sequences in R and R n 1 Metric Spaces and Metrics Generalize distance and length notions

More information

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L

Proof: The coding of T (x) is the left shift of the coding of x. φ(t x) n = L if T n+1 (x) L Lecture 24: Defn: Topological conjugacy: Given Z + d (resp, Zd ), actions T, S a topological conjugacy from T to S is a homeomorphism φ : M N s.t. φ T = S φ i.e., φ T n = S n φ for all n Z + d (resp, Zd

More information

Part III. Quasi Monte Carlo methods 146/349

Part III. Quasi Monte Carlo methods 146/349 Part III Quasi Monte Carlo methods 46/349 Outline Quasi Monte Carlo methods 47/349 Quasi Monte Carlo methods Let y = (y,...,y N ) be a vector of independent uniform random variables in Γ = [0,] N, u(y)

More information

Henryk Wozniakowski. University of Warsaw and Columbia University. Abstract

Henryk Wozniakowski. University of Warsaw and Columbia University. Abstract Computational Complexity of Continuous Problems Columbia University Computer Science Department Report CUCS-025-96 Henryk Wozniakowski University of Warsaw and Columbia University May 20, 1996 Abstract

More information

Infinite-Dimensional Integration on Weighted Hilbert Spaces

Infinite-Dimensional Integration on Weighted Hilbert Spaces Infinite-Dimensional Integration on Weighted Hilbert Spaces Michael Gnewuch Department of Computer Science, Columbia University, 1214 Amsterdam Avenue, New Yor, NY 10027, USA Abstract We study the numerical

More information

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0

Solution Sheet 3. Solution Consider. with the metric. We also define a subset. and thus for any x, y X 0 Solution Sheet Throughout this sheet denotes a domain of R n with sufficiently smooth boundary. 1. Let 1 p

More information

Approximation of Functions Using Digital Nets

Approximation of Functions Using Digital Nets Approximation of Functions Using Digital Nets Josef Dick 1, Peter Kritzer 2, and Frances Y. Kuo 3 1 UNSW Asia, 1 Kay Siang Road, Singapore 248922. E-mail: j.dick@unswasia.edu.sg 2 Fachbereich Mathematik,

More information

Dedicated to our dear colleague and friend Henryk Woźniakowski on the occasion of his 60th birthday.

Dedicated to our dear colleague and friend Henryk Woźniakowski on the occasion of his 60th birthday. SIMPLE MONTE CARLO AND THE METROPOLIS ALGORITHM PETER MATHÉ AND ERICH NOVAK Dedicated to our dear colleague and friend Henryk Woźniakowski on the occasion of his 60th birthday. Abstract. We study the integration

More information

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books.

Applied Analysis (APPM 5440): Final exam 1:30pm 4:00pm, Dec. 14, Closed books. Applied Analysis APPM 44: Final exam 1:3pm 4:pm, Dec. 14, 29. Closed books. Problem 1: 2p Set I = [, 1]. Prove that there is a continuous function u on I such that 1 ux 1 x sin ut 2 dt = cosx, x I. Define

More information

Ian Sloan and Lattice Rules

Ian Sloan and Lattice Rules www.oeaw.ac.at Ian Sloan and Lattice Rules P. Kritzer, H. Niederreiter, F. Pillichshammer RICAM-Report 2016-34 www.ricam.oeaw.ac.at Ian Sloan and Lattice Rules Peter Kritzer, Harald Niederreiter, Friedrich

More information

Finding Optimal Volume Subintervals with k Points and Calculating the Star Discrepancy are NP-Hard Problems

Finding Optimal Volume Subintervals with k Points and Calculating the Star Discrepancy are NP-Hard Problems Finding Optimal Volume Subintervals with k Points and Calculating the Star Discrepancy are NP-Hard Problems Michael Gnewuch Department of Computer Science, Kiel University, Christian-Albrechts-Platz 4,

More information

LECTURE 15 Markov chain Monte Carlo

LECTURE 15 Markov chain Monte Carlo LECTURE 15 Markov chain Monte Carlo There are many settings when posterior computation is a challenge in that one does not have a closed form expression for the posterior distribution. Markov chain Monte

More information

Scenario generation in stochastic programming

Scenario generation in stochastic programming Scenario generation in stochastic programming Werner Römisch Humboldt-University Berlin, Institute of Mathematics, 10099 Berlin, Germany, romisch@math.hu-berlin.de Abstract Stability-based methods for

More information

Report on Dagstuhl-Seminar 00391: Algorithms and Complexity for Continuous Problems. September 25-29, 2000

Report on Dagstuhl-Seminar 00391: Algorithms and Complexity for Continuous Problems. September 25-29, 2000 Report on Dagstuhl-Seminar 00391: Algorithms and Complexity for Continuous Problems September 25-29, 2000 The seminar was attended by 36 scientists from 12 countries. It was devoted to the complexity of

More information

Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives

Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives Effective dimension of some weighted pre-sobolev spaces with dominating mixed partial derivatives Art B. Owen Stanford University August 2018 Abstract This paper considers two notions of effective dimension

More information

Practical unbiased Monte Carlo for Uncertainty Quantification

Practical unbiased Monte Carlo for Uncertainty Quantification Practical unbiased Monte Carlo for Uncertainty Quantification Sergios Agapiou Department of Statistics, University of Warwick MiR@W day: Uncertainty in Complex Computer Models, 2nd February 2015, University

More information

Quantum Algorithms and Complexity for Continuous Problems

Quantum Algorithms and Complexity for Continuous Problems Quantum Algorithms and Complexity for Continuous Problems A. Papageorgiou J. F. Traub SFI WORKING PAPER: 2007-12-042 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily

More information

FOCM Workshop B5 Information Based Complexity

FOCM Workshop B5 Information Based Complexity FOCM 2014 - Workshop B5 Information Based Complexity B5 - December 15, 14:30 15:00 The ANOVA decomposition of a non-smooth function of an infinite number of variables Ian Sloan University of New South

More information

Multilevel Monte Carlo for Lévy Driven SDEs

Multilevel Monte Carlo for Lévy Driven SDEs Multilevel Monte Carlo for Lévy Driven SDEs Felix Heidenreich TU Kaiserslautern AG Computational Stochastics August 2011 joint work with Steffen Dereich Philipps-Universität Marburg supported within DFG-SPP

More information

Heat Flows, Geometric and Functional Inequalities

Heat Flows, Geometric and Functional Inequalities Heat Flows, Geometric and Functional Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France heat flow and semigroup interpolations Duhamel formula (19th century) pde, probability, dynamics

More information

Quasi-Monte Carlo integration over the Euclidean space and applications

Quasi-Monte Carlo integration over the Euclidean space and applications Quasi-Monte Carlo integration over the Euclidean space and applications f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with James Nichols (UNSW) Journal of Complexity 30

More information

On some nonlinear parabolic equation involving variable exponents

On some nonlinear parabolic equation involving variable exponents On some nonlinear parabolic equation involving variable exponents Goro Akagi (Kobe University, Japan) Based on a joint work with Giulio Schimperna (Pavia Univ., Italy) Workshop DIMO-2013 Diffuse Interface

More information

Application of QMC methods to PDEs with random coefficients

Application of QMC methods to PDEs with random coefficients Application of QMC methods to PDEs with random coefficients a survey of analysis and implementation Frances Kuo f.kuo@unsw.edu.au University of New South Wales, Sydney, Australia joint work with Ivan Graham

More information

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( )

Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio ( ) Mathematical Methods for Neurosciences. ENS - Master MVA Paris 6 - Master Maths-Bio (2014-2015) Etienne Tanré - Olivier Faugeras INRIA - Team Tosca October 22nd, 2014 E. Tanré (INRIA - Team Tosca) Mathematical

More information

A PIECEWISE CONSTANT ALGORITHM FOR WEIGHTED L 1 APPROXIMATION OVER BOUNDED OR UNBOUNDED REGIONS IN R s

A PIECEWISE CONSTANT ALGORITHM FOR WEIGHTED L 1 APPROXIMATION OVER BOUNDED OR UNBOUNDED REGIONS IN R s A PIECEWISE CONSTANT ALGORITHM FOR WEIGHTED L 1 APPROXIMATION OVER BONDED OR NBONDED REGIONS IN R s FRED J. HICKERNELL, IAN H. SLOAN, AND GRZEGORZ W. WASILKOWSKI Abstract. sing Smolyak s construction [5],

More information

Interpolation in h-version finite element spaces

Interpolation in h-version finite element spaces Interpolation in h-version finite element spaces Thomas Apel Institut für Mathematik und Bauinformatik Fakultät für Bauingenieur- und Vermessungswesen Universität der Bundeswehr München Chemnitzer Seminar

More information

Continued Fraction Digit Averages and Maclaurin s Inequalities

Continued Fraction Digit Averages and Maclaurin s Inequalities Continued Fraction Digit Averages and Maclaurin s Inequalities Steven J. Miller, Williams College sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu Joint with Francesco Cellarosi, Doug Hensley and Jake

More information

Polynomial approximation via de la Vallée Poussin means

Polynomial approximation via de la Vallée Poussin means Summer School on Applied Analysis 2 TU Chemnitz, September 26-3, 2 Polynomial approximation via de la Vallée Poussin means Lecture 2: Discrete operators Woula Themistoclakis CNR - National Research Council

More information

[11] Peter Mathé and Ulrich Tautenhahn, Regularization under general noise assumptions, Inverse Problems 27 (2011), no. 3,

[11] Peter Mathé and Ulrich Tautenhahn, Regularization under general noise assumptions, Inverse Problems 27 (2011), no. 3, Literatur [1] Radu Boţ, Bernd Hofmann, and Peter Mathé, Regularizability of illposed problems and the modulus of continuity, Zeitschrift für Analysis und ihre Anwendungen. Journal of Analysis and its Applications

More information

The Curse of Dimensionality for Numerical Integration of Smooth Functions II

The Curse of Dimensionality for Numerical Integration of Smooth Functions II arxiv:1304.3372v2 [math.na] 12 Nov 2013 The Curse of Dimensionality for Numerical Integration of Smooth Functions II Aicke Hinrichs, Erich Novak, Mario Ullrich Mathematisches Institut, Universität Jena

More information

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning

April 20th, Advanced Topics in Machine Learning California Institute of Technology. Markov Chain Monte Carlo for Machine Learning for for Advanced Topics in California Institute of Technology April 20th, 2017 1 / 50 Table of Contents for 1 2 3 4 2 / 50 History of methods for Enrico Fermi used to calculate incredibly accurate predictions

More information

Auxiliary Particle Methods

Auxiliary Particle Methods Auxiliary Particle Methods Perspectives & Applications Adam M. Johansen 1 adam.johansen@bristol.ac.uk Oxford University Man Institute 29th May 2008 1 Collaborators include: Arnaud Doucet, Nick Whiteley

More information

Generalization theory

Generalization theory Generalization theory Daniel Hsu Columbia TRIPODS Bootcamp 1 Motivation 2 Support vector machines X = R d, Y = { 1, +1}. Return solution ŵ R d to following optimization problem: λ min w R d 2 w 2 2 + 1

More information

Perturbed Proximal Gradient Algorithm

Perturbed Proximal Gradient Algorithm Perturbed Proximal Gradient Algorithm Gersende FORT LTCI, CNRS, Telecom ParisTech Université Paris-Saclay, 75013, Paris, France Large-scale inverse problems and optimization Applications to image processing

More information

Sobolev Spaces. Chapter 10

Sobolev Spaces. Chapter 10 Chapter 1 Sobolev Spaces We now define spaces H 1,p (R n ), known as Sobolev spaces. For u to belong to H 1,p (R n ), we require that u L p (R n ) and that u have weak derivatives of first order in L p

More information

An intractability result for multiple integration. I.H.Sloan y and H.Wozniakowski yy. University of New South Wales. Australia.

An intractability result for multiple integration. I.H.Sloan y and H.Wozniakowski yy. University of New South Wales. Australia. An intractability result for multiple integration I.H.Sloan y and H.Wozniakowski yy Columbia University Computer Science Technical Report CUCS-019-96 y School of Mathematics University of ew South Wales

More information

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1.

From now on, we will represent a metric space with (X, d). Here are some examples: i=1 (x i y i ) p ) 1 p, p 1. Chapter 1 Metric spaces 1.1 Metric and convergence We will begin with some basic concepts. Definition 1.1. (Metric space) Metric space is a set X, with a metric satisfying: 1. d(x, y) 0, d(x, y) = 0 x

More information

Low-discrepancy point sets lifted to the unit sphere

Low-discrepancy point sets lifted to the unit sphere Low-discrepancy point sets lifted to the unit sphere Johann S. Brauchart School of Mathematics and Statistics, UNSW MCQMC 2012 (UNSW) February 17 based on joint work with Ed Saff (Vanderbilt) and Josef

More information

The Sturm-Liouville eigenvalue problem and NP-complete problems in the quantum setting with queries

The Sturm-Liouville eigenvalue problem and NP-complete problems in the quantum setting with queries The Sturm-Liouville eigenvalue problem and NP-complete problems in the quantum setting with queries A. Papageorgiou 1 and H. Woźniakowski 2 1,2 Department of Computer Science, Columbia University, New

More information

Primal-dual Subgradient Method for Convex Problems with Functional Constraints

Primal-dual Subgradient Method for Convex Problems with Functional Constraints Primal-dual Subgradient Method for Convex Problems with Functional Constraints Yurii Nesterov, CORE/INMA (UCL) Workshop on embedded optimization EMBOPT2014 September 9, 2014 (Lucca) Yu. Nesterov Primal-dual

More information

Monte Carlo Solution of Integral Equations

Monte Carlo Solution of Integral Equations 1 Monte Carlo Solution of Integral Equations of the second kind Adam M. Johansen a.m.johansen@warwick.ac.uk www2.warwick.ac.uk/fac/sci/statistics/staff/academic/johansen/talks/ March 7th, 2011 MIRaW Monte

More information

Quasi- Monte Carlo Multiple Integration

Quasi- Monte Carlo Multiple Integration Chapter 6 Quasi- Monte Carlo Multiple Integration Introduction In some sense, this chapter fits within Chapter 4 on variance reduction; in some sense it is stratification run wild. Quasi-Monte Carlo methods

More information

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules

On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules On the Behavior of the Weighted Star Discrepancy Bounds for Shifted Lattice Rules Vasile Sinescu and Pierre L Ecuyer Abstract We examine the question of constructing shifted lattice rules of rank one with

More information

Digital lattice rules

Digital lattice rules Digital lattice rules Multivariate integration and discrepancy estimates A thesis presented to The University of New South Wales in fulfilment of the thesis requirement for the degree of Doctor of Philosophy

More information

Lecture No 2 Degenerate Diffusion Free boundary problems

Lecture No 2 Degenerate Diffusion Free boundary problems Lecture No 2 Degenerate Diffusion Free boundary problems Columbia University IAS summer program June, 2009 Outline We will discuss non-linear parabolic equations of slow diffusion. Our model is the porous

More information

Complexity of Neural Network Approximation with Limited Information: a Worst Case Approach

Complexity of Neural Network Approximation with Limited Information: a Worst Case Approach Complexity of Neural Network Approximation with Limited Information: a Worst Case Approach Mark Kon, Boston University and Leszek Plaskota, Warsaw University June 8, 2000 Abstract In neural network theory

More information

Approximation of BSDEs using least-squares regression and Malliavin weights

Approximation of BSDEs using least-squares regression and Malliavin weights Approximation of BSDEs using least-squares regression and Malliavin weights Plamen Turkedjiev (turkedji@math.hu-berlin.de) 3rd July, 2012 Joint work with Prof. Emmanuel Gobet (E cole Polytechnique) Plamen

More information

LECTURE 7. k=1 (, v k)u k. Moreover r

LECTURE 7. k=1 (, v k)u k. Moreover r LECTURE 7 Finite rank operators Definition. T is said to be of rank r (r < ) if dim T(H) = r. The class of operators of rank r is denoted by K r and K := r K r. Theorem 1. T K r iff T K r. Proof. Let T

More information

Convergence Rates of Kernel Quadrature Rules

Convergence Rates of Kernel Quadrature Rules Convergence Rates of Kernel Quadrature Rules Francis Bach INRIA - Ecole Normale Supérieure, Paris, France ÉCOLE NORMALE SUPÉRIEURE NIPS workshop on probabilistic integration - Dec. 2015 Outline Introduction

More information

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France)

Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators. ( Wroclaw 2006) P.Maheux (Orléans. France) Nash Type Inequalities for Fractional Powers of Non-Negative Self-adjoint Operators ( Wroclaw 006) P.Maheux (Orléans. France) joint work with A.Bendikov. European Network (HARP) (to appear in T.A.M.S)

More information

Entropy and Large Deviations

Entropy and Large Deviations Entropy and Large Deviations p. 1/32 Entropy and Large Deviations S.R.S. Varadhan Courant Institute, NYU Michigan State Universiy East Lansing March 31, 2015 Entropy comes up in many different contexts.

More information

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne

Giovanni Migliorati. MATHICSE-CSQI, École Polytechnique Fédérale de Lausanne Analysis of the stability and accuracy of multivariate polynomial approximation by discrete least squares with evaluations in random or low-discrepancy point sets Giovanni Migliorati MATHICSE-CSQI, École

More information

Numerical Analysis on a Quantum Computer

Numerical Analysis on a Quantum Computer Numerical Analysis on a Quantum Computer Stefan Heinrich Fachbereich Informatik Universität Kaiserslautern D-67653 Kaiserslautern, Germany heinrich@informatik.uni-kl.de http://www.uni-kl.de/ag-heinrich

More information

High Dimensional Integration: New Weapons Fighting the Curse of Dimensionality

High Dimensional Integration: New Weapons Fighting the Curse of Dimensionality High Dimensional Integration: ew Weapons Fighting the Curse of Dimensionality Peter Zinterhof Technical Report 26-4 October 26 Department of Computer Sciences Jakob-Haringer-Straße 2 52 Salzburg Austria

More information

F -contractions of Hardy Rogers type and application to multistage decision processes

F -contractions of Hardy Rogers type and application to multistage decision processes Nonlinear Analysis: Modelling and Control, Vol. 2, No. 4, 53 546 ISSN 392-53 http://dx.doi.org/0.5388/na.206.4.7 F -contractions of Hardy Rogers type and application to multistage decision processes Francesca

More information

Error analysis and fast solvers for high-frequency scattering problems

Error analysis and fast solvers for high-frequency scattering problems Error analysis and fast solvers for high-frequency scattering problems I.G. Graham (University of Bath) Woudschoten October 2014 High freq. problem for the Helmholtz equation Given an object Ω R d, with

More information

On the inverse of the discrepancy for infinite dimensional infinite sequences

On the inverse of the discrepancy for infinite dimensional infinite sequences On the inverse of the discrepancy for infinite dimensional infinite sequences Christoph Aistleitner Abstract In 2001 Heinrich, ovak, Wasilkowski and Woźniakowski proved the upper bound s,ε) c abs sε 2

More information

On positive positive-definite functions and Bochner s Theorem

On positive positive-definite functions and Bochner s Theorem On positive positive-definite functions and Bochner s Theorem Aicke Hinrichs Mathematisches Institut, Universität Jena Ernst-Abbe-Platz, 07740 Jena, Germany email: a.hinrichs@uni-jena.de Jan Vybíral RICAM,

More information

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Additive functionals of infinite-variance moving averages Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535 Departments of Statistics The University of Chicago Chicago, Illinois 60637 June

More information

Adaptive timestepping for SDEs with non-globally Lipschitz drift

Adaptive timestepping for SDEs with non-globally Lipschitz drift Adaptive timestepping for SDEs with non-globally Lipschitz drift Mike Giles Wei Fang Mathematical Institute, University of Oxford Workshop on Numerical Schemes for SDEs and SPDEs Université Lille June

More information