Reasoning about State Constraints in the Situation Calculus

Size: px
Start display at page:

Download "Reasoning about State Constraints in the Situation Calculus"

Transcription

1 Reasoning about State Constraints in the Situation Calculus Joint work with Naiqi Li and Yi Fan Yongmei Liu Dept. of Computer Science Sun Yat-sen University Guangzhou, China Presented at IRIT June 26, 2013 Y. Liu Reasoning about State Constraints 1 / 24

2 Motivation Two important properties for dynamic systems State invariants: formulas that if true in a state, will be true in all successor states a first-order reasoning task State constraints: formulas which hold in any reachable state a second-order reasoning task Can be used to greatly reduce the planning search space Can also be used to debug domain axiomatization Y. Liu Reasoning about State Constraints 2 / 24

3 Existing Works [The planning community] restricted to formulas and propositional domains mature and very efficient [Lin, KR-04] discover state invariants in domains of unbounded size through exhaustive search in small domains no soundness guarantee for non- formulas Y. Liu Reasoning about State Constraints 3 / 24

4 Our work A sound but incomplete method for automatic verification and discovery of state constraints for a class of action theories including many planning benchmarks. Theoretically based on Skolemization and Herbrand Theorem, Implemented with SAT solvers. Y. Liu Reasoning about State Constraints 4 / 24

5 Main idea Verify a state constraint by strengthening it in a novel way so that it becomes a state invariant. Y. Liu Reasoning about State Constraints 5 / 24

6 Outline 1 Theoretical foundations 1 The situation calculus 2 Joint constraints and derivants 3 Incomplete reasoning based on Herbrand Theorem 2 Algorithms 3 Experimental results Y. Liu Reasoning about State Constraints 6 / 24

7 The situation calculus A first-order language (with some second-order ingredients) suitable for reasoning about actions and change Intuitively, a situation is a finite sequence of actions Action functions: move(x, y) Fluents (relations or functions whose value can change from situation to situation): on(x, y, s), height(x, s) Situations: S 0, do(a, s) P oss(a, s): action a is possible in situation s s s : s is a sub-history of s Y. Liu Reasoning about State Constraints 7 / 24

8 Basic action theories (BATs) D = Σ D ap D ss D una D S0, where Σ: the foundational axioms for situations, including a second-order induction axiom D ap : action precondition axioms, one for each action function A P oss(a( x), s) Π A ( x, s) D ss : successor state axioms (SSA), one for each fluent, F ( x, do(a, s)) Φ F ( x, a, s) D una : unique names axioms for actions D S0 : the initial KB, a finite set of sentences about S 0 Y. Liu Reasoning about State Constraints 8 / 24

9 An example: blocks world Action Precondition Axioms (D ap ) P oss(move(x, y), s) clear(x, s) clear(y, s), Successor State Axioms (D ss ) on(x, y, do(a, s)) a = move(x, y) on(x, y, s) ( z)a = move(x, z), clear(x, do(a, s)) ( y)( z)a = move(y, z) on(y, x, s) clear(x, s) ( y)a = move(y, x), Initial KB (D S0 ) clear(a, S 0 ), on(a, B, S 0 ) on(a, C, S 0 ), on(d, E, S 0 ) Y. Liu Reasoning about State Constraints 9 / 24

10 State constraints and invariants A situation s is executable if it is possible to perform the actions in s one by one: Exec(s) def = a, s.do(a, s ) s P oss(a, s ) Definition A formula φ(s) is a state constraint for D if D = s.exec(s) φ(s). Definition Let D SC be a set of state constraints for D. A formula φ(s) is a state invariant for D if D ap D ss D una = fol a, s.d SC φ(s) P oss(a, s) φ(do(a, s)). Proposition If D S0 = fol φ(s 0 ), and φ is an invariant, then φ is a constraint. Y. Liu Reasoning about State Constraints 10 / 24

11 Joint Constraints Definition An invariant constraint is a constraint which is also an invariant. If φ(s) ψ(s) η(s) is an invariant constraint and ψ(s) is not entailed by φ(s), we call ψ(s) a joint constraint for φ(s). So how to obtain joint constraints for a given constraint? Y. Liu Reasoning about State Constraints 11 / 24

12 Regression Recall P oss(a( x), s) Π A ( x, s), F ( x, do(a, s)) Φ F ( x, a, s) Definition We use R D [φ] to denote the formula obtained from φ by replacing each precondition atom P oss(a( x), s) with Π A ( x, s) each fluent atom F ( t, do(a( x), s)) with Φ F ( t, A( x), s) and further simplifying it via D una. Theorem D = φ R D [φ]. Y. Liu Reasoning about State Constraints 12 / 24

13 Derivants Definition Let φ(s) be a formula. For the class of action theories we consider, the following can be put into a formula. R D [ x.p oss(a( x), s) φ(do(a( x), s))] We convert the quantifer-free part into a CNF. We call each conjunct a derivant of φ(s). Theorem If φ(s) η(s) is an invariant constraint, and C(s) is a derivant of φ(s) not implied by φ(s), then C(s) is a joint constraint for φ(s). Y. Liu Reasoning about State Constraints 13 / 24

14 Checking first-order entailment of sentences By Skolemization, reduce it to checking satisfiability of a set Φ of sentences By Herbrand Theorem, reduce it to checking satisfiability of grounding of sentences in Φ using an infinite Herbrand domain Use a sequence of finite partial Herbarnd domains for grounding until unsatisfiability is confirmed or some bound is reached Y. Liu Reasoning about State Constraints 14 / 24

15 Algorithm 1: Verifying constraints Given a formula φ 1 Test if D S0 = fol φ(s 0 ) 2 If not, return false 3 Test if φ is a state invariant 4 If yes, return φ 5 Pick a derivant C of φ not entailed by φ 6 Continue this procedure with φ C until a bound is reached Also check if φ can be strengthened by some subset of C in order to obtain more intuitive and succinct joint constraints Y. Liu Reasoning about State Constraints 15 / 24

16 An example 1 We were to test whether φ 1 = holding(x) ontable(x) is a state constraint. 2 φ 1 is not proved to be a state invariant, so the system strengthened it with φ 2 = on(x 1, x 2 ) ontable(x 1 ). 3 Again, φ 1 φ 2 is not a state invariant so the system strengthened it with φ 3 = on(x 1, x 2 ) holding(x 1 ). 4 After getting φ 4 = on(x 1, x 2 ) on(x 1, x 3 ) x 2 = x 3, φ 1... φ 4 was proved to be a state invariant, and thus, φ 1,..., φ 4 were all proved to be state constraints. Y. Liu Reasoning about State Constraints 16 / 24

17 Algorithm 2: Verifying constraints Given a formula φ If D S0 = fol φ(s 0 ) and φ is a state invariant using the set of verified constraints, then return true, else return false Y. Liu Reasoning about State Constraints 17 / 24

18 Algorithm 3: Enumerating unary and binary constraints 1 Enumerate all formulas containing one or two literals 2 Collect those which are verified to be constraints, together with their joint constraints Y. Liu Reasoning about State Constraints 18 / 24

19 Experimental results Using 3 IPC (International Planning Competition) domains: blocks world, logistics, satellite Almost all known state constraints can be verified in a reasonable amount of time (the max time is 23min) Meanwhile succinct and intuitive joint state constraints are discovered Y. Liu Reasoning about State Constraints 19 / 24

20 State constraints verified or discovered in Blocks World Constraints on(y, x) clear(x), holding(x) on(y, x), holding(x) on(x, y), holding(x) clear(x), holding(x) handempty, on(x, y) on(x, z) y = z, on(x, x), on(x, y) on(y, x) (not considered by Lin) Constraints holding(x) clear(x) ( y)on(y, x), handempty ( x)holding(x), ontable(x) holding(x) ( y)on(x, y) Y. Liu Reasoning about State Constraints 20 / 24

21 Time performance Domain Enum Formulas Formulas Binary Min Max Min Max B.W. 15min 1.8s 23min 0.5s 0.5s Logistics 17min 19.2s 68.8s 6.3s 7.0s Satellite 10min 2.5s 3.9s 5.7s 7.8s max for formulas is orders greater than that for ones, because we do not strengthen formulas max in Blocks World is significantly greater than that in the other domains, because B.W. is the most structured Y. Liu Reasoning about State Constraints 21 / 24

22 Related work from model checking A. R. Bradley and Z. Manna. Checking safety by inductive generalization of counterexamples to induction. In FMCAD, based on finite-state boolean transition system strengthen a constraint to be an invariant, or return a counterexample trace use minimum subclause generalized from counterexamples to accelerate convergence Y. Liu Reasoning about State Constraints 22 / 24

23 Conclusions A sound but incomplete method for automatic verification and discovery of constraints Verify a state constraint by strengthening it so that it becomes a state invariant Can be applied to infinite domains Experimental results show the effectiveness of our method Y. Liu Reasoning about State Constraints 23 / 24

24 Future Work Completeness issue of our method Theoretical formulation of related works in planning Cross-fertilization between related works in AI and formal methods Our paper is available at ymliu Y. Liu Reasoning about State Constraints 24 / 24

Reasoning about State Constraints in the Situation Calculus

Reasoning about State Constraints in the Situation Calculus Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence Reasoning about State Constraints in the Situation Calculus Naiqi Li 1 Yi Fan 1,2 Yongmei Liu 1 1 Department of

More information

On First-Order Definability and Computability of Progression for Local-Effect Actions and Beyond

On First-Order Definability and Computability of Progression for Local-Effect Actions and Beyond On First-Order Definability and Computability of Progression for Local-Effect Actions and Beyond Yongmei Liu Dept. of Computer Science Sun Yat-sen University Guangzhou 510275, China ymliu@mail.sysu.edu.cn

More information

Tractable Reasoning with Incomplete First-Order Knowledge in Dynamic Systems with Context-Dependent Actions

Tractable Reasoning with Incomplete First-Order Knowledge in Dynamic Systems with Context-Dependent Actions Tractable Reasoning with Incomplete First-Order Knowledge in Dynamic Systems with Context-Dependent Actions Yongmei Liu and Hector J. Levesque Department of Computer Science University of Toronto Toronto,

More information

Introduction on Situational Calculus

Introduction on Situational Calculus Introduction on Situational Calculus Fangkai Yang Department of Computer Sciences The University of Texas at Austin September 24, 2010 Fangkai Yang (fkyang@cs.utexas.edu) September 24, 2010 1 / 27 Outline

More information

On the Progression of Knowledge in the Situation Calculus

On the Progression of Knowledge in the Situation Calculus On the Progression of Knowledge in the Situation Calculus Yongmei Liu Department of Computer Science Sun Yat-sen University Guangzhou, China Joint work with Ximing Wen KRW-2012, Guiyang June 17, 2012 Y.

More information

On the Progression of Situation Calculus Basic Action Theories: Resolving a 10-year-old Conjecture

On the Progression of Situation Calculus Basic Action Theories: Resolving a 10-year-old Conjecture On the Progression of Situation Calculus Basic Action Theories: Resolving a 10-year-old Conjecture Stavros Vassos and Hector J Levesque Department of Computer Science University of Toronto Toronto, ON,

More information

On Moving Objects in Dynamic Domains

On Moving Objects in Dynamic Domains On Moving Objects in Dynamic Domains Fangzhen Lin Department of Computer Science Hong Kong University of Science and Technology Clear Water Bay, Kowloon, Hong Kong Abstract In the physical world, an object

More information

On the Role of Possibility in Action Execution and Knowledge in the Situation Calculus

On the Role of Possibility in Action Execution and Knowledge in the Situation Calculus On the Role of Possibility in Action Execution and Knowledge in the Situation Calculus Vahid Vaezian (B) and James P. Delgrande School of Computing Science, Simon Fraser University, Burnaby, BC V5A 1S6,

More information

Lecture 10: Feb. 11, 2015

Lecture 10: Feb. 11, 2015 CS324: AI (Situation Calculus & Reasoning.) Spring 2015 Lecturer: K.R. Chowdhary Lecture 10: Feb. 11, 2015 : Professor of CS (VF) Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Compiling Causal Theories to Successor State Axioms and STRIPS-Like Systems

Compiling Causal Theories to Successor State Axioms and STRIPS-Like Systems Journal of Artificial Intelligence Research 19 (2003) 279-314 Submitted 09/02; published 10/03 Compiling Causal Theories to Successor State Axioms and STRIPS-Like Systems Fangzhen Lin Department of Computer

More information

Propositional Reasoning

Propositional Reasoning Propositional Reasoning CS 440 / ECE 448 Introduction to Artificial Intelligence Instructor: Eyal Amir Grad TAs: Wen Pu, Yonatan Bisk Undergrad TAs: Sam Johnson, Nikhil Johri Spring 2010 Intro to AI (CS

More information

Decidable Reasoning in a Modified Situation Calculus

Decidable Reasoning in a Modified Situation Calculus Decidable Reasoning in a Modified Situation Calculus Yilan Gu Dept. of Computer Science University of Toronto 10 King s College Road Toronto, ON, M5S 3G4, Canada Email: yilan@cs.toronto.edu Abstract We

More information

Part of this work we present an extension for Language PP and we show how this

Part of this work we present an extension for Language PP and we show how this Chapter 5 Planning problems Currently, we can find different definitions for Planning. For instance, McCarthy defines planning in [25] as the restricted problem of finding a finite sequence of actions

More information

AHoare-Style Proof System for Robot Programs

AHoare-Style Proof System for Robot Programs From: AAAI-02 Proceedings Copyright 2002, AAAI (wwwaaaiorg) All rights reserved AHoare-Style Proof System for Robot Programs Yongmei Liu Department of Computer Science University of Toronto Toronto, ON,

More information

LTCS Report. On the Decidability of Verifying LTL Properties of Golog Programs (Extended Version) LTCS-Report 13-10

LTCS Report. On the Decidability of Verifying LTL Properties of Golog Programs (Extended Version) LTCS-Report 13-10 Technische Universität Dresden Institute for Theoretical Computer Science Chair for Automata Theory LTCS Report On the Decidability of Verifying LTL Properties of Golog Programs (Extended Version) Benjamin

More information

Scalable and Accurate Verification of Data Flow Systems. Cesare Tinelli The University of Iowa

Scalable and Accurate Verification of Data Flow Systems. Cesare Tinelli The University of Iowa Scalable and Accurate Verification of Data Flow Systems Cesare Tinelli The University of Iowa Overview AFOSR Supported Research Collaborations NYU (project partner) Chalmers University (research collaborator)

More information

IC3 and Beyond: Incremental, Inductive Verification

IC3 and Beyond: Incremental, Inductive Verification IC3 and Beyond: Incremental, Inductive Verification Aaron R. Bradley ECEE, CU Boulder & Summit Middle School IC3 and Beyond: Incremental, Inductive Verification 1/62 Induction Foundation of verification

More information

CS 730/730W/830: Intro AI

CS 730/730W/830: Intro AI CS 730/730W/830: Intro AI 1 handout: slides 730W journal entries were due Wheeler Ruml (UNH) Lecture 9, CS 730 1 / 16 Logic First-Order Logic The Joy of Power Wheeler Ruml (UNH) Lecture 9, CS 730 2 / 16

More information

SCOPE: A Situation Calculus Ontology of Petri Nets

SCOPE: A Situation Calculus Ontology of Petri Nets SCOPE: A Situation Calculus Ontology of Petri Nets Xing TAN 1 Semantic Technologies Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto Abstract. By axiomatizing the

More information

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19.

Intelligent Agents. First Order Logic. Ute Schmid. Cognitive Systems, Applied Computer Science, Bamberg University. last change: 19. Intelligent Agents First Order Logic Ute Schmid Cognitive Systems, Applied Computer Science, Bamberg University last change: 19. Mai 2015 U. Schmid (CogSys) Intelligent Agents last change: 19. Mai 2015

More information

Deterministic planning

Deterministic planning Chapter 3 Deterministic planning The simplest planning problems involves finding a sequence of actions that lead from a given initial state to a goal state. Only deterministic actions are considered. Determinism

More information

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning

Logic. Knowledge Representation & Reasoning Mechanisms. Logic. Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logic Knowledge Representation & Reasoning Mechanisms Logic Logic as KR Propositional Logic Predicate Logic (predicate Calculus) Automated Reasoning Logical inferences Resolution and Theorem-proving Logic

More information

PREDICATE LOGIC: UNDECIDABILITY AND INCOMPLETENESS HUTH AND RYAN 2.5, SUPPLEMENTARY NOTES 2

PREDICATE LOGIC: UNDECIDABILITY AND INCOMPLETENESS HUTH AND RYAN 2.5, SUPPLEMENTARY NOTES 2 PREDICATE LOGIC: UNDECIDABILITY AND INCOMPLETENESS HUTH AND RYAN 2.5, SUPPLEMENTARY NOTES 2 Neil D. Jones DIKU 2005 14 September, 2005 Some slides today new, some based on logic 2004 (Nils Andersen) OUTLINE,

More information

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55

Understanding IC3. Aaron R. Bradley. ECEE, CU Boulder & Summit Middle School. Understanding IC3 1/55 Understanding IC3 Aaron R. Bradley ECEE, CU Boulder & Summit Middle School Understanding IC3 1/55 Further Reading This presentation is based on Bradley, A. R. Understanding IC3. In SAT, June 2012. http://theory.stanford.edu/~arbrad

More information

MAI0203 Lecture 7: Inference and Predicate Calculus

MAI0203 Lecture 7: Inference and Predicate Calculus MAI0203 Lecture 7: Inference and Predicate Calculus Methods of Artificial Intelligence WS 2002/2003 Part II: Inference and Knowledge Representation II.7 Inference and Predicate Calculus MAI0203 Lecture

More information

First Order Logic: Syntax and Semantics

First Order Logic: Syntax and Semantics CS1081 First Order Logic: Syntax and Semantics COMP30412 Sean Bechhofer sean.bechhofer@manchester.ac.uk Problems Propositional logic isn t very expressive As an example, consider p = Scotland won on Saturday

More information

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms

First-Order Logic. 1 Syntax. Domain of Discourse. FO Vocabulary. Terms First-Order Logic 1 Syntax Domain of Discourse The domain of discourse for first order logic is FO structures or models. A FO structure contains Relations Functions Constants (functions of arity 0) FO

More information

Halting and Equivalence of Program Schemes in Models of Arbitrary Theories

Halting and Equivalence of Program Schemes in Models of Arbitrary Theories Halting and Equivalence of Program Schemes in Models of Arbitrary Theories Dexter Kozen Cornell University, Ithaca, New York 14853-7501, USA, kozen@cs.cornell.edu, http://www.cs.cornell.edu/~kozen In Honor

More information

CS 730/830: Intro AI. 3 handouts: slides, asst 6, asst 7. Wheeler Ruml (UNH) Lecture 12, CS / 16. Reasoning.

CS 730/830: Intro AI. 3 handouts: slides, asst 6, asst 7. Wheeler Ruml (UNH) Lecture 12, CS / 16. Reasoning. CS 730/830: Intro AI 3 handouts: slides, asst 6, asst 7 Wheeler Ruml (UNH) Lecture 12, CS 730 1 / 16 Logic First-Order Logic The Joy of Power in First-order Logic Wheeler Ruml (UNH) Lecture 12, CS 730

More information

14. Actions. KR & R Brachman & Levesque Situation calculus

14. Actions. KR & R Brachman & Levesque Situation calculus 14. Actions KR & R Brachman & Levesque 2005 236 Situation calculus The situation calculus is a dialect of FOL for representing dynamically changing worlds in which all changes are the result of named actions.

More information

Induction in Nonmonotonic Causal Theories for a Domestic Service Robot

Induction in Nonmonotonic Causal Theories for a Domestic Service Robot Induction in Nonmonotonic Causal Theories for a Domestic Service Robot Jianmin Ji 1 and Xiaoping Chen 2 1 Dept. of CSE, The Hong Kong University of Science and Technology, jizheng@mail.ustc.edu.cn 2 Sch.

More information

SAT-Based Verification with IC3: Foundations and Demands

SAT-Based Verification with IC3: Foundations and Demands SAT-Based Verification with IC3: Foundations and Demands Aaron R. Bradley ECEE, CU Boulder & Summit Middle School SAT-Based Verification with IC3:Foundations and Demands 1/55 Induction Foundation of verification

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

Chapter 7 Propositional Satisfiability Techniques

Chapter 7 Propositional Satisfiability Techniques Lecture slides for Automated Planning: Theory and Practice Chapter 7 Propositional Satisfiability Techniques Dana S. Nau CMSC 722, AI Planning University of Maryland, Spring 2008 1 Motivation Propositional

More information

Inference in first-order logic. Production systems.

Inference in first-order logic. Production systems. CS 1571 Introduction to AI Lecture 17 Inference in first-order logic. Production systems. Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Sentences in Horn normal form Horn normal form (HNF) in

More information

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics

Dynamic Semantics. Dynamic Semantics. Operational Semantics Axiomatic Semantics Denotational Semantic. Operational Semantics Dynamic Semantics Operational Semantics Denotational Semantic Dynamic Semantics Operational Semantics Operational Semantics Describe meaning by executing program on machine Machine can be actual or simulated

More information

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Introduction to Artificial Intelligence Propositional Logic & SAT Solving UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010 Today Representation in Propositional Logic Semantics & Deduction

More information

From Causal Theories to Successor State Axioms and STRIPS-Like Systems

From Causal Theories to Successor State Axioms and STRIPS-Like Systems From: AAAI-00 Proceedings. Copyright 2000, AAAI (www.aaai.org). All rights reserved. From Causal Theories to Successor State Axioms and STRIPS-Like Systems Fangzhen Lin (flin@cs.ust.hk) Department of Computer

More information

CS156: The Calculus of Computation

CS156: The Calculus of Computation CS156: The Calculus of Computation Zohar Manna Winter 2010 It is reasonable to hope that the relationship between computation and mathematical logic will be as fruitful in the next century as that between

More information

or simply: IC3 A Simplified Description

or simply: IC3 A Simplified Description Incremental Construction of Inductive Clauses for Indubitable Correctness or simply: IC3 A Simplified Description Based on SAT-Based Model Checking without Unrolling Aaron Bradley, VMCAI 2011 Efficient

More information

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit:

Price: $25 (incl. T-Shirt, morning tea and lunch) Visit: Three days of interesting talks & workshops from industry experts across Australia Explore new computing topics Network with students & employers in Brisbane Price: $25 (incl. T-Shirt, morning tea and

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Property Checking By Logic Relaxation

Property Checking By Logic Relaxation Property Checking By Logic Relaxation Eugene Goldberg eu.goldberg@gmail.com arxiv:1601.02742v1 [cs.lo] 12 Jan 2016 Abstract We introduce a new framework for Property Checking (PC) of sequential circuits.

More information

Introduction to Artificial Intelligence. Logical Agents

Introduction to Artificial Intelligence. Logical Agents Introduction to Artificial Intelligence Logical Agents (Logic, Deduction, Knowledge Representation) Bernhard Beckert UNIVERSITÄT KOBLENZ-LANDAU Winter Term 2004/2005 B. Beckert: KI für IM p.1 Outline Knowledge-based

More information

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system):

Knowledge base (KB) = set of sentences in a formal language Declarative approach to building an agent (or other system): Logic Knowledge-based agents Inference engine Knowledge base Domain-independent algorithms Domain-specific content Knowledge base (KB) = set of sentences in a formal language Declarative approach to building

More information

Lecture Notes on SAT Solvers & DPLL

Lecture Notes on SAT Solvers & DPLL 15-414: Bug Catching: Automated Program Verification Lecture Notes on SAT Solvers & DPLL Matt Fredrikson André Platzer Carnegie Mellon University Lecture 10 1 Introduction In this lecture we will switch

More information

On Ability to Autonomously Execute Agent Programs with Sensing

On Ability to Autonomously Execute Agent Programs with Sensing On Ability to Autonomously Execute Agent Programs with Sensing Sebastian Sardiña Dept. of Computer Science University of Toronto ssardina@cs.toronto.edu Yves Lespérance Dept. of Computer Science York University

More information

Reconciling Situation Calculus and Fluent Calculus

Reconciling Situation Calculus and Fluent Calculus Reconciling Situation Calculus and Fluent Calculus Stephan Schiffel and Michael Thielscher Department of Computer Science Dresden University of Technology {stephan.schiffel,mit}@inf.tu-dresden.de Abstract

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Bart Selman selman@cs.cornell.edu Module: Knowledge, Reasoning, and Planning Part 2 Logical Agents R&N: Chapter 7 1 Illustrative example: Wumpus World (Somewhat

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

Knowledge Compilation and Theory Approximation. Henry Kautz and Bart Selman Presented by Kelvin Ku

Knowledge Compilation and Theory Approximation. Henry Kautz and Bart Selman Presented by Kelvin Ku Knowledge Compilation and Theory Approximation Henry Kautz and Bart Selman Presented by Kelvin Ku kelvin@cs.toronto.edu 1 Overview Problem Approach Horn Theory and Approximation Computing Horn Approximations

More information

Decidability: Church-Turing Thesis

Decidability: Church-Turing Thesis Decidability: Church-Turing Thesis While there are a countably infinite number of languages that are described by TMs over some alphabet Σ, there are an uncountably infinite number that are not Are there

More information

Herbrand Theorem, Equality, and Compactness

Herbrand Theorem, Equality, and Compactness CSC 438F/2404F Notes (S. Cook and T. Pitassi) Fall, 2014 Herbrand Theorem, Equality, and Compactness The Herbrand Theorem We now consider a complete method for proving the unsatisfiability of sets of first-order

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

Chapter 7 Propositional Satisfiability Techniques

Chapter 7 Propositional Satisfiability Techniques Lecture slides for Automated Planning: Theory and Practice Chapter 7 Propositional Satisfiability Techniques Dana S. Nau University of Maryland 12:58 PM February 15, 2012 1 Motivation Propositional satisfiability:

More information

The Two-Variable Situation Calculus

The Two-Variable Situation Calculus The Two-Variable Situation Calculus 1. Introduction Yilan GU a, Mikhail SOUTCHANSKI b,1 a Department of Computer Science, University of Toronto, email: yilan@cs.toronto.edu b Department of Computer Science,

More information

Decision Procedures for Satisfiability and Validity in Propositional Logic

Decision Procedures for Satisfiability and Validity in Propositional Logic Decision Procedures for Satisfiability and Validity in Propositional Logic Meghdad Ghari Institute for Research in Fundamental Sciences (IPM) School of Mathematics-Isfahan Branch Logic Group http://math.ipm.ac.ir/isfahan/logic-group.htm

More information

Application: Planning as Satisfiability (SATPlan) (Pre Lecture)

Application: Planning as Satisfiability (SATPlan) (Pre Lecture) Application: Planning as Satisfiability (SATPlan) (Pre Lecture) Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Application: Planning as Satisfiability (SATPlan)

More information

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5)

Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) B.Y. Choueiry 1 Instructor s notes #12 Title: Logical Agents AIMA: Chapter 7 (Sections 7.4 and 7.5) Introduction to Artificial Intelligence CSCE 476-876, Fall 2018 URL: www.cse.unl.edu/ choueiry/f18-476-876

More information

Axiomatic Semantics. Lecture 9 CS 565 2/12/08

Axiomatic Semantics. Lecture 9 CS 565 2/12/08 Axiomatic Semantics Lecture 9 CS 565 2/12/08 Axiomatic Semantics Operational semantics describes the meaning of programs in terms of the execution steps taken by an abstract machine Denotational semantics

More information

Precondition Control and the Progression Algorithm

Precondition Control and the Progression Algorithm From: ICAPS-04 Proceedings. Copyright 2004, AAAI (www.aaai.org). All rights reserved. Precondition Control and the Progression Algorithm Alfredo Gabaldon Department of Computer Science University of Toronto

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Proofs of Correctness: Introduction to Axiomatic Verification

Proofs of Correctness: Introduction to Axiomatic Verification Proofs of Correctness: Introduction to Axiomatic Verification Introduction Weak correctness predicate Assignment statements Sequencing Selection statements Iteration 1 Introduction What is Axiomatic Verification?

More information

Propositional logic. First order logic. Alexander Clark. Autumn 2014

Propositional logic. First order logic. Alexander Clark. Autumn 2014 Propositional logic First order logic Alexander Clark Autumn 2014 Formal Logic Logical arguments are valid because of their form. Formal languages are devised to express exactly that relevant form and

More information

Lloyd-Topor Completion and General Stable Models

Lloyd-Topor Completion and General Stable Models Lloyd-Topor Completion and General Stable Models Vladimir Lifschitz and Fangkai Yang Department of Computer Science The University of Texas at Austin {vl,fkyang}@cs.utexas.edu Abstract. We investigate

More information

Kecerdasan Buatan M. Ali Fauzi

Kecerdasan Buatan M. Ali Fauzi Kecerdasan Buatan M. Ali Fauzi Artificial Intelligence M. Ali Fauzi Logical Agents M. Ali Fauzi In which we design agents that can form representations of the would, use a process of inference to derive

More information

Propositional and Predicate Logic - XIII

Propositional and Predicate Logic - XIII Propositional and Predicate Logic - XIII Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XIII WS 2016/2017 1 / 22 Undecidability Introduction Recursive

More information

Logic reasoning systems

Logic reasoning systems Lecture 2 Logic reasoning systems Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Administration No class next week PS-5: Due on Thursda October 4, 2004 Submit directly to Tomas Singliar Midterm:

More information

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom.

Knowledge representation DATA INFORMATION KNOWLEDGE WISDOM. Figure Relation ship between data, information knowledge and wisdom. Knowledge representation Introduction Knowledge is the progression that starts with data which s limited utility. Data when processed become information, information when interpreted or evaluated becomes

More information

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Joschka Boedecker and Wolfram Burgard and Frank Hutter and Bernhard Nebel Albert-Ludwigs-Universität Freiburg

More information

CS156: The Calculus of Computation Zohar Manna Autumn 2008

CS156: The Calculus of Computation Zohar Manna Autumn 2008 Page 3 of 52 Page 4 of 52 CS156: The Calculus of Computation Zohar Manna Autumn 2008 Lecturer: Zohar Manna (manna@cs.stanford.edu) Office Hours: MW 12:30-1:00 at Gates 481 TAs: Boyu Wang (wangboyu@stanford.edu)

More information

Situation Calculus. Chapter 16. Fangzhen Lin

Situation Calculus. Chapter 16. Fangzhen Lin Handbook of Knowledge Representation Edited by F. van Harmelen, V. Lifschitz and B. Porter 2008 Elsevier B.V. All rights reserved DOI: 10.1016/S1574-6526(07)03016-7 649 Chapter 16 Situation Calculus Fangzhen

More information

Reasoning by Regression: Pre- and Postdiction Procedures for Logics of Action and Change with Nondeterminism*

Reasoning by Regression: Pre- and Postdiction Procedures for Logics of Action and Change with Nondeterminism* Reasoning by Regression: Pre- and Postdiction Procedures for Logics of Action and Change with Nondeterminism* Marcus Bjareland and Lars Karlsson Department of Computer and Information Science Linkopings

More information

Logic: Propositional Logic Truth Tables

Logic: Propositional Logic Truth Tables Logic: Propositional Logic Truth Tables Raffaella Bernardi bernardi@inf.unibz.it P.zza Domenicani 3, Room 2.28 Faculty of Computer Science, Free University of Bolzano-Bozen http://www.inf.unibz.it/~bernardi/courses/logic06

More information

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel

7. Propositional Logic. Wolfram Burgard and Bernhard Nebel Foundations of AI 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard and Bernhard Nebel Contents Agents that think rationally The wumpus world Propositional logic: syntax and semantics

More information

Hoare Logic I. Introduction to Deductive Program Verification. Simple Imperative Programming Language. Hoare Logic. Meaning of Hoare Triples

Hoare Logic I. Introduction to Deductive Program Verification. Simple Imperative Programming Language. Hoare Logic. Meaning of Hoare Triples Hoare Logic I Introduction to Deductive Program Verification Işıl Dillig Program Spec Deductive verifier FOL formula Theorem prover valid contingent Example specs: safety (no crashes), absence of arithmetic

More information

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz )

Logic in AI Chapter 7. Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) Logic in AI Chapter 7 Mausam (Based on slides of Dan Weld, Stuart Russell, Subbarao Kambhampati, Dieter Fox, Henry Kautz ) 2 Knowledge Representation represent knowledge about the world in a manner that

More information

Nonlinear Control as Program Synthesis (A Starter)

Nonlinear Control as Program Synthesis (A Starter) Nonlinear Control as Program Synthesis (A Starter) Sicun Gao MIT December 15, 2014 Preliminaries Definition (L RF ) L RF is the first-order language over the reals that allows arbitrary numerically computable

More information

On Defaults in Action Theories

On Defaults in Action Theories On Defaults in Action Theories Hannes Strass and Michael Thielscher Department of Computer Science Dresden University of Technology {hannes.strass,mit}@inf.tu-dresden.de Abstract. We study the integration

More information

6. Logical Inference

6. Logical Inference Artificial Intelligence 6. Logical Inference Prof. Bojana Dalbelo Bašić Assoc. Prof. Jan Šnajder University of Zagreb Faculty of Electrical Engineering and Computing Academic Year 2016/2017 Creative Commons

More information

Situation Calculus. Gerald Steinbauer. Institute for Software Technology. Gerald Steinbauer. Situation Calculus - Introduction

Situation Calculus. Gerald Steinbauer. Institute for Software Technology. Gerald Steinbauer. Situation Calculus - Introduction Situation Calculus Institute for Software Technology 1 Dates Organizational Issues 10.11.2016 8:45-11:00 (HS i12) lecture and first assignment 17.11.2016 8:45-11:00 (HS i12) lecture and programming assignment

More information

Logical Agents. Santa Clara University

Logical Agents. Santa Clara University Logical Agents Santa Clara University Logical Agents Humans know things Humans use knowledge to make plans Humans do not act completely reflexive, but reason AI: Simple problem-solving agents have knowledge

More information

An Incremental Approach to Model Checking Progress Properties

An Incremental Approach to Model Checking Progress Properties An Incremental Approach to Model Checking Progress Properties Aaron Bradley Fabio Somenzi Zyad Hassan Yan Zhang Department of Electrical, Computer, and Energy Engineering University of Colorado at Boulder

More information

Ivy: Safety Verification by Interactive Generalization

Ivy: Safety Verification by Interactive Generalization Ivy: Safety Verification by Interactive Generalization Oded Padon Verification Day 1-June-2016 [PLDI 16] Oded Padon, Kenneth McMillan, Aurojit Panda, Mooly Sagiv, Sharon Shoham. Ivy: Safety Verification

More information

Symbolic Trajectory Evaluation (STE): Orna Grumberg Technion, Israel

Symbolic Trajectory Evaluation (STE): Orna Grumberg Technion, Israel Symbolic Trajectory Evaluation (STE): Automatic Refinement and Vacuity Detection Orna Grumberg Technion, Israel Marktoberdort 2007 1 Agenda Model checking Symbolic Trajectory Evaluation Basic Concepts

More information

Tecniche di Verifica. Introduction to Propositional Logic

Tecniche di Verifica. Introduction to Propositional Logic Tecniche di Verifica Introduction to Propositional Logic 1 Logic A formal logic is defined by its syntax and semantics. Syntax An alphabet is a set of symbols. A finite sequence of these symbols is called

More information

Non-Markovian Control in the Situation Calculus

Non-Markovian Control in the Situation Calculus Non-Markovian Control in the Situation Calculus An Elaboration Niklas Hoppe Seminar Foundations Of Artificial Intelligence Knowledge-Based Systems Group RWTH Aachen May 3, 2009 1 Contents 1 Introduction

More information

On the Decidability of Verifying LTL Properties of GOLOG Programs

On the Decidability of Verifying LTL Properties of GOLOG Programs On the Decidability of Verifying LTL Properties of GOLOG Programs Benjamin Zarrieß Theoretical Computer Science TU Dresden, Germany zarriess@tcs.inf.tu-dresden.de Jens Claßen Knowledge-Based Systems Group

More information

Logical Agents. Seung-Hoon Na Chonbuk National University. 1 Department of Computer Science

Logical Agents. Seung-Hoon Na Chonbuk National University. 1 Department of Computer Science Logical Agents Seung-Hoon Na 1 1 Department of Computer Science Chonbuk National University 2017.10.10 eung-hoon Na (Chonbuk National University) Logical Agents 2017.10.10 1 / 18 Wumpus world: The current

More information

Notes. Corneliu Popeea. May 3, 2013

Notes. Corneliu Popeea. May 3, 2013 Notes Corneliu Popeea May 3, 2013 1 Propositional logic Syntax We rely on a set of atomic propositions, AP, containing atoms like p, q. A propositional logic formula φ Formula is then defined by the following

More information

A brief introduction to Logic. (slides from

A brief introduction to Logic. (slides from A brief introduction to Logic (slides from http://www.decision-procedures.org/) 1 A Brief Introduction to Logic - Outline Propositional Logic :Syntax Propositional Logic :Semantics Satisfiability and validity

More information

Chapter 4: Computation tree logic

Chapter 4: Computation tree logic INFOF412 Formal verification of computer systems Chapter 4: Computation tree logic Mickael Randour Formal Methods and Verification group Computer Science Department, ULB March 2017 1 CTL: a specification

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Reducing CTL-live Model Checking to Semantic Entailment in First-Order Logic (Version 1)

Reducing CTL-live Model Checking to Semantic Entailment in First-Order Logic (Version 1) 1 Reducing CTL-live Model Checking to Semantic Entailment in First-Order Logic (Version 1) Amirhossein Vakili and Nancy A. Day Cheriton School of Computer Science University of Waterloo Waterloo, Ontario,

More information

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s

Example. Lemma. Proof Sketch. 1 let A be a formula that expresses that node t is reachable from s Summary Summary Last Lecture Computational Logic Π 1 Γ, x : σ M : τ Γ λxm : σ τ Γ (λxm)n : τ Π 2 Γ N : τ = Π 1 [x\π 2 ] Γ M[x := N] Georg Moser Institute of Computer Science @ UIBK Winter 2012 the proof

More information

Propositional and Predicate Logic. jean/gbooks/logic.html

Propositional and Predicate Logic.   jean/gbooks/logic.html CMSC 630 February 10, 2009 1 Propositional and Predicate Logic Sources J. Gallier. Logic for Computer Science, John Wiley and Sons, Hoboken NJ, 1986. 2003 revised edition available on line at http://www.cis.upenn.edu/

More information

Lecture 7: Logic and Planning

Lecture 7: Logic and Planning Lecture 7: Logic and Planning Planning and representing knowledge Logic in general Propositional (Boolean) logic and its application to planning COMP-424, Lecture 8 - January 30, 2013 1 What is planning?

More information

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming

A Little Logic. Propositional Logic. Satisfiability Problems. Solving Sudokus. First Order Logic. Logic Programming A Little Logic International Center for Computational Logic Technische Universität Dresden Germany Propositional Logic Satisfiability Problems Solving Sudokus First Order Logic Logic Programming A Little

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Winter Quarter 2011 Wright State University, Dayton, OH, U.S.A. [final version: 03/10/2011] Contents 1 Propositional

More information