On a Grouping Method for Constructing Mixed Orthogonal Arrays

Size: px
Start display at page:

Download "On a Grouping Method for Constructing Mixed Orthogonal Arrays"

Transcription

1 Ope Joural of Saiic hp://dxdoiorg/1046/oj010 Publihed Olie April 01 (hp://wwwscirporg/joural/oj) O a Groupig Mehod for Corucig Mixed Orhogoal Array Chug-Yi Sue Depare of Maheaic Clevelad Sae Uiveriy Clevelad USA Eail: cue@cuohioedu Received Jauary 0 01; revied February 19 01; acceped March 8 01 ABSTRACT Mixed orhogoal array of regh wo ad ize are coruced by groupig poi i he fiie projecive geoery PG 1 PG 1 ca be pariioed io fla i aociaed wih a poi i PG 1 -fla uch ha each A orhogoal array 1 1 uig 1 1 poi i PG 1 fla over GF() if i i ioorphic o PG 1 If here exi a A e of 1 1 poi i ca be coruced by PG i called a 1 - -fla over GF() i PG 1 he we ca replace he correpodig by 1 1 -level colu ad obai a ixed orhogoal array May ew ixed orhogoal array ca be obaied by hi procedure I hi paper we udy ehod for fidig dijoi 1 -fla over GF() i PG 1 i order o co- ruc ore ixed orhogoal array of regh wo I paricular if ad are relaively prie he we ca co- 1 ruc a i 1 i for ay 0 i New orhogoal array of ize ad 104 are obaied by uig PG(7 ) PG(8 ) ad PG(9 ) repecively -level colu i 1 1 Keyword: Fiie Field; Fiie Projecive Geoery; 1 -Fla over GF() i PG 1 ; Geoeric Orhogoal Array; Marix Repreeaio; Miial Polyoial; Orhogoal Mai-Effec Pla; Priiive Elee; Tigh 1 Iroducio Orhogoal array of regh wo are ued a orhogoal ai-effec pla i fracioal facorial experie I a orhogoal ai-effec pla he ai effec of each facor ca be opially eiaed auig he ieracio of all facor are egligible e N 1 k deoe a orhogoal array of regh wo wih N row k colu ad i level i he ih colu for i 1 k I every N ubarray of N 1 k all poible cobiaio of level occur equally ofe a row I i kow ha N 1 i 1 i a N 1k ad he orhogoal array i called igh if he equaliy hold Orhogoal array N 1 k i called yeric if 1 oherwie i i called k ayeric or ixed Syeric orhogoal array have bee coruced i [1-] Mixed orhogoal array were iroduced i [4] ad hey have draw he aeio of ay reearcher i rece year Mehod for corucig ixed orhogoal array of regh wo have bee developed i [5-9] ad ay oher auhor Thee ehod ue Hadaard arice differece chee geeralized Kroecker u fiie projecive geoerie ad orhogoal projecio arice We refer o [10] for ore corucio ad applicaio of orhogoal array The ehod of groupig wa ued i [11] o replace hree wo-level colu i yeric orhogoal array by oe four-level colu for corucig ixed orhogoal array havig wo-level ad four-level colu A yeaic ehod [1] wa developed for ideifyig Copyrigh 01 SciRe

2 C-Y SUEN 189 dijoi e of hree wo-level colu for corucig N ( 4 ) The ehod wa geeralized i [6] for co- rucig 1 k r1 r where i a prie power Mixed orhogoal array of regh were coruced by uig ixed pread of regh i fiie geoerie i [1] Thi ehod wa alo idepedely dicovered i [14] for corucig ixed orhogoal array of regh hree ad four Orhogoal array coruced by hi ehod are called geoeric Geoeric orhogoal array 64 ( ) 64 ( ) 64 ( ) ad 64 ( ) were coruced i [1] However he ehod i rericed o corucig ixed orhogoal array wih he uber of level i each colu a power of I hi paper we hall ue fiie projecive geoerie o develop a geeral procedure for corucig ore ixed orhogoal array Moreover he procedure allow u o coruc ixed orhogoal array wih he uber of level i each colu a power of ay give prie uber We ar wih a yeric orhogoal array 1 1 ad he coruc ixed orhogoal array by replacig a group of colu wih aoher group of colu Our groupig ehod ue properie of fiie projecive geoerie which i differe fro he groupig ehod i [6] Hece we are able o obai oe ew erie of ixed orhogoal array Geoeric Orhogoal Array For r 1 ad a prie power le PG r 1 deoe he r 1-dieioal fiie projecive geoery over he Galoi field GF() A poi i PG r 1 i deoed by a r-uple x 1 xr where x i are elee of GF() ad a lea oe x i i o 0 Two r-uple repree he ae poi i PG r 1 if oe i a uliple r of he oher Hece here are 1 1 poi i PG r 1 A 1 -fla i PG r 1 i a e of 1 1 poi which are liear cobiaio of idepede poi A pread F of 1-fla of PG r 1 i a e of 1-fla which pariio PG r 1 I i kow [15] ha here exi a pread F of 1-fla of PG r 1 if ad oly if divide r We call a e of fla F1 Fk a ixed pread of PG r 1 if i pariio PG r 1 ad a lea wo fla i F have differe dieio Mixed pread are ueful for corucig ixed orhogoal array of regh wo Specifically we give he followig heore for corucig a orhogoal array fro a (ixed) pread The heore i he pecial cae of regh wo of Theore 1 [14] i fiie projecive geoery laguage Theore 1 e F 1 Fk of PG r 1 be a (ixed) pread where F i i a i 1-fla for i 1 k The we ca coruc a orhogoal array 1 k r We ow decribe he procedure o coruc he orhogoal array i Theore 1 For i 1 k le G i be a r i arix uch ha he i colu are ay choice of i idepede poi of he i 1-fla F i e G be he r i arix k G1 Gk The r 1 coi of r row which are he elee of he row pace of G where he i -level colu of G i i replaced by a i -level colu for each i 1 k We call orhogoal array geoeric if hey ca be obaied by Theore 1 Geoeric orhogoal array have bee coruced i [1 9116] Exaple of geoeric orhogoal array are: r 1 1 1) r ; ) r 1 1 r if divide r; r 1 r ) r if r ; ad k l 4) r where 1 1 j l 1 1 k j i j 1 r i j 0 j Mai Reul I i proved i ea 1 [1] ha if V 1 V V are hree dijoi 1 -fla of PG 1 he heir uio ca be regrouped io 1 dijoi 1-fla Hece hree 1 -level colu i a ca be replaced by 1 4-level colu By applyig hi reul o a pread of -fla of PG(5 ) 64 ( ) ad 64 ( ) were coruced Geeralizig he idea we would like o fid a ufficie codiio ha a e of fla i PG 1 ca be regrouped io a e of fla Sice here exi a pread of 1-fla of PG 1 we ca by Theore 1 coruc a If here exi 1 -fla i he pread uch ha heir uio ca be 1 1 -fla he we 1 regrouped io ca replace he correpodig 1 1 -level Copyrigh 01 SciRe

3 190 C-Y SUEN colu i he by -level colu ad obai a By repeaig hi proce ay orhogoal array ca be obaied Fir we would like o eablih a oe-o-oe corre podece bewee he 1 1 dijoi 1 - fla i PG 1 ad he 1 1 poi i PG 1 e ω be a priiive elee of GF( ) ad le he iiu polyoial of GF be where 0 1 are elee of GF() The copaio arix of he iiu polyoial i a arix W If ω i a priiive elee of GF he 01 are he elee of GF The elee of GF ca be repreeed by arice wih erie fro GF() The elee ω i i repreeed by W i ad he elee 0 ad 1 are repreeed by he zero arix ad he ideiy arix repecively Deoe he arix repreeaio of a elee x i GF by W(x) e each poi x 1 x PG 1 correpod o he 1 PG 1 -fla i which coi of poi ha are liear cobiaio of row vecor of he arix W x1 W x over GF() I ca be how ha he fla correpodig o he 1 1 poi of PG 1 pariio PG 1 Thi eablihe a oe-o-oe corre podece bewee he 1 1 dijoi 1-fla i PG 1 ad he 1 1 poi i PG 1 Defiiio 1 A e of 1 1 poi i PG 1 i aid o be a 1 -fla over GF() if i i poible o fid coordiae for hi e of 1 1 poi uch ha i i ioorphic o PG 1 over GF() i Noe ha wheher a e of 1 1 poi i PG 1 i ioorphic o PG 1 over GF() deped o oly o he choice of he poi bu alo o he choice of he coordiae for hee poi For exa- ple he e S1 1 1 i Exaple 1 (give afer Theore ) i a 1-fla over GF() i PG 1 8 ice i i ioorphic o PG 1 over GF() Bu if we chooe differe coordiae for 4 S he i i o ioorphic o PG 1 over GF() Hece i i ipora o pecify he correc coordiae whe a 1 -fla over GF() i PG 1 i eioed Alo we oe ha i i poible o have > for a 1 -fla over GF() i PG 1 For exaple S 1 ad S i Exaple (give afer Theore ) are -fla over GF() i PG 1 16 We ow give a ufficie codiio ha a e of 1 1 dijoi 1 -fla i PG 1 ca be regrouped io a e of 1 1 dijoi 1 -fla Theore A e of 1 1 dijoi 1 - fla i PG 1 ca be regrouped io a e of fla if he e of dijoi 1 1 correpodig poi i PG 1 i a 1 -fla over GF() Proof e he coordiae of he 1 1 correpodig poi of he 1 -fla over GF() i PG 1 x x for be 1j j j 1 Alo le be a arix uch ha he row are he poi of PG 1 The he 1 -fla i PG 1 correpodig o he poi x 1 j xj coi of poi which are he row of he 1 1 arix M j W x1 j W x j where W(x) i he arix repreeaio of x We ca verify ha for each i poi he e of which coi of he ih row of M M 1 i a fla i PG(-1 ) Noe ha i geeral here are ore way of regroupig 1 1 dijoi 1-fla i a e of Copyrigh 01 SciRe

4 C-Y SUEN 191 PG 1 io dijoi fla if he 1 1 i a 1-fla over GF() e P ij be he poi i PG 1 wih he ih row of M j a i coordiae The array of poi P P ij ha he followig properie: 1) Each row (colu) of P i a 1-fla ( 1 - fla) u 1 1 poi i a give row (colu) correpodig poi i PG 1 ) If for a 1 u u -fla he he 1 1 poi a he ae poiio i ay oher row (colu) alo for a u 1-fla For exaple if here exi a -fla over GF() i PG(1 16) he each of he 7 poi i he -fla over GF() correpod o 15 poi i PG(7 ) The 105 poi i PG(7 ) correpodig o he -fla over GF() i PG(1 16) ca be arraged io a 15 7 array uch ha each row i a -fla ad each colu i a -fla Sice a -fla ca be pariioed io five 1-fla he 15 7 array of poi ca be pariioed io five 7 ubarray uch ha each colu i a 1-fla ad each row i a -fla Alo coider a 15 ubarray of he 15 7 array uch ha each row i a 1-fla We ca elec a 7 ubarray uch ha each colu i a -fla Each of he reaiig eigh row i a 1-fla Hece he 15 ubarray ca be pariioed io hree -fla ad eigh 1-fla Therefore hee 105 poi ca be grouped io: 1) 7 i -fla ad 5i 1-fla for i 0 7 ; ) 15 i -fla ad 7i 1-fla for i 0 5 ; or ) four -fla hree -fla ad eigh 1-fla 6 Exaple 1 e 01 be he 8 elee of GF(8) wih 1 Coider PG(1 8) wih ie poi (0 1) (1 0) (1 1) (1 ω) (1 ω ) (1 ω ) (1 ω 4 ) (1 ω 5 ) ad (1 ω 6 ) Each poi of PG(1 8) correpod o a -fla i PG(5 ) ad he ie -fla pariio PG(5 ) We ca coruc a 64 (8 9 ) by Theore 1 e S1 1 1 S 1 1 S ad We ca verify ha S 1 S ad S are dijoi 1-fla over GF() i PG(1 8) The arix repreeaio W of ω ad he 7 arix give i he proof of Theore are W ; The hree poi of S 1 correpod o he hree -fla i PG(5 ) which are row of he followig hree arice M 1 M ad M repecively M1 W 1 W M W W M W W We oberve ha for each i 1 7 he ih row of M 1 M ad M are hree poi of a 1-fla i PG(5 ) Hece we ca replace he hree 8-level colu correpodig o S 1 i 64 (8 9 ) by eve 4-level colu o obai a ( ) Coiuig hi procedure we ca replace he hree 8-level colu correpodig o S i 64 ( ) by eve 4-level colu o obai a 64 ( ) Noe ha 64 ( ) ad 64 ( ) were alo coruc i [1] uig a differe ehod However Theore i ore veraile a how i followig exaple 14 Exaple e 01 be he 16 elee of GF(16) wih 4 1 Coider PG(1 16) wih 17 poi (0 1) (1 0) (1 1) (1 ω) (1 ω 14 ) Each poi of PG(1 16) correpod o a -fla i PG(7 ) ad he eveee -fla pariio PG(7 ) We ca coruc a 56 (16 17 ) by Theore 1 e S1 1 1 S 1 T Copyrigh 01 SciRe

5 19 C-Y SUEN ad T 1 1 xw i xw j xw i W j xw l T T 1 1 T 1 1 T We ca verify ha S 1 ad S are dijoi -fla ad T1 T5 are dijoi 1-fla over GF() i PG(1 16) Moreover S 1 S ad T 1 pariio PG(1 16) By he difollowig Theore we ca replace he ubar- cuio ray 56 (16 7 ) correpodig o S 1 or S i 56 (16 17 ) by 56 ( ) or 56 (8 15-i 4 7i ) 0 i 5 Siilarly we ca replace he ubarray 56 (16 ) correpodig o T1 T5 i 56 (16 17 ) by 56 (8 4 8 ) May ixed orhogoal array uch a 56 ( ) 56 ( ) 56 ( ) 56 ( ) 56 ( ) 56 ( ) 56 ( ) ca be obaied by hi procedure 4 Corucio of More Orhogoal Array I hi ecio ehod for fidig dijoi fla over GF() i PG 1 are developed o coruc ore orhogoa l array e α be a priiive elee of GF( ) ad le he arix repreeaio of α i GF() be W Sice ad i a elee of GF() W i he arix repreeaio of we have W I where I i he ideiy arix The for ay fixed poi x x 1 x i PG 1 he e i S xw : i 0 co i a o 1 1 poi x a 1 1 i PG 1 ice ( x I x) ad x repree he ae poi Moreover if β ad γ are ay elee of GF() ad xw i ad xw j are elee of S x he xw for oe l ice i j i βw + γw i he arix repreeaio of he elee βα + γα j of GF S x ha he rucure of a fla over GF() i 1 PG ice liear cobiaio of poi i S x are alo poi i S x I fac S x i a 1-fla over GF PG 1 if ad oly if he uber of () i poi i S x i 1 1 x ad y are wo poi i PG 1 for oe ieger Now if ad Sx Sy he here exi i ad j uch ha xw i = yw j i j We have y xw S x hece S x = Sy PG 1 ad le Theore e x be a poi i i x xw : i 0 1 i PG 1 uber of S x i 1 1 ay wo poi x ad y i PG 1 or Sx Sy Hece PG 1 S The S x i a -fla over GF() if ad oly if he poi i for oe ieger Moreover for eiher S x = S y ca be pariioed io dijoi e of S x Exaple We illurae how we obai he hree di- joi 1-fla over GF() i PG(1 8) i Exaple 1 e ω be a priiive elee of GF(8) wih ω = ω + 1 ad le α be a priiive elee of GF(4) wih α = α + 1 ad arix repreeaio The 0 1 W 1 1 S W 01W S 1 1 W 1 1 W 1 1 ad S 1 1 W 1 W S GF(4) 8 8 S S ad S ve dijoi 1-fla over GF() are T Exaple Theore 4 If i a prie power a 8 8 relaively prie he we ca coruc ixe 1 1 are hree dijoi 1-fla over GF() i PG(1 8) Exaple 4 e ω be a priiive elee of GF(16) wih ω 4 = ω + 1 ad le α be a priiive elee of wih α = α + 1 ad arix repreeaio W give i Exaple The 17 poi of PG(1 16) ca be pariioed io he followig fla over GF(): S S S 1 1 The fi T i array 1 5 d ad are d orhogoal Copyrigh 01 SciRe

6 C-Y SUEN 19 1 i 1 1 i for i Proof We ca coruc a 1 1 fro PG 1 Fro he proof of Theore 46 [15] if ad are relaively prie he S x i a 1 -fla over GF() i PG 1 for PG 1 PG 1 riioed io poi x i every Hece ca be pa 1-fla over GF() Each S x repree 1 1 -level colu i 1 1 ad by Theore i ca be re- placed by 1 1 -level colu The followig reul which follow fro Theore 4 i a geeralizaio of Theore 4 Corollary 1 If i a prie power ad d i he greae coo divior of ieger ad he we ca coruc ixed orhogoal array d d 1 1 d i 1 1 i 1 1 for 0 d d i Proof If d i he greae coo divior of ad he d ad d are relaively prie By ubiud d ad d repecively i ig ad wih Theore 4 we obai he ixed orhogoal array By uig Theore 4 ad Corollary 1 we obai he followig ew erie of igh orhogoal array for ay prie power 1) 6 ) 10 1 i 1 0 i + 1; 10 1 i ) i i i 1 ; 1 i i i 1 ; 4) i i 4 + 1; 14 1 i ) 6) i i i 1 i i 1 1 ; ad i 1 1 The followig heore give a e of 1 dijoi 1 -fla over GF() i PG(1 ) Theore 5 For i 0 le Ti i : GF \ 0 ive elee of GF The T T 0 are 1 di- joi 1 -fla over GF() i PG (1 ) Proof Ti i a e of 1 1 poi i PG(1 i i ( ) ice where ω i a prii- ) repree he ae poi for each ozero elee α of GF() To how ha T i i a 1 -fla over GF( ) we prove ha ay liear cobiaio of elee i Ti i agai i T i If i i GF he 1 1 T i ad 1 i i i T i i For 0 i < j if 1 1 T ad i j T j repree he ae poi i PG(1 ) i 1 j 1 he 1 j i 1 Hece 1 Bu 1 k 1 1 for oe 0 k which coradic 0 i < j Hece T i ad T j are dijoi for all 0 i < j 1 Corollary 1 i 1 1 i ca be coruced for ay ieger prie power ad i Proof We ca coruc a fr o PG(1 ) For each i 0 le Ti Ti be a - fla over GF() i PG(1 ) T i : i 0 i a e of 1 dijoi (-)-fla over GF() i PG(1 ) The for each T i we replace he correpodig Copyrigh 01 SciRe

7 194 C-Y SUEN level colu i 1 by 1 1 Exaple 5 e ω be he priiive elee of GF(16) wih ω 4 = ω level colu o obai he orhogoal array GF T : 16 \ i a -fla over GF() i PG(1 16) ad T 11 0 T i a -fla over GF() i PG(1 16) Noe ha we ar -fla ove G F() i PG( 1 16) i Exaple by rial ad error However we do o have a ehod o fid ore ha -1 dijoi (-)-fla over GF() i PG(1 ) Wih = ad 7 i Corollary we obai he followig ew erie of igh orhogoal array for ay prie power ad i ) i 1 1 i 1 8 ; e able o fid wo dijoi r ) 10 Theore 6 For ay ieger a i i 5 1 ; ) i i 6 1 ; ad 4) i i The followig heore give a -fla over GF() i PG( ) The proof i oied ice i i iilar o ha of Theore 5 d GF \ 0 : GF GF 00 T i a -fla over GF() i PG( ) fid ore dijoi -fla over GF() i PG( ) However for β 1 β he -fla over GF() T ad Theore 7 e ω be a priiive elee of GF( ) 1 T are o dijoi i PG( ) Bu if = we ca ad le : F : GF F 00 : 00 S GF GF T GF G 00 U G ad V GF GF The we have 1) S ad T are dijoi -fla over GF() i PG( ) for ) T U ad V are hree dijoi -fla over GF() i PG( ) if i eve Proof By Theore 6 S T U ad V are -fla over GF() i PG( ) We ow prove ha S ad T are di- joi Aue ha S ad repree he ae poi i PG( T ) where 1 GF ad 1 GF Clearly α 1 α γ 1 γ 0 hece α 1 = α = 1 ad 1 1 ad 1 repree he ae poi We have 1 ad 1 1 which iply ω = 1 a coradicio Hece S ad T are dijoi Now we how ha T ad U are dijoi if i eve If i eve he divide 1 For ay GF \ 0 0 k 1 1 Aue ha U where GF ad GF γ 0 hece α = 1 ad 1 he a γ = ω k for oe T ad repree he a e poi i PG( ) α γ α = ad Clearly α repree e poi We have γ = γ k ad which i ply for oe 0 k 1 1 a coradicio Hece T ad U are dijoi We ca i ilarly prove ha T ad V are dijoi ad ha U ad V are dijoi if i eve 1 A oruced fr ca be c o PG( ) By applyig Theore 6 ad 7 we obai he fol- Copyrigh 01 SciRe

8 C-Y SUEN 195 lowig orhogoal array Corollary For ay prie power we ca coruc ) 1 ; ) 1 1 ; ad ) Exaple 6 e ω be he priiive elee of GF(8) wih ω = ω + 1 e S T be wo dijoi -fla over GF() i PG(8) A 51 (8 7 ) ca be coru ced fro PG(8) We ca replace he ubarray 51(8 15 ) correpodig o S or T by a 51(16 7 ) o obai 51 ( ) ad 51 ( ) The followig wo exaple are obaied by applyig Theore ad 5 ad by rial ad error Exaple 7 e ω be he priiive elee of GF(8) wih ω = ω + 1 e ad A B C ad W be he arix defied i E xaple 1 For i 7 le A i (or B i C i ) be he e obaied by ulielee i A i (or B i C i ) by W For plyig each Exaple 6 A 1 W 01 W 1 0 W 1 01 I ca be verified ha A1 A7 B1 B7 C1 C are dijoi 1-fla over ad GF() i PG( 8) A 51 (8 7 ) ca be coruced fro PG( 8) We ca replace he ubarray 51 (8 ) correpodig o each 1-fla over GF() i PG( 8) by a 51(4 7 ) o obai 51 (8 7-i 4 7i ) for i 1 Exaple 8 e ω be he priiive elee of GF() wih ω 5 = ω + 1 A 104 ( ) ca be coruced fro PG(1 ) 1) A A 1 1 A 1 A A5 1 1 A6 1 1 A7 1 1 A 8 A9 1 1 A A ad are eleve dijoi 1-fla over GF() i PG(1 ) We ca replace he ubarray 104 ( ) correpodig o each 1-fla over GF() i he 104 ( ) by a 104 ( ) o obai 104 ( -i 16 i 4 16i ) for i 1 11 ) B1 1 B 1 B 1 1 B4 1 ad are four dijoi -fla over GF() i P G(1) We ca replace he ubarray 104 ( 7 ) correpodig o each - fla over GF() i he 104 ( ) by a 104 ( ) or a 104 (8 1 ) o obai 104 ( -7i-7j 16 7i 8 16i+1j ) for 1 i + j 4 Copyrigh 01 SciRe

9 196 C-Y SUEN ) 5 Dicuio C1 B1 C B are wo dijoi -fla over GF() i PG(1) where B 1 ad B are -fla over GF() i ) Moreover C 1 C ad A 1 i 1) pariio PG(1 ) We ca replace he ubarray 104 ( 15 ) correpodig o C 1 or C i he 104( ) by a 104 ( ) or a 104 (16 1 ) o obai 104 ( ) 104 ( ) 104 ( ) 104 ( 16 6 ) ad 104 ( ) We ue -fla over GF() i PG 1 o fid differe way o regroup a e of 1-fla i PG 1 io dijoi fla However ay proble reai uolved For exaple we do o kow how ay dijoi -fla over GF() exi i PG(1 ) Sice here are ( 1 1 1) poi i PG(1 ) he upper boud for he uber of dijoi -fla over GF() equal - if 4 ad equal + 1 if = A obviou cojecure i ha PG(1 ) ca be pari- ioed io -fla ad oe 1-fla over GF() Thi cojecure i rue for = ice PG(1 ) ca be pariioed io 1 1-fla ove r GF() by Theore 4 I i alo rue for = ad = 4 5 which are how i Exaple for = 4 ad how i Exaple 8() for = 5 If he cojecure i rue we ca coruc a 1 1 i 1 1 i for ad i 1 which would be a igifica iprovee of Corollary Alo we do o kow how ay dijoi -fla over GF() exi i PG( ) The uber of poi i PG( ) i Hece a upper boud for he uber of dijoi -fla over GF() i PG( ) i 1 if ad i + 1 if = The upper boud i aaied for = ice PG( ) ca be pariioed io 1 -fla over GF() by Theore 4 I geeral he differece be- boud ad wha ca be obaied i wee he upper Theore 6 ad 7 i coiderably large for There ay be beer way o fid dijoi -fla over GF() i PG( ) ha he approach ued i Theore 6 ad 7 So far we do o kow ay exaple havig 1 dijoi -fla over GF() i PG( ) for Aoher proble which cao be olved by he ap- ad proach of hi paper i he corucio of orhogoal array havig row wher e i a prie uber For exaple i i kow ha ( ) ca be coruced by a ixed pread of PG(6 ) which coi of a -fla ad 16 -fla Bu i i o kow ha if i i poible o fid aog hoe 16 -fla dijoi e of hree -fla uch ha each e ca be regrouped io eve 1-fla We could coruc a 18 (16 8 i 4 7i ) if here exi i uch dijoi e of hree -fla REFERENCES [1] R C Boe ad K A Buh Orhogoal Array of Sregh Two ad Three The Aal of Maheaical Saiic Vol No pp doi:10114/ao/ [] R Placke ad J P Bura The Deig of Opiu Mulifacorial Experie Bioerika Vol No pp 05-5 [] C R Rao Facorial Experie Derivable fro Cobiaorial Arragee of Array Joural of Royal Saiical Sociey (Supplee) Vol 9 No pp doi:1007/98576 [4] C R Rao Soe Cobiaorial Proble of Array ad Applicaio o Deig of Experie I: J N Srivaava Ed A Survey of Cobiaorial Theory Norh- Hollad Aerda 197 pp [5] J C Wag ad C F J Wu A Approach o he Corucio of Ayerical Orhogoal Array Joural of Aerica Saiical Aociaio Vol 86 No pp doi:1007/9059 [6] C F J Wu R C Zhag ad R Wag Corucio of Ayerical Orhogoal Array of Type OA( k ( r1 ) 1 ( r ) ) Saiica Siica Vol No pp 0-19 [7] A Dey ad C K Midha Corucio of Soe Ayerical Orhogoal Array Saiic & Probabiliy eer Vol 8 No 1996 pp doi:101016/ (95)0016- [8] Y S Zhag Y Q u ad S Q Pag Orhogoal Ar- of ray Obaied by Orhogoal Decopoiio of Projecio Marice Saiica Siica Vol 9 No 1999 pp [9] C Sue ad W F Kuhfeld O he Corucio Mixed Orhogoal Array of Sregh Two Joural of Saiical Plaig ad Iferece Vol 1 No 005 pp doi:101016/jjpi [10] A S Hedaya N J A Sloae ad J Sufke Orhogoal Array Spriger New York 1999 doi:101007/ [11] S Addela Orhogoal Mai Effec Pla for Ay- Copyrigh 01 SciRe

10 C-Y SUEN 197 erical Facorial Experie Techoeric Vol 4 No pp 1-46 doi:1007/ [1] C F J Wu Corucio of 4 Deig via a Groupig Schee Aal of Saiic Vol 17 No pp doi:10114/ao/ [1] E M Rai N J A Sloae ad J Sufke The aice of N-Ru Orhogoal Array Joural of Saiical Plaig ad Iferece Vol 10 No 00 pp doi:101016/s (01) [14] C Sue A Da ad A Dey O he Corucio of Ayeric Orhogoal Array Saiica Siica Vol 11 No pp [15] J W P Hirchefld Projecive Geoerie over Fiie Field Oxford Uiveriy Pre Oxford 1979 [16] C Sue ad A Dey Corucio of Ayeric Orhogoal Array hrough Fiie Geoerie Joural of Saiical Plaig ad Iferece Vol 115 No 00 pp 6-65 doi:101016/s (0) Copyrigh 01 SciRe

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

Matrix Form of The Bayes Theorem And Diagnostic Tests

Matrix Form of The Bayes Theorem And Diagnostic Tests IOSR Joural of Maheaic IOSR-JM e-issn: 78-578, p-issn: 319-765X. Volue 14, Iue 6 Ver. I Nov - Dec 018, PP 01-06 www.iorjoural.org Marix For of The Baye Theore Ad Diagoic Te María Magdala Pérez-Nio 1 Joé

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment

t = s D Overview of Tests Two-Sample t-test: Independent Samples Independent Samples t-test Difference between Means in a Two-sample Experiment Overview of Te Two-Sample -Te: Idepede Sample Chaper 4 z-te Oe Sample -Te Relaed Sample -Te Idepede Sample -Te Compare oe ample o a populaio Compare wo ample Differece bewee Mea i a Two-ample Experime

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

CSE 5311 Notes 12: Matrices

CSE 5311 Notes 12: Matrices CSE 5311 Noes 12: Marices Las updaed 11/12/15 9:12 AM) STRASSEN S MATRIX MULTIPLICATION Marix addiio: akes scalar addiios. Everyday arix uliply: p p Le = = p. akes p scalar uliplies ad -1)p scalar addiios

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS

MORE COMMUTATOR INEQUALITIES FOR HILBERT SPACE OPERATORS terat. J. Fuctioal alyi Operator Theory ad pplicatio 04 Puhpa Publihig Houe llahabad dia vailable olie at http://pph.co/oural/ifaota.ht Volue Nuber 04 Page MORE COMMUTTOR NEQULTES FOR HLERT SPCE OPERTORS

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

The Time-optimal Problems for the Fuzzy R-solution of the Control Linear Fuzzy Integro-Differential Inclusions

The Time-optimal Problems for the Fuzzy R-solution of the Control Linear Fuzzy Integro-Differential Inclusions Aerica Joural of Modelig ad Opiizaio 23 Vol. No. 2 6- Available olie a hp://pub.ciepub.co/ajo//2/ Sciece ad Educaio Publihig DOI:.269/ajo--2- he ie-opial Proble for he Fuzzy R-oluio of he Corol Liear Fuzzy

More information

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS

BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS BEST LINEAR FORECASTS VS. BEST POSSIBLE FORECASTS Opimal ear Forecasig Alhough we have o meioed hem explicily so far i he course, here are geeral saisical priciples for derivig he bes liear forecas, ad

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

Moment Generating Function

Moment Generating Function 1 Mome Geeraig Fucio m h mome m m m E[ ] x f ( x) dx m h ceral mome m m m E[( ) ] ( ) ( x ) f ( x) dx Mome Geeraig Fucio For a real, M () E[ e ] e k x k e p ( x ) discree x k e f ( x) dx coiuous Example

More information

Improvement Over General And Wider Class of Estimators Using Ranked Set Sampling

Improvement Over General And Wider Class of Estimators Using Ranked Set Sampling ITERATIOAL JOURAL OF SIETIFI & TEOLOG RESEAR VOLUME ISSUE 7 AUGUST ISS 77-866 Iprovee Over Geeral Ad ider lass of Esiaors Usi Raked Se Sapli V L Madoara iu Meha Raka Absrac: I his paper Iprovee over eeral

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

STK4080/9080 Survival and event history analysis

STK4080/9080 Survival and event history analysis STK48/98 Survival ad eve hisory aalysis Marigales i discree ime Cosider a sochasic process The process M is a marigale if Lecure 3: Marigales ad oher sochasic processes i discree ime (recap) where (formally

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002

ME 321 Kinematics and Dynamics of Machines S. Lambert Winter 2002 ME 31 Kiemaic ad Dyamic o Machie S. Lamber Wier 6.. Forced Vibraio wih Dampig Coider ow he cae o orced vibraio wih dampig. Recall ha he goverig diereial equaio i: m && c& k F() ad ha we will aume ha he

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x)

th m m m m central moment : E[( X X) ] ( X X) ( x X) f ( x) 1 Trasform Techiques h m m m m mome : E[ ] x f ( x) dx h m m m m ceral mome : E[( ) ] ( ) ( x) f ( x) dx A coveie wa of fidig he momes of a radom variable is he mome geeraig fucio (MGF). Oher rasform echiques

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere Soluio of he Hyperbolic Parial Differeial Equaio o Graph ad Digial Space: a Klei Bole a Projecive Plae ad a 4D Sphere Alexader V. Evako Diae, Laboraory of Digial Techologie, Mocow, Ruia Email addre: evakoa@mail.ru

More information

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP)

10.3 Autocorrelation Function of Ergodic RP 10.4 Power Spectral Density of Ergodic RP 10.5 Normal RP (Gaussian RP) ENGG450 Probabiliy ad Saisics for Egieers Iroducio 3 Probabiliy 4 Probabiliy disribuios 5 Probabiliy Desiies Orgaizaio ad descripio of daa 6 Samplig disribuios 7 Ifereces cocerig a mea 8 Comparig wo reames

More information

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma

COS 522: Complexity Theory : Boaz Barak Handout 10: Parallel Repetition Lemma COS 522: Complexiy Theory : Boaz Barak Hadou 0: Parallel Repeiio Lemma Readig: () A Parallel Repeiio Theorem / Ra Raz (available o his websie) (2) Parallel Repeiio: Simplificaios ad he No-Sigallig Case

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

CHARACTERIZATIONS OF THE NON-UNIFORM IN TIME ISS PROPERTY AND APPLICATIONS

CHARACTERIZATIONS OF THE NON-UNIFORM IN TIME ISS PROPERTY AND APPLICATIONS CHARACTERIZATIONS OF THE NON-UNIFORM IN TIME ISS PROPERTY AND APPLICATIONS I. Karafyllis ad J. Tsiias Depare of Maheaics, Naioal Techical Uiversiy of Ahes, Zografou Capus 578, Ahes, Greece Eail: jsi@ceral.ua.gr.

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

A Note on Prediction with Misspecified Models

A Note on Prediction with Misspecified Models ITB J. Sci., Vol. 44 A, No. 3,, 7-9 7 A Noe o Predicio wih Misspecified Models Khresha Syuhada Saisics Research Divisio, Faculy of Mahemaics ad Naural Scieces, Isiu Tekologi Badug, Jala Gaesa Badug, Jawa

More information

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES Joral o Maheaical Scieces: Advaces ad Alicaios Vole Nber 9 Pages -35 VISCOSIY APPROXIMAION O COMMON FIXED POINS OF - LIPSCHIZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES HONGLIANG ZUO ad MIN YANG Deare o

More information

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS

ELIMINATION OF FINITE EIGENVALUES OF STRONGLY SINGULAR SYSTEMS BY FEEDBACKS IN LINEAR SYSTEMS 73 M>D Tadeuz azore Waraw Uiverity of Tehology, Faulty of Eletrial Egieerig Ititute of Cotrol ad Idutrial Eletroi EIMINATION OF FINITE EIENVAUES OF STONY SINUA SYSTEMS BY FEEDBACS IN INEA SYSTEMS Tadeuz

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Introduction to Hypothesis Testing

Introduction to Hypothesis Testing Noe for Seember, Iroducio o Hyohei Teig Scieific Mehod. Sae a reearch hyohei or oe a queio.. Gaher daa or evidece (obervaioal or eerimeal) o awer he queio. 3. Summarize daa ad e he hyohei. 4. Draw a cocluio.

More information

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B, Fall 2016 Topics 21-22 Cheisry B, Fall 6 Topics - STRUCTURE ad DYNAMICS Cheisry B Fall 6 Cheisry B so far: STRUCTURE of aos ad olecules Topics - Cheical Kieics Cheisry B ow: DYNAMICS cheical kieics herodyaics (che C, 6B) ad

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

( ) ( ) ( ) ( ) ( ) t ( ) ( ) ( ) ( ) [ ) Abstract. Keywords. 1. Introduction. Yunlong Gao, Yuting Sun, Guoguang Lin

( ) ( ) ( ) ( ) ( ) t ( ) ( ) ( ) ( ) [ ) Abstract. Keywords. 1. Introduction. Yunlong Gao, Yuting Sun, Guoguang Lin Ieraioal Joural of Moder Noliear Theory ad Applicaio 6 5 85- hp://wwwcirporg/oural/ia ISSN Olie: 67-9487 ISSN Pri: 67-9479 The Global Aracor ad Their Haudorff ad Fracal Dieio Eiaio for he Higher-Order

More information

Domination Number of Square of Cartesian Products of Cycles

Domination Number of Square of Cartesian Products of Cycles Ope Joural of Discrete Matheatics, 01,, 88-94 Published Olie October 01 i SciRes http://wwwscirporg/joural/ojd http://dxdoiorg/10436/ojd014008 Doiatio Nuber of Square of artesia Products of ycles Morteza

More information

Spectral Simulation of Turbulence. and Tracking of Small Particles

Spectral Simulation of Turbulence. and Tracking of Small Particles Specra Siuaio of Turbuece ad Trackig of Sa Parices Hoogeeous Turbuece Saisica ie average properies RMS veociy fucuaios dissipaio rae are idepede of posiio. Hoogeeous urbuece ca be odeed wih radoy sirred

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

S n. = n. Sum of first n terms of an A. P is

S n. = n. Sum of first n terms of an A. P is PROGREION I his secio we discuss hree impora series amely ) Arihmeic Progressio (A.P), ) Geomeric Progressio (G.P), ad 3) Harmoic Progressio (H.P) Which are very widely used i biological scieces ad humaiies.

More information

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b),

MATH 507a ASSIGNMENT 4 SOLUTIONS FALL 2018 Prof. Alexander. g (x) dx = g(b) g(0) = g(b), MATH 57a ASSIGNMENT 4 SOLUTIONS FALL 28 Prof. Alexader (2.3.8)(a) Le g(x) = x/( + x) for x. The g (x) = /( + x) 2 is decreasig, so for a, b, g(a + b) g(a) = a+b a g (x) dx b so g(a + b) g(a) + g(b). Sice

More information

Lecture 8 April 18, 2018

Lecture 8 April 18, 2018 Sas 300C: Theory of Saisics Sprig 2018 Lecure 8 April 18, 2018 Prof Emmauel Cades Scribe: Emmauel Cades Oulie Ageda: Muliple Tesig Problems 1 Empirical Process Viewpoi of BHq 2 Empirical Process Viewpoi

More information

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS

UNIT 1: ANALYTICAL METHODS FOR ENGINEERS UNIT : ANALYTICAL METHODS FOR ENGINEERS Ui code: A// QCF Level: Credi vale: OUTCOME TUTORIAL SERIES Ui coe Be able o aalyse ad model egieerig siaios ad solve problems sig algebraic mehods Algebraic mehods:

More information

SUPER LINEAR ALGEBRA

SUPER LINEAR ALGEBRA Super Liear - Cover:Layou 7/7/2008 2:32 PM Page SUPER LINEAR ALGEBRA W. B. Vasaha Kadasamy e-mail: vasahakadasamy@gmail.com web: hp://ma.iim.ac.i/~wbv www.vasaha.e Florei Smaradache e-mail: smarad@um.edu

More information

Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions

Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions Eeded Fermi-Dirac ad Boe-Eiei fucio wih applicaio o he family of zea fucio by M. Alam Chaudhry*, Aghar Qadir** ad Aifa Taaddiq** * Deparme of Mahemaic ad Saiic Kig Fahd Uiveriy of Peroleum ad Mieral Dhahra

More information

The Importance of Ordering the Number of Lattice Points Inside a Rational Polyhedron Using Generating Functions

The Importance of Ordering the Number of Lattice Points Inside a Rational Polyhedron Using Generating Functions Ieraioal Joural of Copuer Sciece ad Elecroics Egieerig (IJCSEE Volue Issue ( ISSN 48 (Olie he Iporace of Orderig he Nuber of Laice ois Iside a Raioal olyhedro Usig Geeraig Fucios Halil Sopce Absrac I pure

More information

ECE-314 Fall 2012 Review Questions

ECE-314 Fall 2012 Review Questions ECE-34 Fall 0 Review Quesios. A liear ime-ivaria sysem has he ipu-oupu characerisics show i he firs row of he diagram below. Deermie he oupu for he ipu show o he secod row of he diagram. Jusify your aswer.

More information

Turkish Journal of. Analysis and Number Theory. Volume 3, Number 6,

Turkish Journal of. Analysis and Number Theory. Volume 3, Number 6, ISSN (Pri) : - ISSN (Olie) : - Volue, Nuber 6, 5 hp://jahuedur hp://wwwciepubco/joural/ja Turih Joural of Aalyi ad Nuber Theory Sciece ad Educaio Publihig Haa Kalyocu Uiveriy Sca o view hi joural o your

More information

Physics 240: Worksheet 16 Name

Physics 240: Worksheet 16 Name Phyic 4: Workhee 16 Nae Non-unifor circular oion Each of hee proble involve non-unifor circular oion wih a conan α. (1) Obain each of he equaion of oion for non-unifor circular oion under a conan acceleraion,

More information

Introduction to Congestion Games

Introduction to Congestion Games Algorihmic Game Theory, Summer 2017 Inroducion o Congeion Game Lecure 1 (5 page) Inrucor: Thoma Keelheim In hi lecure, we ge o know congeion game, which will be our running example for many concep in game

More information

E will be denoted by n

E will be denoted by n JASEM ISSN 9-8362 All rigs reserved Full-ex Available Olie a p:// wwwbiolieorgbr/ja J Appl Sci Eviro Mg 25 Vol 9 3) 3-36 Corollabiliy ad Null Corollabiliy of Liear Syses * DAVIES, I; 2 JACKREECE, P Depare

More information

Lecture 9: Polynomial Approximations

Lecture 9: Polynomial Approximations CS 70: Complexiy Theory /6/009 Lecure 9: Polyomial Approximaios Isrucor: Dieer va Melkebeek Scribe: Phil Rydzewski & Piramaayagam Arumuga Naiar Las ime, we proved ha o cosa deph circui ca evaluae he pariy

More information

The Maximum Number of Subset Divisors of a Given Size

The Maximum Number of Subset Divisors of a Given Size The Maxiu Nuber of Subet Divior of a Give Size arxiv:407.470v [ath.co] 0 May 05 Abtract Sauel Zbary Caregie Mello Uiverity a zbary@yahoo.co Matheatic Subject Claificatio: 05A5, 05D05 If i a poitive iteger

More information

Some remarks on the paper Some elementary inequalities of G. Bennett

Some remarks on the paper Some elementary inequalities of G. Bennett Soe rears o the paper Soe eleetary iequalities of G. Beett Dag Ah Tua ad Luu Quag Bay Vieta Natioal Uiversity - Haoi Uiversity of Sciece Abstract We give soe couterexaples ad soe rears of soe of the corollaries

More information

Section 8 Convolution and Deconvolution

Section 8 Convolution and Deconvolution APPLICATIONS IN SIGNAL PROCESSING Secio 8 Covoluio ad Decovoluio This docume illusraes several echiques for carryig ou covoluio ad decovoluio i Mahcad. There are several operaors available for hese fucios:

More information

Introduction to Mobile Robotics Mapping with Known Poses

Introduction to Mobile Robotics Mapping with Known Poses Iroducio o Mobile Roboics Mappig wih Kow Poses Wolfra Burgard Cyrill Sachiss Mare Beewi Kai Arras Why Mappig? Learig aps is oe of he fudaeal probles i obile roboics Maps allow robos o efficiely carry ou

More information

CS 450: COMPUTER GRAPHICS INTRODUCTION TO MATRICES SPRING 2016 DR. MICHAEL J. REALE

CS 450: COMPUTER GRAPHICS INTRODUCTION TO MATRICES SPRING 2016 DR. MICHAEL J. REALE CS 45: COPUTER GRAPHICS INTRODUCTION TO ATRICES SPRING 26 DR. ICHAEL J. REALE hp://www.papeleparee.e c.br/wallpapers/coigoari_2283_2824.jpg ENTER THE ATRIX ari = (p X q) 2D arra of ubers (scalars) p =

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12

C(p, ) 13 N. Nuclear reactions generate energy create new isotopes and elements. Notation for stellar rates: p 12 Iroducio o sellar reacio raes Nuclear reacios geerae eergy creae ew isoopes ad elemes Noaio for sellar raes: p C 3 N C(p,) 3 N The heavier arge ucleus (Lab: arge) he ligher icomig projecile (Lab: beam)

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

Left Quasi- ArtinianModules

Left Quasi- ArtinianModules Aerica Joural of Matheatic ad Statitic 03, 3(): 6-3 DO: 0.593/j.aj.03030.04 Left Quai- ArtiiaModule Falih A. M. Aldoray *, Oaia M. M. Alhekiti Departet of Matheatic, U Al-Qura Uiverity, Makkah,P.O.Box

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

Chapter 9. Key Ideas Hypothesis Test (Two Populations)

Chapter 9. Key Ideas Hypothesis Test (Two Populations) Chapter 9 Key Idea Hypothei Tet (Two Populatio) Sectio 9-: Overview I Chapter 8, dicuio cetered aroud hypothei tet for the proportio, mea, ad tadard deviatio/variace of a igle populatio. However, ofte

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

Additional Tables of Simulation Results

Additional Tables of Simulation Results Saisica Siica: Suppleme REGULARIZING LASSO: A CONSISTENT VARIABLE SELECTION METHOD Quefeg Li ad Ju Shao Uiversiy of Wiscosi, Madiso, Eas Chia Normal Uiversiy ad Uiversiy of Wiscosi, Madiso Supplemeary

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

A Note on Random k-sat for Moderately Growing k

A Note on Random k-sat for Moderately Growing k A Noe o Radom k-sat for Moderaely Growig k Ju Liu LMIB ad School of Mahemaics ad Sysems Sciece, Beihag Uiversiy, Beijig, 100191, P.R. Chia juliu@smss.buaa.edu.c Zogsheg Gao LMIB ad School of Mahemaics

More information

M-Point Boundary Value Problem for Caputo Fractional Differential Eqautions

M-Point Boundary Value Problem for Caputo Fractional Differential Eqautions OSR Joral o Egieerig OSRJEN SSN e: 5- SSN p: 78-879 Vol. 6 e ebrar. 6 V PP -7 www.iorje.org -Poi Bodar Vale Proble or Capo raioal Diereial Eaio J.A.Naware Depare o aheai Shririha ahaidalaa Gjoi- 65 Di.Oaabad.SNDA

More information

MARKET RISK AND MARK-TO-MARKET VALUATION OF THE CROSS CURRENCY SWAP.

MARKET RISK AND MARK-TO-MARKET VALUATION OF THE CROSS CURRENCY SWAP. MARKET RISK AND MARK-TO-MARKET VALUATION OF THE CROSS CURRENCY SWAP. Ilya I. Gikha 677 Ivy Wood Cour Mao, OH 454, USA Ph. 513-573-9348 Eail: ilyagikha@yahoo.co JEL : G12, G13 Key word. Dicou facor, rik

More information

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online

International journal of Engineering Research-Online A Peer Reviewed International Journal Articles available online Ieraioal joral of Egieerig Reearch-Olie Peer Reviewed Ieraioal Joral ricle available olie h://www.ijoer.i Vol.1. Ie.4. 01 RESERCH RTICLE ON TERNRY QUDRTIC EQUTION M..GOPLN S.VIDHYLKSHMI S.NIVETHITH Dearme

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

The Eigen Function of Linear Systems

The Eigen Function of Linear Systems 1/25/211 The Eige Fucio of Liear Sysems.doc 1/7 The Eige Fucio of Liear Sysems Recall ha ha we ca express (expad) a ime-limied sigal wih a weighed summaio of basis fucios: v ( ) a ψ ( ) = where v ( ) =

More information

Pure Math 30: Explained!

Pure Math 30: Explained! ure Mah : Explaied! www.puremah.com 6 Logarihms Lesso ar Basic Expoeial Applicaios Expoeial Growh & Decay: Siuaios followig his ype of chage ca be modeled usig he formula: (b) A = Fuure Amou A o = iial

More information

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17

OLS bias for econometric models with errors-in-variables. The Lucas-critique Supplementary note to Lecture 17 OLS bias for ecoomeric models wih errors-i-variables. The Lucas-criique Supplemeary oe o Lecure 7 RNy May 6, 03 Properies of OLS i RE models I Lecure 7 we discussed he followig example of a raioal expecaios

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information