A Survey on Binary Message LDPC decoder

Size: px
Start display at page:

Download "A Survey on Binary Message LDPC decoder"

Transcription

1 A Surey on Binary Message LDPC decoder Emmanuel Boutillon *, Chris Winstead * Uniersité de Bretagne Sud Utah State Uniersity Noember the 4 th, 204

2 Outline Classifications of BM LDPC decoder State of the art Recent results Conclusions

3 Outline Classifications of BM LDPC decoder State of the art Recent results Conclusions

4 Binary message LDPC decoder LLR from channel y Q y bits HARD DECISION Q y = SOFT DECISION Q y = Q M = Gallager A,B Binary message + Q M bits Q M FAID BP, Min-Sum Q y bits Performance Complexity

5 Notations for BM LDPC decoder We assume a BPSK modulation: mi c j t j y j t j + w j Encoder BPSK decoder w j = x j Bit c = 0 is associated to t = + Bit c = is associated to t = - x j is the estimated decoded alue of t j. The first estimate of x is the sign of y: x (0) = sign(y).

6 LDPC representation y y2 y3 y4 Variable node = = = = Check node c c2 + + x c S c C() set of check nodes connected to ariable. V (c) set of ariable node connected to check node c. x c Binary message (- or ) from ariable node to check node c S c = x ' V ( c) ' c Note: since message are binary: syndrome of check node c ( if 0K, - if NOK) x c = x csc = x ' c ' V ( c) /

7 Memoryless State ariable In a memoryless node, the output messages depend only on the current input messages. In a State-ariable node, the output message depend also from an internal state State (memory effect). For example, Self Corrected Min-Sum is an algorithm where the check node posses an internal ariable (the sign of the messages of the preious iteration).

8 Extrinsic/Broadcast messages Check->ariable y = S c0 S c S c 2 x Extrinsic messages y = c 0 x c c x Broadcast message y = x x x c0 = c = c = x 2 f ( y, S f ( y, S c c f ( y, S 0 c, S 0, S c c, S 2 2 c, State), State), State) x = f ( y, S c 0, S c, S c 2, State) Note: check node can send syndrome (broadcast) or Both are equialent (implementation detail). xc messages.

9 Deterministic/ Non-Deterministic Deterministic: the decoded output is only function of the receied message. Non-Deterministic: some randomness is introduced in the decoding process: the decoded output become a random process.

10 Classification of BM-LDPC decoder Density eolution is feasable Memoryless State ariable Extrinsic Broadcast Non-D Deterministic Non-D We can construct a grid to classify the algorithms => may gie some ideas.

11 Outline Classifications of BM LDPC decoder State of the art Recent results Conclusions

12 Stochastic decoder Memoryless State ariable Extrinsic BP STOCH. Broadcast Non-D Deterministic Non-D

13 Stochastic decoder Based on the Beliee Propagation algorithm with probability encoded by a random binary stream. Principle: P(x=) the probability of a random ariable x to be is represented by a random binary stream, where the probability to hae one is exactly P(x=). For example X= is an alternatie (an redundant) representation of P(x=)=0.2. Arithmetic is triial with this representation. P(x 0 =) P(x =) P(x 2 =) X 0 X X 2

14 Check node stochastic architecture Check node equation in probability domain (BP) P( x 0 c P( x = ) c = ) P( x = c 2 ) P( x c 2 + = ) = P( x c = ) P( x c = 0) + P( x c = 0) P( x 0 0 c = ) Check node computation in stochastic domain: a simple XOR. X 0 c X c X c = X c X 2 0 c

15 Variable node stochastic architecture Variable node equation in probability domain (BP) P0 = P( x c = ) 0 P P( = = x c = P2 = P( x c = ) ) 2 P 2 = ( P 0 P 0 P )( P ) + P 0 P Variable node computation in stochastic domain: X c X c0 0 0 X P 2 P2 = P0 P + (( P0 ) P + P0 ( P )) P2 P2 = P0 P + ( P0 P ( P0 )( P )) P 0 = P0 P ( P0 P + ( P0 )( P )) P2 c 2 2 P 2

16 Variable node stochastic architecture To aoid deadlock cycle in the graph X c X c0 0 0 P 2 X P 2 c 2 Is replaced by (edge memory) X c X c0 WE 0 FIFO (6-32 bits) X P 2 c 2 Random read

17 References on Stochastic LDPC dec. [] Rapley, A.; Gaudet, V.; Winstead, C., "On the simulation of stochastic iteratie decoder architectures," Canadian Conference on ECE, 2005., ol., no., pp.868,87, -4 May 2005 [2] Tehrani, S.S.; Gross, W.J.; Mannor, S., "Stochastic decoding of LDPC codes," Communications Letters, IEEE, ol.0, no.0, pp.76,78, Oct [3] Djordjeic, I.B et al., "LDPC codes and stochastic decoding for beyond 00 Gb/s optical transmission," Optical Communication, ECOC th European Conference on, ol., no., pp.,2, 2-25 Sept [4] Tehrani, S.S. et al., "Majority-Based Tracking Forecast Memories for Stochastic LDPC Decoding," Signal Processing, IEEE Transactions on, ol.58, no.9, pp.4883,4896, Sept. 200 [6] Onizawa, N. et al., "Clockless Stochastic Decoding of Low-Density Parity-Check Codes," Signal Processing Systems (SiPS), 202 IEEE Workshop on, ol., no., pp.43,48, 7-9 Oct. 202 [7] Leduc-Primeau, Francois; Hemati, Saied; Mannor, Shie; Gross, Warren J., "Relaxed Half-Stochastic Belief Propagation," Communications, IEEE Transactions on, ol.6, no.5, pp.648,659, May 203 [8] Lee, X.-R. et al., "A 7.92 Gb/s mw Stochastic LDPC Decoder Chip for IEEE c Applications," IEEE Trans. On Circuits and Systems I: Regular Papers, ol.pp, no.99, pp.,0, 204.

18 Bit flipping algorithm (BFA) Memoryless State ariable Extrinsic STOCH. Broadcast BPA Non-D Deterministic Non-D

19 Principle of Bit-Flipping algorithm First step: initialize local decision x (0) with sign(y). While there are still syndromes equal to -, or while not reaching the maximum number of iteration it max do ) Variable nodes broadcast their alues to the check nodes 2) Check node broadcast their syndrome alues. Then, ariable nodes decide to flip (or not) the local decision. Output the estimated alue x. y ( i) x 0 = + (i) x ( i) x BFA differs by the decision rules 2 ( i) S c 0 = + y (i) x ( i) S c ( i) S c 2 ( i+ ) ( i) x x = x ( i+ ) ( i) = x

20 Gradient Bit Flipping Algorithm Maximum Likelihood decoding N = arg max x j= If X belongs to the code C, then, all syndromes are +, thus: X j y j, x C X N M = arg max x + j y j S j= i= i, x C Decoding method: when x is not a codeword, try to flip bits of x to maximize objectie function O. O = N x y + M j j j= i= S i

21 Gradient Bit Flipping Algorithm The dependence of the objectie function on ariable x is: If then, it worth flipping bit x j to increase O. + = ) ( ' ' C c c S y x dx do < 0 = dx do E 0 ) ( ' ) ( ' ) ( ) ( < + = C c i c i i S y x E ) ( ' ) ( ' ) ( c V i i S x = 0 ) ( ' ) ( ' ) ( ) ( > + = C c i c i i S y x E ) ( ) ( ' ) ( ' ) ( i c V i i S x S = = + + ) ( ) ( i i x x = + ) ( ) ( i i x x = +

22 Gradient Bit Flipping Algorithm Seeral update rules Single bit flipping: at each iteration, flip the bit with the smallest score E. Multiple bit flipping: at each iteration, flip the bit if E < threshold. Possibility to adapt the threshold with the iterations In terms of implementation, GBDA gies ery low complexity hardware. Possibility of parallel implementation with tenth of Gbit/s throughput. Drawback: GBDA is easily stuck in trapping sets, giing medium performance.

23 References on BFA [] Miladinoic, N.; Fossorier, M.P.C., "Improed bit flipping decoding of low-density parity check codes," ISIT 2002, ol., no., pp.229, 2002 [2] Miladinoic, N.; Fossorier, M.P.C., "Improed bit-flipping decoding of low-density parity-check codes," Information Theory, IEEE Transactions on, ol.5, no.4, pp.594,606, April 2005 [3] Xiaofu Wu; Chunming Zhao; Xiaohu You, "Parallel Weighted Bit-Flipping Decoding," Communications Letters, IEEE, ol., no.8, pp.67,673, August 2007 [4] Xiaofu Wu; Cong Ling; Ming Jiang; Enyang Xu; Chunming Zhao; Xiaohu You, "New insights into weighted bit-flipping decoding," IEEE Trans. On Communication, ol.57, no.8, pp.277,280, Aug [5] Junho Cho; Wonyong Sung, "Adaptie Threshold Technique for Bit-Flipping Decoding of Low- Density Parity-Check Codes," Communications Letters, IEEE, ol.4, no.9, pp.857,859, September 200 [6] Catala-Perez, Joan-Marc et al., "Reliability-based iteratie decoding algorithm for LDPC codes with low ariable-node degree," Communications Letters, IEEE, ol.pp, no.99, pp.,, 204

24 Differential Decoding with Binary Message Passing Memoryless State ariable Extrinsic DD-BMP STOCH. Broadcast BPA Non-D Deterministic Non-D [] Janulewicz, E.; Banihashemi, A.H., "Performance Analysis of Iteratie Decoding Algorithms with Memory oer Memoryless Channels," IEEE. Trans. On Com., ol.60, no.2, pp.3556,3566, December 202 [2] Cushon, K.; Hemati, S.; Leroux, C.; Mannor, S.; Gross, W.J., "High-Throughput Energy-Efficient LDPC Decoders Using Differential Binary Message Passing," Signal Processing, IEEE Transactions on, ol.62, no.3, pp.69,63, Feb., 204

25 Differential Decoding with Binary Message Passing Use extrinsic principle ; track the long term tendency. sign( y ) Maj. ( i+) x ( i) xc sign ( i+ ) x c ( i) xc 2 sign ( i+ ) x c 2 ( i) xc 3 ( i) x c ' c' V ( c)\ E ( i+ ) c' sign ( i) = Ec' ( i) + xc' c' V ( c)\ ( i+ ) x c (0) c' 3 E = [] Mobini, N.; Banihashemi, A.H.; Hemati, S., "A Differential Binary Message-Passing LDPC Decoder," Global Telecommunications Conference, GLOBECOM '07. IEEE, ol., no., pp.56,565, No [2] Cushon, K.; Hemati, S.; Leroux, C.; Mannor, S.; Gross, W.J., "High-Throughput Energy- Efficient LDPC Decoders Using Differential Binary Message Passing," Signal Processing, IEEE Transactions on, ol.62, no.3, pp.69,63, Feb., 204. y

26 Outline Classifications of BM LDPC decoder State of the art Recent results Conclusions

27 Noisy Gradient Decent Bit Flipping Decoder Memoryless State ariable Extrinsic DD-BMP STOCH. Broadcast BFA NGDBFD Non-D Deterministic Non-D [] Sundararajan, G.; Winstead, C.; Boutillon, E., "Noisy Gradient Descent Bit-Flip Decoding for LDPC Codes," Communications, IEEE Transactions on, ol.62, no.0, pp.3385,3400, Oct. 204

28 GBFA with noise to escape local minima.

29 Optimal injection of noise w j t j y + j = t j w j x j decoder w ( ) j ω j t j y j ( j ) ω ( j ) y It n Injected noise samples are independant ( j ) ω ( j 2) y (i) y j It n 2 It n i x j Variance of channel noise and ariance of «injected» noise are equal to obtain best performance.

30 Very efficient hardware implementation

31

32 Repeated decoding NGDBF is non-deterministic: improe performance by repeatedly decoding failed frames until success (up to a maximum of Φ phases).

33 Application to 0GBaseT standard [] Zhang, Z. et al. An Efficient 0GBASE-T Ethernet LDPC Decoder Design With Low Error Floors. In: IEEE J. Solid-State Circ. 45, pp

34 Comparison in aerage clock cycles For low BER, NGDBF becomes more competitie than OMS

35 Locally Maximum-Likelihood Binary Message Memoryless State ariable Extrinsic LMLBM DD-BMP STOCH. Broadcast BFA NGDBFD Non-D Deterministic Non-D [] Winstead, C.; Boutillon, E., "Decoding LDPC Codes with Locally Maximum-Likelihood Binary Messages," Communications Letters, IEEE, ol.pp, no.99, pp.,

36 Principle of Density Eolution of LMLBM Knowing the quantization rule and the ariance of the noise, we can compute the probabilities P ( y / x = + ) and P( y / x = ) Knowing the input error probability node degree, we can compute (0) P c (0) Pc of first message and the check From P we can compute P ( S = a / x = + ) and P( S = a / x = ) With (0) c (0) c ( 0) = c' and a { d c, d c 2, K, d c } S c x ' V ( c)\ c (0) c Thus, knowing the obsered a and y alues, the Local Maximum Likelihood decision is: () x = arg max c { P( a / x) + P( y / x), x {, + } We can deduce () P c and iterate the process.

37 Density eolution result

38 Simulation results N=4000, (4,8), it max =30 (+0 Gallager A iterations), N=4376, (4,62), it max =50

39 Natural future extension Add some «noise» in LMLBM, generalizing the idea of [] Memoryless State ariable Extrinsic NLMLBM LMLBM DD-BMP STOCH. Broadcast BFA NGDBFD Non-D Deterministic Non-D [] Miladinoic N., Fossorier M., Improed Bit-Flipping Decoding of Low-Density Parity-Check Codes, IEEE Trans. On Inf. Theory, ol. 5, n. 4, APRIL 2005

40 Outline Classifications of BM LDPC decoder State of the art Recent results Conclusions

41 Conclusion Far from exhaustie surey of the state of the art There is still «terra incognita» in the table, possible mixt of algorithm Memoryless State ariable Extrinsic? LMLBM DD-BMP STOCH. Broadcast?? BFA NGDBFD Non-D Deterministic Non-D Already some hardware for seeral tenth of Giga bit decoders.

42 Questions?

Non-Surjective Finite Alphabet Iterative Decoders

Non-Surjective Finite Alphabet Iterative Decoders IEEE ICC 2016 - Communications Theory Non-Surjectie Finite Alphabet Iteratie Decoders Thien Truong Nguyen-Ly, Khoa Le,V.Sain, D. Declercq, F. Ghaffari and O. Boncalo CEA-LETI, MINATEC Campus, Grenoble,

More information

Performance Evaluation of Faulty Iterative Decoders using Absorbing Markov Chains

Performance Evaluation of Faulty Iterative Decoders using Absorbing Markov Chains Performance Evaluation of Faulty Iterative Decoders using Absorbing Markov Chains Predrag Ivaniš School of Electrical Engineering, University of Belgrade Emails: predrag.ivanis@etf.rs Bane Vasić Department

More information

Recent results on bit-flipping LDPC decoders

Recent results on bit-flipping LDPC decoders Recent results on bit-flipping LDPC decoders Chris Winstead 1,2, Gopalakrishnan Sundararajan 1, Emmanuel Boutillon 2 1 Department of Electrical and Computer Engineering LE/FT Lab Utah State University

More information

LDPC Codes. Intracom Telecom, Peania

LDPC Codes. Intracom Telecom, Peania LDPC Codes Alexios Balatsoukas-Stimming and Athanasios P. Liavas Technical University of Crete Dept. of Electronic and Computer Engineering Telecommunications Laboratory December 16, 2011 Intracom Telecom,

More information

Decoding of LDPC codes with binary vector messages and scalable complexity

Decoding of LDPC codes with binary vector messages and scalable complexity Downloaded from vbn.aau.dk on: marts 7, 019 Aalborg Universitet Decoding of LDPC codes with binary vector messages and scalable complexity Lechner, Gottfried; Land, Ingmar; Rasmussen, Lars Published in:

More information

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes

Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Lower Bounds on the Graphical Complexity of Finite-Length LDPC Codes Igal Sason Department of Electrical Engineering Technion - Israel Institute of Technology Haifa 32000, Israel 2009 IEEE International

More information

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson

Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC. August 2011 Ravi Motwani, Zion Kwok, Scott Nelson Low Density Parity Check (LDPC) Codes and the Need for Stronger ECC August 2011 Ravi Motwani, Zion Kwok, Scott Nelson Agenda NAND ECC History Soft Information What is soft information How do we obtain

More information

Graph-based codes for flash memory

Graph-based codes for flash memory 1/28 Graph-based codes for flash memory Discrete Mathematics Seminar September 3, 2013 Katie Haymaker Joint work with Professor Christine Kelley University of Nebraska-Lincoln 2/28 Outline 1 Background

More information

Codes on graphs and iterative decoding

Codes on graphs and iterative decoding Codes on graphs and iterative decoding Bane Vasić Error Correction Coding Laboratory University of Arizona Funded by: National Science Foundation (NSF) Seagate Technology Defense Advanced Research Projects

More information

SC-Fano Decoding of Polar Codes

SC-Fano Decoding of Polar Codes SC-Fano Decoding of Polar Codes Min-Oh Jeong and Song-Nam Hong Ajou University, Suwon, Korea, email: {jmo0802, snhong}@ajou.ac.kr arxiv:1901.06791v1 [eess.sp] 21 Jan 2019 Abstract In this paper, we present

More information

A New Performance Evaluation Metric for Sub-Optimal Iterative Decoders

A New Performance Evaluation Metric for Sub-Optimal Iterative Decoders A New Performance Evaluation Metric for Sub-Optimal Iterative Decoders Ashwani Singh, Ali Al-Ghouwayel, G. Masera, Emmanuel Boutillon To cite this version: Ashwani Singh, Ali Al-Ghouwayel, G. Masera, Emmanuel

More information

Advanced Hardware Architecture for Soft Decoding Reed-Solomon Codes

Advanced Hardware Architecture for Soft Decoding Reed-Solomon Codes Advanced Hardware Architecture for Soft Decoding Reed-Solomon Codes Stefan Scholl, Norbert Wehn Microelectronic Systems Design Research Group TU Kaiserslautern, Germany Overview Soft decoding decoding

More information

Introduction to Low-Density Parity Check Codes. Brian Kurkoski

Introduction to Low-Density Parity Check Codes. Brian Kurkoski Introduction to Low-Density Parity Check Codes Brian Kurkoski kurkoski@ice.uec.ac.jp Outline: Low Density Parity Check Codes Review block codes History Low Density Parity Check Codes Gallager s LDPC code

More information

Some Aspects of Hardware Implementation of LDPC Codes

Some Aspects of Hardware Implementation of LDPC Codes Some Aspects of Hardware Implementation of LDPC Codes Emmanuel Boutillon Fréderic Guilloud (PhD, ENST) Jean-Luc Danger (ENST) Laboratoire d électronique des systèmes temps réel Université de Bretagne Sud

More information

Optimized Concatenated LDPC Codes for Joint Source-Channel Coding

Optimized Concatenated LDPC Codes for Joint Source-Channel Coding Optimized Concatenated LDPC Codes for Joint Source-Channel Coding Maria Fresia, Fernando Pérez-Cruz, H. Vincent Poor Department of Electrical Engineering, Princeton Uniersity, Princeton, New Jersey 08544

More information

Codes on graphs and iterative decoding

Codes on graphs and iterative decoding Codes on graphs and iterative decoding Bane Vasić Error Correction Coding Laboratory University of Arizona Prelude Information transmission 0 0 0 0 0 0 Channel Information transmission signal 0 0 threshold

More information

Structured Low-Density Parity-Check Codes: Algebraic Constructions

Structured Low-Density Parity-Check Codes: Algebraic Constructions Structured Low-Density Parity-Check Codes: Algebraic Constructions Shu Lin Department of Electrical and Computer Engineering University of California, Davis Davis, California 95616 Email:shulin@ece.ucdavis.edu

More information

Lecture 7. Union bound for reducing M-ary to binary hypothesis testing

Lecture 7. Union bound for reducing M-ary to binary hypothesis testing Lecture 7 Agenda for the lecture M-ary hypothesis testing and the MAP rule Union bound for reducing M-ary to binary hypothesis testing Introduction of the channel coding problem 7.1 M-ary hypothesis testing

More information

Density Evolution and Functional Threshold. for the Noisy Min-Sum Decoder

Density Evolution and Functional Threshold. for the Noisy Min-Sum Decoder Density Evolution and Functional Threshold 1 for the Noisy Min-Sum Decoder C. Kameni Ngassa,#, V. Savin, E. Dupraz #, D. Declercq # CEA-LETI, Minatec Campus, Grenoble, France, {christiane.kameningassa,

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

Low-Density Parity-Check Codes

Low-Density Parity-Check Codes Department of Computer Sciences Applied Algorithms Lab. July 24, 2011 Outline 1 Introduction 2 Algorithms for LDPC 3 Properties 4 Iterative Learning in Crowds 5 Algorithm 6 Results 7 Conclusion PART I

More information

Message-Passing Decoding for Low-Density Parity-Check Codes Harish Jethanandani and R. Aravind, IIT Madras

Message-Passing Decoding for Low-Density Parity-Check Codes Harish Jethanandani and R. Aravind, IIT Madras Message-Passing Decoding for Low-Density Parity-Check Codes Harish Jethanandani and R. Aravind, IIT Madras e-mail: hari_jethanandani@yahoo.com Abstract Low-density parity-check (LDPC) codes are discussed

More information

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1

On the minimum distance of LDPC codes based on repetition codes and permutation matrices 1 Fifteenth International Workshop on Algebraic and Combinatorial Coding Theory June 18-24, 216, Albena, Bulgaria pp. 168 173 On the minimum distance of LDPC codes based on repetition codes and permutation

More information

One-Bit LDPC Message Passing Decoding Based on Maximization of Mutual Information

One-Bit LDPC Message Passing Decoding Based on Maximization of Mutual Information One-Bit LDPC Message Passing Decoding Based on Maximization of Mutual Information ZOU Sheng and Brian M. Kurkoski kurkoski@ice.uec.ac.jp University of Electro-Communications Tokyo, Japan University of

More information

Construction of low complexity Array based Quasi Cyclic Low density parity check (QC-LDPC) codes with low error floor

Construction of low complexity Array based Quasi Cyclic Low density parity check (QC-LDPC) codes with low error floor Construction of low complexity Array based Quasi Cyclic Low density parity check (QC-LDPC) codes with low error floor Pravin Salunkhe, Prof D.P Rathod Department of Electrical Engineering, Veermata Jijabai

More information

Low-density parity-check (LDPC) codes

Low-density parity-check (LDPC) codes Low-density parity-check (LDPC) codes Performance similar to turbo codes Do not require long interleaver to achieve good performance Better block error performance Error floor occurs at lower BER Decoding

More information

Making Error Correcting Codes Work for Flash Memory

Making Error Correcting Codes Work for Flash Memory Making Error Correcting Codes Work for Flash Memory Part I: Primer on ECC, basics of BCH and LDPC codes Lara Dolecek Laboratory for Robust Information Systems (LORIS) Center on Development of Emerging

More information

NB-LDPC check node with pre-sorted input

NB-LDPC check node with pre-sorted input NB-LDPC check node with pre-sorted input Cédric Marchand, Emmanuel Boutillon To cite this version: Cédric Marchand, Emmanuel Boutillon. NB-LDPC check node with pre-sorted input. International Symposium

More information

BInary low-density parity-check (LDPC) codes, discovered

BInary low-density parity-check (LDPC) codes, discovered Low Latency T-EMS decoder for Non-Binary LDPC codes Erbao Li, Francisco García-Herrero, David Declercq, Kiran Gunnam, Jesús Omar Lacruz and Javier Valls Abstract Check node update processing for non-binary

More information

ECC for NAND Flash. Osso Vahabzadeh. TexasLDPC Inc. Flash Memory Summit 2017 Santa Clara, CA 1

ECC for NAND Flash. Osso Vahabzadeh. TexasLDPC Inc. Flash Memory Summit 2017 Santa Clara, CA 1 ECC for NAND Flash Osso Vahabzadeh TexasLDPC Inc. 1 Overview Why Is Error Correction Needed in Flash Memories? Error Correction Codes Fundamentals Low-Density Parity-Check (LDPC) Codes LDPC Encoding and

More information

Low-density parity-check codes

Low-density parity-check codes Low-density parity-check codes From principles to practice Dr. Steve Weller steven.weller@newcastle.edu.au School of Electrical Engineering and Computer Science The University of Newcastle, Callaghan,

More information

Polar Codes: Graph Representation and Duality

Polar Codes: Graph Representation and Duality Polar Codes: Graph Representation and Duality arxiv:1312.0372v1 [cs.it] 2 Dec 2013 M. Fossorier ETIS ENSEA/UCP/CNRS UMR-8051 6, avenue du Ponceau, 95014, Cergy Pontoise, France Email: mfossorier@ieee.org

More information

An Introduction to Low-Density Parity-Check Codes

An Introduction to Low-Density Parity-Check Codes An Introduction to Low-Density Parity-Check Codes Paul H. Siegel Electrical and Computer Engineering University of California, San Diego 5/ 3/ 7 Copyright 27 by Paul H. Siegel Outline Shannon s Channel

More information

Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes

Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes Message Passing Algorithm with MAP Decoding on Zigzag Cycles for Non-binary LDPC Codes Takayuki Nozaki 1, Kenta Kasai 2, Kohichi Sakaniwa 2 1 Kanagawa University 2 Tokyo Institute of Technology July 12th,

More information

A simple one sweep algorithm for optimal APP symbol decoding of linear block codes

A simple one sweep algorithm for optimal APP symbol decoding of linear block codes A simple one sweep algorithm for optimal APP symbol decoding of linear block codes Johansson, Thomas; Zigangiro, Kamil Published in: IEEE Transactions on Information Theory DOI: 10.1109/18.737541 Published:

More information

Learning to Decode LDPC Codes with Finite-Alphabet Message Passing

Learning to Decode LDPC Codes with Finite-Alphabet Message Passing Learning to Decode LDPC Codes with Finite-Alphabet Message Passing Bane Vasić 1, Xin Xiao 1, and Shu Lin 2 1 Dept. of Electrical and Computer Engineering, University of Arizona 2 Dept. of Electrical and

More information

Improved Successive Cancellation Flip Decoding of Polar Codes Based on Error Distribution

Improved Successive Cancellation Flip Decoding of Polar Codes Based on Error Distribution Improved Successive Cancellation Flip Decoding of Polar Codes Based on Error Distribution Carlo Condo, Furkan Ercan, Warren J. Gross Department of Electrical and Computer Engineering, McGill University,

More information

P(c y) = W n (y c)p(c)

P(c y) = W n (y c)p(c) ENEE 739C: Adanced Topics in Signal Processing: Coding Theory Instructor: Alexander Barg Lecture 9 (draft; /7/3). Codes defined on graphs. The problem of attaining capacity. Iteratie decoding. http://www.enee.umd.edu/

More information

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei

COMPSCI 650 Applied Information Theory Apr 5, Lecture 18. Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei COMPSCI 650 Applied Information Theory Apr 5, 2016 Lecture 18 Instructor: Arya Mazumdar Scribe: Hamed Zamani, Hadi Zolfaghari, Fatemeh Rezaei 1 Correcting Errors in Linear Codes Suppose someone is to send

More information

Efficient Bit-Channel Reliability Computation for Multi-Mode Polar Code Encoders and Decoders

Efficient Bit-Channel Reliability Computation for Multi-Mode Polar Code Encoders and Decoders Efficient Bit-Channel Reliability Computation for Multi-Mode Polar Code Encoders and Decoders Carlo Condo, Seyyed Ali Hashemi, Warren J. Gross arxiv:1705.05674v1 [cs.it] 16 May 2017 Abstract Polar codes

More information

Information Theoretic Imaging

Information Theoretic Imaging Information Theoretic Imaging WU Faculty: J. A. O Sullivan WU Doctoral Student: Naveen Singla Boeing Engineer: James Meany First Year Focus: Imaging for Data Storage Image Reconstruction Data Retrieval

More information

Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes

Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes IWSSIP 212, 11-13 April 212, Vienna, Austria ISBN 978-3-2-2328-4 Girth Analysis of Polynomial-Based Time-Invariant LDPC Convolutional Codes Hua Zhou and Norbert Goertz Institute of Telecommunications Vienna

More information

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels

On Generalized EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels 2012 IEEE International Symposium on Information Theory Proceedings On Generalied EXIT Charts of LDPC Code Ensembles over Binary-Input Output-Symmetric Memoryless Channels H Mamani 1, H Saeedi 1, A Eslami

More information

Pre-sorted Forward-Backward NB-LDPC Check Node Architecture

Pre-sorted Forward-Backward NB-LDPC Check Node Architecture Pre-sorted Forward-Backward NB-LDPC Check Node Architecture Hassan Harb, Cédric Marchand, Laura Conde-Canencia, Emmanuel Boutillon, Ali Al Ghouwayel To cite this version: Hassan Harb, Cédric Marchand,

More information

Belief-Propagation Decoding of LDPC Codes

Belief-Propagation Decoding of LDPC Codes LDPC Codes: Motivation Belief-Propagation Decoding of LDPC Codes Amir Bennatan, Princeton University Revolution in coding theory Reliable transmission, rates approaching capacity. BIAWGN, Rate =.5, Threshold.45

More information

Distributed Source Coding Using LDPC Codes

Distributed Source Coding Using LDPC Codes Distributed Source Coding Using LDPC Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete May 29, 2010 Telecommunications Laboratory (TUC) Distributed Source Coding

More information

Pipeline processing in low-density parity-check codes hardware decoder

Pipeline processing in low-density parity-check codes hardware decoder BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 59, No. 2, 2011 DOI: 10.2478/v10175-011-0019-9 Pipeline processing in low-density parity-check codes hardware decoder. SUŁEK Institute

More information

Quasi-cyclic Low Density Parity Check codes with high girth

Quasi-cyclic Low Density Parity Check codes with high girth Quasi-cyclic Low Density Parity Check codes with high girth, a work with Marta Rossi, Richard Bresnan, Massimilliano Sala Summer Doctoral School 2009 Groebner bases, Geometric codes and Order Domains Dept

More information

Analysis and Design of Finite Alphabet. Iterative Decoders Robust to Faulty Hardware

Analysis and Design of Finite Alphabet. Iterative Decoders Robust to Faulty Hardware Analysis and Design of Finite Alphabet 1 Iterative Decoders Robust to Faulty Hardware Elsa Dupraz, David Declercq, Bane Vasić and Valentin Savin arxiv:1410.2291v1 [cs.it] 8 Oct 2014 Abstract This paper

More information

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION

STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION EE229B PROJECT REPORT STUDY OF PERMUTATION MATRICES BASED LDPC CODE CONSTRUCTION Zhengya Zhang SID: 16827455 zyzhang@eecs.berkeley.edu 1 MOTIVATION Permutation matrices refer to the square matrices with

More information

Analytical Performance of One-Step Majority Logic Decoding of Regular LDPC Codes

Analytical Performance of One-Step Majority Logic Decoding of Regular LDPC Codes Analytical Performance of One-Step Majority Logic Decoding of Regular LDPC Codes Rathnakumar Radhakrishnan, Sundararajan Sankaranarayanan, and Bane Vasić Department of Electrical and Computer Engineering

More information

5. Density evolution. Density evolution 5-1

5. Density evolution. Density evolution 5-1 5. Density evolution Density evolution 5-1 Probabilistic analysis of message passing algorithms variable nodes factor nodes x1 a x i x2 a(x i ; x j ; x k ) x3 b x4 consider factor graph model G = (V ;

More information

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes

Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes Single-Gaussian Messages and Noise Thresholds for Low-Density Lattice Codes Brian M. Kurkoski, Kazuhiko Yamaguchi and Kingo Kobayashi kurkoski@ice.uec.ac.jp Dept. of Information and Communications Engineering

More information

Introducing Low-Density Parity-Check Codes

Introducing Low-Density Parity-Check Codes Introducing Low-Density Parity-Check Codes Sarah J. Johnson School of Electrical Engineering and Computer Science The University of Newcastle Australia email: sarah.johnson@newcastle.edu.au Topic 1: Low-Density

More information

RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths

RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths RCA Analysis of the Polar Codes and the use of Feedback to aid Polarization at Short Blocklengths Kasra Vakilinia, Dariush Divsalar*, and Richard D. Wesel Department of Electrical Engineering, University

More information

On Turbo-Schedules for LDPC Decoding

On Turbo-Schedules for LDPC Decoding On Turbo-Schedules for LDPC Decoding Alexandre de Baynast, Predrag Radosavljevic, Victor Stolpman, Joseph R. Cavallaro, Ashutosh Sabharwal Department of Electrical and Computer Engineering Rice University,

More information

The PPM Poisson Channel: Finite-Length Bounds and Code Design

The PPM Poisson Channel: Finite-Length Bounds and Code Design August 21, 2014 The PPM Poisson Channel: Finite-Length Bounds and Code Design Flavio Zabini DEI - University of Bologna and Institute for Communications and Navigation German Aerospace Center (DLR) Balazs

More information

Analysis of One-Step Majority Logic Decoding under Correlated Data-Dependent Gate Failures

Analysis of One-Step Majority Logic Decoding under Correlated Data-Dependent Gate Failures Analysis of One-Step Majority Logic Decoding under Correlated Data-Dependent Gate Failures Srdan Brkic School of Electrical Engineering, University of Belgrade Email: brka05@gmail.com Predrag Ivanis School

More information

Symmetric Product Codes

Symmetric Product Codes Symmetric Product Codes Henry D. Pfister 1, Santosh Emmadi 2, and Krishna Narayanan 2 1 Department of Electrical and Computer Engineering Duke University 2 Department of Electrical and Computer Engineering

More information

ECEN 655: Advanced Channel Coding

ECEN 655: Advanced Channel Coding ECEN 655: Advanced Channel Coding Course Introduction Henry D. Pfister Department of Electrical and Computer Engineering Texas A&M University ECEN 655: Advanced Channel Coding 1 / 19 Outline 1 History

More information

LDPC Codes. Slides originally from I. Land p.1

LDPC Codes. Slides originally from I. Land p.1 Slides originally from I. Land p.1 LDPC Codes Definition of LDPC Codes Factor Graphs to use in decoding Decoding for binary erasure channels EXIT charts Soft-Output Decoding Turbo principle applied to

More information

The Equivalence Between Slepian-Wolf Coding and Channel Coding Under Density Evolution

The Equivalence Between Slepian-Wolf Coding and Channel Coding Under Density Evolution 2534 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL 57, NO 9, SEPTEMBER 2009 The Equialence Between Slepian-Wolf Coding and Channel Coding Under Density Eolution Jun Chen, Da-ke He, and Ashish Jagmohan Abstract

More information

Error Floors of LDPC Coded BICM

Error Floors of LDPC Coded BICM Electrical and Computer Engineering Conference Papers, Posters and Presentations Electrical and Computer Engineering 2007 Error Floors of LDPC Coded BICM Aditya Ramamoorthy Iowa State University, adityar@iastate.edu

More information

LOW-density parity-check (LDPC) codes were invented

LOW-density parity-check (LDPC) codes were invented IEEE TRANSACTIONS ON INFORMATION THEORY, VOL 54, NO 1, JANUARY 2008 51 Extremal Problems of Information Combining Yibo Jiang, Alexei Ashikhmin, Member, IEEE, Ralf Koetter, Senior Member, IEEE, and Andrew

More information

The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks

The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks Gerald Matz Institute of Telecommunications Vienna University of Technology institute of telecommunications Acknowledgements

More information

Community Detection in Signed Networks: an Error-Correcting Code Approach

Community Detection in Signed Networks: an Error-Correcting Code Approach Community Detection in Signed Networks: an Error-Correcting Code Approach Cheng-Shang Chang, Duan-Shin Lee, Li-Heng Liou, and Sheng-Min Lu Institute of Communications Engineering, National Tsing Hua University

More information

Low-Complexity Fixed-to-Fixed Joint Source-Channel Coding

Low-Complexity Fixed-to-Fixed Joint Source-Channel Coding Low-Complexity Fixed-to-Fixed Joint Source-Channel Coding Irina E. Bocharova 1, Albert Guillén i Fàbregas 234, Boris D. Kudryashov 1, Alfonso Martinez 2, Adrià Tauste Campo 2, and Gonzalo Vazquez-Vilar

More information

Iterative Encoding of Low-Density Parity-Check Codes

Iterative Encoding of Low-Density Parity-Check Codes Iterative Encoding of Low-Density Parity-Check Codes David Haley, Alex Grant and John Buetefuer Institute for Telecommunications Research University of South Australia Mawson Lakes Blvd Mawson Lakes SA

More information

Analysis of a Randomized Local Search Algorithm for LDPCC Decoding Problem

Analysis of a Randomized Local Search Algorithm for LDPCC Decoding Problem Analysis of a Randomized Local Search Algorithm for LDPCC Decoding Problem Osamu Watanabe, Takeshi Sawai, and Hayato Takahashi Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology

More information

Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation Alexios Balatsoukas-Stimming, Tomasz Podzorny, Jan Uythoven {alexios.balatsoukas, tomasz.podzorny, jan.uythoven}@cern.ch European

More information

LDPC Decoder LLR Stopping Criterion

LDPC Decoder LLR Stopping Criterion International Conference on Innovative Trends in Electronics Communication and Applications 1 International Conference on Innovative Trends in Electronics Communication and Applications 2015 [ICIECA 2015]

More information

Staircase Codes. for High-Speed Optical Communications

Staircase Codes. for High-Speed Optical Communications Staircase Codes for High-Speed Optical Communications Frank R. Kschischang Dept. of Electrical & Computer Engineering University of Toronto (Joint work with Lei Zhang, Benjamin Smith, Arash Farhood, Andrew

More information

Adaptive Cut Generation for Improved Linear Programming Decoding of Binary Linear Codes

Adaptive Cut Generation for Improved Linear Programming Decoding of Binary Linear Codes Adaptive Cut Generation for Improved Linear Programming Decoding of Binary Linear Codes Xiaojie Zhang and Paul H. Siegel University of California, San Diego, La Jolla, CA 9093, U Email:{ericzhang, psiegel}@ucsd.edu

More information

Coding Techniques for Data Storage Systems

Coding Techniques for Data Storage Systems Coding Techniques for Data Storage Systems Thomas Mittelholzer IBM Zurich Research Laboratory /8 Göttingen Agenda. Channel Coding and Practical Coding Constraints. Linear Codes 3. Weight Enumerators and

More information

Shannon s noisy-channel theorem

Shannon s noisy-channel theorem Shannon s noisy-channel theorem Information theory Amon Elders Korteweg de Vries Institute for Mathematics University of Amsterdam. Tuesday, 26th of Januari Amon Elders (Korteweg de Vries Institute for

More information

Trapping Set Enumerators for Specific LDPC Codes

Trapping Set Enumerators for Specific LDPC Codes Trapping Set Enumerators for Specific LDPC Codes Shadi Abu-Surra Samsung Telecommunications America 1301 E. Lookout Dr. Richardson TX 75082 Email: sasurra@sta.samsung.com David DeClercq ETIS ENSEA/UCP/CNRS

More information

Low-complexity error correction in LDPC codes with constituent RS codes 1

Low-complexity error correction in LDPC codes with constituent RS codes 1 Eleventh International Workshop on Algebraic and Combinatorial Coding Theory June 16-22, 2008, Pamporovo, Bulgaria pp. 348-353 Low-complexity error correction in LDPC codes with constituent RS codes 1

More information

Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes

Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes Random Redundant Soft-In Soft-Out Decoding of Linear Block Codes Thomas R. Halford and Keith M. Chugg Communication Sciences Institute University of Southern California Los Angeles, CA 90089-2565 Abstract

More information

Non-binary Hybrid LDPC Codes: structure, decoding and optimization

Non-binary Hybrid LDPC Codes: structure, decoding and optimization Non-binary Hybrid LDPC Codes: structure, decoding and optimization Lucile Sassatelli and David Declercq ETIS - ENSEA/UCP/CNRS UMR-8051 95014 Cergy-Pontoise, France {sassatelli, declercq}@ensea.fr Abstract

More information

Weaknesses of Margulis and Ramanujan Margulis Low-Density Parity-Check Codes

Weaknesses of Margulis and Ramanujan Margulis Low-Density Parity-Check Codes Electronic Notes in Theoretical Computer Science 74 (2003) URL: http://www.elsevier.nl/locate/entcs/volume74.html 8 pages Weaknesses of Margulis and Ramanujan Margulis Low-Density Parity-Check Codes David

More information

LDPC codes based on Steiner quadruple systems and permutation matrices

LDPC codes based on Steiner quadruple systems and permutation matrices Fourteenth International Workshop on Algebraic and Combinatorial Coding Theory September 7 13, 2014, Svetlogorsk (Kaliningrad region), Russia pp. 175 180 LDPC codes based on Steiner quadruple systems and

More information

Methods and tools to optimize the trade-off performance versus complexity of error control codes architectures.

Methods and tools to optimize the trade-off performance versus complexity of error control codes architectures. Methods and tools to optimize the trade-off performance versus complexity of error control codes architectures. Emmanuel Boutillon CNRS, UMR 6285, Lab-STICC Centre de Recherche - BP 92116 F-56321 Lorient

More information

Extended-Forward Architecture for Simplified Check Node Processing in NB-LDPC Decoders

Extended-Forward Architecture for Simplified Check Node Processing in NB-LDPC Decoders Extended-Forward Architecture for Simplified Check Node Processing in NB-LDPC Decoders Cedric Marchand, Emmanuel Boutillon, Hassan Harb, Laura Conde-Canencia, Ali Al Ghouwayel To cite this version: Cedric

More information

Low-Density Parity-Check codes An introduction

Low-Density Parity-Check codes An introduction Low-Density Parity-Check codes An introduction c Tilo Strutz, 2010-2014,2016 June 9, 2016 Abstract Low-density parity-check codes (LDPC codes) are efficient channel coding codes that allow transmission

More information

CHAPTER 3 LOW DENSITY PARITY CHECK CODES

CHAPTER 3 LOW DENSITY PARITY CHECK CODES 62 CHAPTER 3 LOW DENSITY PARITY CHECK CODES 3. INTRODUCTION LDPC codes were first presented by Gallager in 962 [] and in 996, MacKay and Neal re-discovered LDPC codes.they proved that these codes approach

More information

UNIVERSITY OF TRENTO ITERATIVE MULTI SCALING-ENHANCED INEXACT NEWTON- METHOD FOR MICROWAVE IMAGING. G. Oliveri, G. Bozza, A. Massa, and M.

UNIVERSITY OF TRENTO ITERATIVE MULTI SCALING-ENHANCED INEXACT NEWTON- METHOD FOR MICROWAVE IMAGING. G. Oliveri, G. Bozza, A. Massa, and M. UNIVERSITY OF TRENTO DIPARTIMENTO DI INGEGNERIA E SCIENZA DELL INFORMAZIONE 3823 Poo Trento (Italy), Via Sommarie 4 http://www.disi.unitn.it ITERATIVE MULTI SCALING-ENHANCED INEXACT NEWTON- METHOD FOR

More information

Chapter 7: Channel coding:convolutional codes

Chapter 7: Channel coding:convolutional codes Chapter 7: : Convolutional codes University of Limoges meghdadi@ensil.unilim.fr Reference : Digital communications by John Proakis; Wireless communication by Andreas Goldsmith Encoder representation Communication

More information

Spatially Coupled LDPC Codes

Spatially Coupled LDPC Codes Spatially Coupled LDPC Codes Kenta Kasai Tokyo Institute of Technology 30 Aug, 2013 We already have very good codes. Efficiently-decodable asymptotically capacity-approaching codes Irregular LDPC Codes

More information

Construction and Performance Evaluation of QC-LDPC Codes over Finite Fields

Construction and Performance Evaluation of QC-LDPC Codes over Finite Fields MEE10:83 Construction and Performance Evaluation of QC-LDPC Codes over Finite Fields Ihsan Ullah Sohail Noor This thesis is presented as part of the Degree of Master of Sciences in Electrical Engineering

More information

Coding theory: Applications

Coding theory: Applications INF 244 a) Textbook: Lin and Costello b) Lectures (Tu+Th 12.15-14) covering roughly Chapters 1,9-12, and 14-18 c) Weekly exercises: For your convenience d) Mandatory problem: Programming project (counts

More information

Lecture 4 : Introduction to Low-density Parity-check Codes

Lecture 4 : Introduction to Low-density Parity-check Codes Lecture 4 : Introduction to Low-density Parity-check Codes LDPC codes are a class of linear block codes with implementable decoders, which provide near-capacity performance. History: 1. LDPC codes were

More information

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors

A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors A Key Recovery Attack on MDPC with CCA Security Using Decoding Errors Qian Guo Thomas Johansson Paul Stankovski Dept. of Electrical and Information Technology, Lund University ASIACRYPT 2016 Dec 8th, 2016

More information

Sub-Gaussian Model Based LDPC Decoder for SαS Noise Channels

Sub-Gaussian Model Based LDPC Decoder for SαS Noise Channels Sub-Gaussian Model Based LDPC Decoder for SαS Noise Channels Iulian Topor Acoustic Research Laboratory, Tropical Marine Science Institute, National University of Singapore, Singapore 119227. iulian@arl.nus.edu.sg

More information

Expectation propagation for symbol detection in large-scale MIMO communications

Expectation propagation for symbol detection in large-scale MIMO communications Expectation propagation for symbol detection in large-scale MIMO communications Pablo M. Olmos olmos@tsc.uc3m.es Joint work with Javier Céspedes (UC3M) Matilde Sánchez-Fernández (UC3M) and Fernando Pérez-Cruz

More information

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes

EE229B - Final Project. Capacity-Approaching Low-Density Parity-Check Codes EE229B - Final Project Capacity-Approaching Low-Density Parity-Check Codes Pierre Garrigues EECS department, UC Berkeley garrigue@eecs.berkeley.edu May 13, 2005 Abstract The class of low-density parity-check

More information

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels

Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Performance Analysis and Code Optimization of Low Density Parity-Check Codes on Rayleigh Fading Channels Jilei Hou, Paul H. Siegel and Laurence B. Milstein Department of Electrical and Computer Engineering

More information

A Simplified Min-Sum Decoding Algorithm. for Non-Binary LDPC Codes

A Simplified Min-Sum Decoding Algorithm. for Non-Binary LDPC Codes IEEE TRANSACTIONS ON COMMUNICATIONS 1 A Simplified Min-Sum Decoding Algorithm for Non-Binary LDPC Codes Chung-Li (Jason) Wang, Xiaoheng Chen, Zongwang Li, and Shaohua Yang arxiv:1207.5555v1 [cs.it] 23

More information

Practical Polar Code Construction Using Generalised Generator Matrices

Practical Polar Code Construction Using Generalised Generator Matrices Practical Polar Code Construction Using Generalised Generator Matrices Berksan Serbetci and Ali E. Pusane Department of Electrical and Electronics Engineering Bogazici University Istanbul, Turkey E-mail:

More information

Channel Coding and Interleaving

Channel Coding and Interleaving Lecture 6 Channel Coding and Interleaving 1 LORA: Future by Lund www.futurebylund.se The network will be free for those who want to try their products, services and solutions in a precommercial stage.

More information

APPLICATIONS. Quantum Communications

APPLICATIONS. Quantum Communications SOFT PROCESSING TECHNIQUES FOR QUANTUM KEY DISTRIBUTION APPLICATIONS Marina Mondin January 27, 2012 Quantum Communications In the past decades, the key to improving computer performance has been the reduction

More information