Turkish Journal of. Analysis and Number Theory. Volume 3, Number 6,

Size: px
Start display at page:

Download "Turkish Journal of. Analysis and Number Theory. Volume 3, Number 6,"

Transcription

1 ISSN (Pri) : - ISSN (Olie) : - Volue, Nuber 6, 5 hp://jahuedur hp://wwwciepubco/joural/ja Turih Joural of Aalyi ad Nuber Theory Sciece ad Educaio Publihig Haa Kalyocu Uiveriy Sca o view hi joural o your obile device

2 Turih Joural of Aalyi ad Nuber Theory Ower o behalf of Haa Kalyocu Uiveriy: Profeor Taer Yilaz, Recor Correpodece addre: Sciece ad Educaio Publihig Depare of Ecooic, Faculy of Ecooic, Adiiraive ad Social Sciece, TR-74 aziaep, Turey Web addre: hp://jahuedur hp://wwwciepubco/joural/tjant Publicaio ype: Biohly

3 Turih Joural of Aalyi ad Nuber Theory ISSN (Pri): - ISSN (Olie): - hp://wwwciepubco/joural/tjant Mehe Acigoz Feg Qi Ceap Özel Sera Araci Erdoğa Şe Edior-i-Chief Uiveriy of aziaep, Turey Hea Polyechic Uiveriy, Chia Douz Eylül Uiveriy, Turey Aia Edior Haa Kalyocu Uiveriy, Turey Nai Keal Uiveriy, Turey Hoorary Edior R P Agarwal Kigville, TX, Uied Sae M E H Iail Uiveriy of Ceral Florida, Uied Sae Taer Yilaz Haa Kalyocu Uiveriy, Turey H M Srivaava Vicoria, BC, Caada Edior Hery W ould We Virgiia Uiveriy, Uied Sae Toa Diagaa Howard Uiveriy, Uied Sae Abdelejid Bayad Uiveriéd'éry Val d'eoe, Frace Haa Jolay Uiveriéde Lille, Frace Ivá Mező Najig Uiveriy of Iforaio Sciece ad Techology, Chia C S Ryoo Haa Uiveriy, Souh Korea Jueag Choi Doggu Uiveriy, Souh Korea Dae Sa Ki Sogag Uiveriy, Souh Korea Taeyu Ki Kwagwoo Uiveriy, Souh Korea uoao Wag Shaxi Noral Uiveriy, Chia Yua He Kuig Uiveriy of Sciece ad Techology, Chia Aleadar Ivıc Kaedra Maeaie RF-A Uiveriea U Beogradu, Serbia Criiel Morici Valahia Uiveriy of Targovie, Roaia Nai Çağa Uiveriy of azioapaa, Turey Üal Ufuepe Izir Uiveriy of Ecooic, Turey Ceil Tuc Yuzucu Yil Uiveriy, Turey Abdullah Özbeler Aili Uiveriy, Turey Doal O'Rega Naioal Uiveriy of Irelad, Irelad S A Mohiuddie Kig Abdulaziz Uiveriy, Saudi Arabia Duiru Baleau Çaaya Uiveriy, Turey Ahe Sia CEVIK Selcu Uiveriy, Turey Erol Yılaz Aba Izze Bayal Uiveriy, Turey Hüar Kayha Aba Izze Bayal Uiveriy, Turey Yaar Soze Haceepe Uiveriy, Turey I Naci Cagul Uludag Uiveriy, Turey İlay Arla üve Uiveriy of aziaep, Turey Sera Kaya Nura Uiveriy of Uşa, Turey Ayha Ei Adiyaa Uiveriy, Turey M Taer Koa ebze Iiue of Techology, Turey Haifa Zeraoui Ou-El-Bouaghi Uiveriy, Algeria Siraj Uddi Uiveriy of Malaya, Malayia Rabha W Ibrahi Uiveriy of Malaya, Malayia Ade Kilica Uiveriy Pura Malayia, Malayia Are Bagdaarya Ruia Acadey of Sciece, Mocow, Ruia Viorica Mariela Ugureau Uiveriy Coai Bracui, Roaia Valeia Eilia Bala Aurel Vlaicu Uiveriy of Arad, Roaia RK Raia MP Uiv of Agriculure ad Techology, Idia M Muralee Aligarh Muli Uiveriy, Idia Vijay upa Neaji Subha Iiue of Techology, Idia Hee Dua auhai Uiveriy, Idia Abar Aza COMSATS Iiue of Iforaio Techology, Paia Moiz-ud-di Kha COMSATS Iiue of Iforaio Techology, Paia Robero B Corcio Cebu Noral Uiveriy, Philippie

4 Turih Joural of Aalyi ad Nuber Theory, 5, Vol, No 6, Available olie a hp://pubciepubco/ja//6/ Sciece ad Educaio Publihig DOI:69/ja--6- O Sei-yeric Para Keou Maifold T Sayaarayaa, K L Sai Praad, Depare of Maheaic, Pragahi Egieerig College, Surapale, Adhra Pradeh, Idia Depare of Maheaic, ayari Vidya Parihad College of Egieerig for Woe, Viahapaa, Adhra Pradeh, Idia Correpodig auhor: lpraad@yahooco Received Augu 5, 5; Acceped Ocober, 5 Abrac I hi paper we udy oe rearable properie of para Keou (briefly p -Keou) aifold aifyig he codiio R( X, Y) R =, R( X, Y) P = ad P( X, Y) R =, where R(X, Y) i he Rieaia curvaure eor ad P(X, Y) i he Weyl projecive curvaure eor of he aifold I i how ha a eiyeric p -Keou aifold ( M, g ) i of coa curvaure ad hece i a p -Keou aifold Alo, we obai he eceary ad ufficie codiio for a p -Keou aifold o be Weyl projecive ei-yeric ad how ha he Weyl projecive ei-yeric p -Keou aifold i projecively fla Fially we prove ha if he codiio P( X, Y) R = i aified o a p -Keou aifold he i calar curvaure i coa Keyword: para Keou aifold, curvaure eor, projecive curvaure eor, calar curvaure Cie Thi Aricle: T Sayaarayaa, ad K L Sai Praad, O Sei-yeric Para Keou Maifold Turih Joural of Aalyi ad Nuber Theory, vol, o 6 (5): doi: 69/ja--6- Iroducio The oio of a alo para-coac Rieaia aifold wa iroduced by Sao [7] i 976 Afer ha, T Adai ad K Mauoo [] defied ad udied p- Saaia ad p-saaia aifold which are regarded a a pecial id of a alo coac Rieaia aifold Before Sao, Keou [6] defied a cla of alo coac Rieaia aifold I 995, Siha ad Sai Praad [9] have defied a cla of alo para-coac eric aifold aely para-keou (briefly p- Keou) ad pecial para Keou (briefly p- Keou) aifold I a rece paper, he auhor Sayaarayaa ad Sai Praad [8] udied coforally yeric p -Keou aifold, ha i he p-keou aifold aifyig he codiio R( X, Y) C =, ad hey prove ha uch a aifold i coforally fla ad hece i a p-keou aifold, where R i he Rieaia curvaure ad C i he coforal curvaure eor defied by C( X, Y ) Z g( Y, Z) QX g( X, Z) QY = R( X, Y ) Z S( Y, Z) X S( X, Z) Y r [ g( Y, Z) X g( X, Z) Y ] ( )( ) () Here S i he Ricci eor, r i he calar curvaure ad Q i he yeric edoorphi of he age pace a each poi correpodig o he Ricci eor S [] ie, g( QX, Y) = S( X, Y ) () A Rieaia aifold M i locally yeric if i curvaure eor R aifie R =, where i Levi- Civia coecio of he Rieaia eric [4] A a geeralizaio of locally yeric pace, ay geoeer have coidered ei-yeric pace ad i ur heir geeralizaio A Rieaia aifold M i aid o be ei-yeric if i curvaure eor R aifie R( X, Y) R = where RXY (, ) ac o R a derivaio [] Locally yeric ad ei-yeric p-saaia aifold are widely udied by ay geoeer [,5] I hi udy, we coider he p-keou aifold aifyig he codiio R( X, Y) R =, ow a eiyeric p-keou aifold, where RXY (, ) i coidered a a derivaio of eor algebra a each poi of he aifold for age vecor X ad Y ad he p- Keou aifold (M, g) ( > ) aifyig he codiio R( X, Y) P =, where P deoe he Weyl projecive curvaure eor [] defied by g( Y, Z) QX P( X, Y) Z = R( X, Y) Z g( X, Z) QY () Here we coider he p-keou aifold M for > ; a if for =, he projecive curvaure eor ideically vaihe I ecio, i i how ha a ei-yeric p- Keou aifold (M, g) of coa curvaure i a p-keou aifold I he ex ecio we obai he eceary ad ufficie codiio for a p-keou aifold o be Weyl projecive ei-yeric ad how ha he Weyl projecive ei-yeric p - Keou aifold i projecively fla Fially we prove ha if he codiio P( X, Y) R = i aified o a p - Keou aifold he i calar curvaure i coa p-keou Maifold

5 46 Turih Joural of Aalyi ad Nuber Theory Le M be a -dieioal differeiable aifold equipped wih rucure eor (, ξ, η) where i a eor of ype (,), ξ i a vecor field, η i a -for uch ha ( ) = () ( X ) = X ( X ) ; X = X () The M i called a alo para coac aifold Le g be he Rieaia eric i a -dieioal alo para-coac aifold M uch ha g( X, ) = ( X) () =, ( X) =, ra = (4) g( X, Y) = g( X, Y) ( X ) ( Y) (5) for all vecor field X ad Y o M The he aifold M [7] i aid o adi a alo para-coac Rieaia rucure (, ξ, η, g) ad he aifold i called a alo para-coac Rieaia aifold A aifold of dieio ' wih Rieaia eric 'g adiig a eor field ' of ype (, ), a vecor field ' ad a -for ' aifyig (), () alog wih ( X) Y( Y) X = (6) ( XY) Z = [ g( X, Z) ( X ) ( Z)] ( Y) [ g( X, Y) ( X ) ( Y)] ( Z) X = X = X ( X ) (7) (8) ( X ) Y = g( X, Y) ( Y) X (9) i called a para-keou aifold or briefly p - Keou aifold [9] A p -Keou aifold adiig a -for ' aifyig ( X ) Y = g ( X, Y ) ( X ) ( Y ) () g( X, ) = ( X )ad ( X) Y = ( X, Y), where i a aociae of, () i called a pecial p -Keou aifold or briefly p - Keou aifold [9] I i ow ha [9] i a p -Keou aifold he followig relaio hold: S( X, ) = ( ) ( X) where g( QX, Y) = S( X, Y) () g[ R( X, Y) Z, ] = [ R( X, Y, Z)] = g( X, Z) ( Y) g( Y, Z) ( X ) () R(, X ) Y = ( Y) X g( X, Y) (4) R( X, Y, ) = ( X ) Y ( Y) X; whe X iorhogoal o (5) where S i he Ricci eor ad R i he Rieaia curvaure Moreover, i i alo ow ha if a p -Keou aifold i projecively fla he i i a Eiei aifold ad he calar curvaure ha a egaive coa value ( ) Epecially, if a p -Keou aifold i of coa curvaure, he calar curvaure ha a egaive coa value ( ) [9] I hi cae, ad hece S( Y, Z) = ( ) g( Y, Z) (6) S( Y, Z) = S( Y, Z) ( ) ( Y) ( Z) (7) Alo, if a p -Keou aifold i of coa curvaure, we have S( Y, Z) g( X, P) ' R( X, Y, Z, P) = ( ) S( X, Z) g( Y, P) (8) The above reul will be ued furher i he ex ecio p-keou Maifold Saifyig R( X, Y) R = I hi ecio, we coider ei-yeric p - Keou aifold, ie, p -Keou aifold aifyig he codiio R( X, Y) R = where RXY (, ) i coidered a a derivaio of eor algebra a each poi of he aifold for age vecor X ad Y Now ( R( X, Y) R)( U, V ) W = R( X, Y) R( U, V ) W R( R( X, Y) U, V ) W R( U, R( X, Y) V ) W R( U, V ) R( X, Y) W () Puig X = i (), ad o uig he codiio R( X, Y) R =, we ge g( R(, Y) R( U, V ) W, ) g( R( R(, Y) U, V ) W, ) g( R( U, R(, Y) V ) W, ) g( R( U, V ) R(, Y) W, ) () = By uig he equaio () ad (4), fro () we ge ' R( U, V, W, Y) ( Y) ( R( U, V ) W ) ( U) ( R( Y, V ) W ) ( V ) ( R( U, Y) W ) ( W ) ( R( U, V ) Y) g( Y, U) ( R(, V ) W ) g( Y, V ) ( R( U, ) W ) g( Y, W ) ( R( U, V ) ) = where ' R( U, V, W, Y) = g( R( U, V) W, Y ) O puig Y = U i (), we ge ' R( U, V, W, U) ( V ) ( R( U, U) W ) ( W ) ( R( U, V ) U) g( U, U) ( R(, V ) W) g( U, V ) ( R( U, ) W ) g( U, W) ( R( U, V ) ) = () (4) Now puig U = e i, where { ei }, i =,, i a orhogoal bai of he age pace a ay poi, ad aig he uaio of (4) over i, i, we ge (6) Alo, uig he equaio (), (6) ad () we ge (8), how ha he aifold i of coa curvaure Thu we ae he followig reul

6 Turih Joural of Aalyi ad Nuber Theory 47 Theore : A ei-yeric p -Keou aifold i of coa curvaure Now, fro (6) ad (8) we have ' R( X, Y, Z, P) = g( X, Z) g( Y, P) g( Y, Z) g( X, P), (5) ad fro equaio (6) ad (5), we have S( X, Y) = ( )[ g( X, Y) ( X) ( Y)] (6) O coracio of (6) wih covaria eor ( X, Y) = g( X, Y), we ge ( X, Y) = g( X, Y) ( X) ( Y), how ha he aifold i a p -Keou oe Thu, we ae he followig heore Theore : If a ei-yeric p -Keou aifold ( M, g ) i of coa curvaure, he aifold i a p -Keou oe 4 p-keou Maifold Saifyig R( X, Y) P = I hi ecio, we coider Weyl projecive eiyeric p-keou aifold, ie, p-keou aifold aifyig he codiio R( X, Y) P = Now ( R( X, Y) P)( U, V ) W = R( X, Y) P( U, V ) W P( R( X, Y) U, V ) W P( U, R( X, Y) V ) W P( U, V ) R( X, Y) W (4) Pu X = i (4) The he codiio R( X, Y) P = iplie ha g( R(, Y) P( U, V ) W, ) g( P( R(, Y) U, V ) W, ) g( P( U, R(, Y) V ) W, ) g( P( U, V ) R(, Y) W, ) (4) = The o uig equaio (), () ad (), we ge ( P( X, Y) Z) = (4) O he oher had, by uig (), (4), ad (4), we ge g( R(, Y) P( U, V) W, ) = g( P( U, V) W, Y) (44) The fro equaio (4) ad (4), he lef had ide of (44) i zero, give ha g( P( U, V) W, Y ) = for all U, V, W ad Y ad hece PXY (, ) = Thi lead o he followig heore: Theore 4: A Weyl projecive ei-yeric p - Keou aifold i projecively fla Bu i i ow ha [], a projecively fla Rieaia aifold i of coa curvaure Alo i ca be eaily ee ha a aifold of coa curvaure i projecively fal Hece we have he followig heore Theore 4: A p -Keou aifold i Weyl projecive ei-yeric if ad oly if he aifold i of coa curvaure Alo i i ow ha a p -Keou aifold of coa curvaure i a p -Keou aifold [8] Hece we coclude he followig reul: Theore 4: A Weyl projecive ei-yeric p - Keou aifold i of coa curvaure ad hece i a p -Keou aifold I i rivial ha i cae of a projecive yeric Rieaia aifold he codiio R( X, Y) P = hold good 5 p-keou Maifold Saifyig P( X, Y) R = I i ow ha he codiio R( X, Y) P = doe o iply P( X, Y) R = I hi ecio, we udy he rearable propery of p -Keou aifold aifyig he codiio P( X, Y) R = Now, we have ( P( X, Y) R)( U, V ) W = P( X, Y) R( U, V ) W R( P( X, Y) U, V ) W R( U, P( X, Y) V ) W R( U, V ) P( X, Y) W (5) Pu X = i (5) The he codiio P( X, Y) R = iplie ha g( P(, Y) R( U, V ) W, ) g( R( P(, Y) U, V ) W, ) g( R( U, P(, Y) V ) W, ) g( R( U, V ) P(, Y) W ), (5) = Puig X =, Z = U i () ad o uig () ad (), we ge ( R( P(, Y) U, V )) W = ( U)[ ( R( Y, V ) W ) ( R( QY, V ) W )] ( ) (5) Siilarly, by puig X =, Z = V i () ad o uig () ad (), we ge ( R( U, P(, Y) V ) W (54) = ( V )[ ( R( U, Y) W ) ( R( U, QY ) W)] ( ) I iilar by puig X =, Z = W i () ad o uig () ad (), we ge ( R( U, V ) P(, Y) W ) = ( W )[ ( R( U, V ) Y) ( R( U, V ) QY )] ( ) (55) O uig (4), (5), (54) ad (55), we ge fro eq (5) ha ( U )[ ( R( Y, V ) W ) ( R( QY, V ) W )] ( ) ( V )[ ( R( U, Y) W ) ( R( U, QY ) W )] ( ) ( W )[ ( R( U, V ) Y) ( R( U, V ) QY )] = ( ) (56)

7 48 Turih Joural of Aalyi ad Nuber Theory By puig Y = U i eq (56), we ge ( U )[ ( R( U, V ) W ) ( R( QU, V ) W )] ( ) ( V )[ ( R( U, U ) W ) ( R( U, QU ) W )] ( ) ( W )[ ( R( U, V ) U ) ( R( U, V ) QU )] = ( ) The o uig () ad (), we ge (57) g( U, W ) ( V ) g( V, W ) ( U) ( W ) = (58) [ S( U, U) ( V ) S( V, U) ( U)] ( ) Now puig U = e i, where i=,, ad aig he uaio of (58) over i, i, we ge r = ( ), ice ( V), how ha he calar curvaure i coa Hece we have he followig heore Theore 5: If a p -Keou aifold aifie he codiio P( X, Y) R = he i calar curvaure i coa Acowledgee The auhor acowledge Prof Kalpaa, Baara Hidu Uiveriy ad Dr B Sayaarayaa of Nagarjua Uiveriy for heir valuable uggeio i preparaio of he aucrip They are alo haful o he referee for hi valuable coe i he iprovee of hi paper Coflic of Iere The auhor declare ha here i o coflic of iere regardig he publicaio of hi paper Referece [] Adai,T ad Mauoo, K, O coforally recurre ad coforally yeric p-saaia aifold, TRU Mah,, 5-, 977 [] Adai, T ad Miyazawa, T, O P-Saaia aifold aifyig cerai codiio, Teor (NS),, 7-78, 979 [] Bihop, R L ad oldberg, S I, O coforally fla pace wih couig curvaure ad Ricci raforaio, Caad J Mah, 4(5), , 97 [4] Cara, E Sur ue clae rearquable d epace de Riea, Bull Soc Mah Frace, 54, 4-6, 96 [5] De, U C, Ciha Ozgur, Kadri Arla, Cegizha Muraha ad Ahe Yildiz, O a ype of P-Saaia aifold, Mah Balaica (NS),, 5-6, 8 [6] Keou, K, A cla of alo coac Rieaia aifold, Tohou Mah Joural, 4, 9-, 97 [7] Sao, I, O a rucure iilar o he alo coac rucure, Teor (NS),, 9-4, 976 [8] Sayaarayaa, T ad Sai Praad, K L, O a ype of Para Keou Maifold, Pure Maheaical Sciece, (4), 65 7, [9] Siha, B B ad Sai Praad, K L, A cla of alo para coac eric Maifold, Bullei of he Calcua Maheaical Sociey, 87, 7-, 995 [] Szabo, Z I, Srucure heore o Rieaia pace aifyig R(X,Y)R =, I The local verio J Diff eo, 7, 5-58, 98 [] Yao, K, Iegral forula i Rieaia eoery, Pure ad Applied Maheaic,, Marcel Deer, Ic, New Yor, 97 [] Yao, K ad Ko, M, Srucure o Maifold, Serie i Pure Maheaic,, World Scieific Publihig Co, Sigapore, 984

8 Turih Joural of Aalyi ad Nuber Theory, 5, Vol, No 6, 49-5 Available olie a hp://pubciepubco/ja//6/ Sciece ad Educaio Publihig DOI:69/ja--6- Upper Boud of Parial Su Deeried by Marix Theory Rabha W Ibrahi Iiue of Maheaical Sciece, Uiveriy Malaya, Malayia Correpodig auhor: rabhaibrahi@yahooco Received Sepeber 6, 5; Acceped Noveber 4, 5 Abrac Oe of he ajor proble i he geoeric fucio heory i he coefficie boud for fucioal ad parial u The ipora ehod, for hi purpoe, i he Hael arix Our ai i o iroduce a ew ehod o deerie he coefficie boud, baed o he arix heory We uilize variou id of arice, uch a Hilber, Hurwiz ad Tura We illurae ew clae of aalyic fucio i he ui di, depedig o he coefficie of a paricular ype of parial u Thi ehod how he effecivee of he ew clae Our reul are applied o he well ow clae uch a arlie ad covex Oe ca illurae he ae ehod o oher clae Keyword: aalyic fucio, uivale fucio, ui di, parial u, coefficie boud Cie Thi Aricle: Rabha W Ibrahi, Upper Boud of Parial Su Deeried by Marix Theory Turih Joural of Aalyi ad Nuber Theory, vol, o 6 (5): 49-5 doi: 69/ja--6- Iroducio The Hael deeria repree a ajor par i he heory of igulariie [,] I addiio, i uilize i he iveigaio of power erie wih iegral coefficie [] Alo, i appear i he udy of eroorphic fucio [4], ad variou properie of hee deeria ca be foud i [5] I i well ow ha he Feee-Szego fucioal a a H Thi fucioal i furher geeralized a a a for oe (real or coplex) Feee ad Szego iroduced harp boud of a a for real of uivale fucio I i a very ipora cobiaio of he wo coefficie which decribe he area proble poed earlier by rowall Furherore, reearcher coidered he fucioal 4 a a a (ee [6]) Babalola [7] deeried he Hael deeria H for oe ubclae of aalyic fucio Ibrahi [8] copued he Hael deeria for fracioal differeial operaor i he ope ui di Parial u are udied widely i he uivale fucio heory Szeg [9] proved ha if he fucio f z z a z i arlie, he i parial u are arlie for z / 4 f z i covex, he i parial u f z f z z a z Moreover, if i covex for z / 8 Laer Owa [] ipoed he arliee ad covexiy for pecial cae of f z z az I addiio, Daru ad Ibrahi [] pecified he aupio, which idicaed ha he parial u of fucio of bouded urig are alo of bouded urig Recely, Daru ad Ibrahi [] coidered he Ceáro parial u, i ha bee how ha hi ype of parial u preerve he properie of he aalyic fucio i he ope ui di I hi wor, we deal wih he parial u of he for f z z a / z, We iroduce oe clae of aalyic fucio defied by i parial u The abiliy of hee clae i udied by uilizig Hurwiz arice covoluig he wih Hilber arix (a pecial ype of Hael arix) Moreover, we dicu oe parial u forulaed uder Tura deeria The upper boud a well a he lower boud of he coefficie a Thi ew proce iclude oe well ow reul Our oucoe deped o copuaioal reul of differe order of he Tura deeria We how ha oe geoeric properie, of he ew clae are eablihed by copuig he Tura deeria uch a arliee ad covexiy Proceig Le be he cla of aalyic fucio f z z a z i U z : z oralized by he codiio f f parial u of he for ad For a f z a z a z az az, covolued wih he Hilber arix elee i he fi order, we obai he parial u

9 5 Turih Joural of Aalyi ad Nuber Theory a a a f z z z z az,, a For he above parial u f z, we le a a a f z z z z az, a, z U : b z b z b z b z b, b a, b () The ior of Hurwiz arix for (), are defied by f b f b b b b b b b5 f b b b4 b b Defiiio For z U, he polyoial f z i called able, aypoically able ad uable if ad oly if j, j, j, for all j,,,, repecively Fro (), we defie he parial u a g z z z : We proceed o coruc ew clae baed o A copuaio iplie z z zg P z, g a z : a w, w z g z Thu for,,4,, we have he followig clae: P w a w () P w a w, () We call he above clae he coefficie a ad hey deoed by coefficie a -covex, which deoed by a follow: -arlie S a Siilarly, we defie he, a z z zg Q z a z g : a w, w z Thu for,,, we have he followig clae: Q w a w Q w a w, (4) (5) I he ae aer of he above clae, oe ca coruc a -cla uch a cloe o covex, uiforly clae ad cocave Baed o hee clae, we ca udy he abiliy of arliee a well a covexiy Moreover, relaio cocerig hee clae ca be forulaed uch a H, Oucoe H, We have he followig abiliy reul for he clae S a ad a : Theore Coider P S a a The a, polyoial of degree i arlie able, while of degree i o able Proof By eployig P, i Eq (), polyoial of degree ad ca be expreed repecively a follow: ad ad a a, p w w w : b b w b w a a a, p w w w w : b b w b w b w Le a, hu we obai a p, p a p, Theore Coider Q a, a The a polyoial of degree i covex able, while of degree i o able Q a a The polyoial Proof Coider, of degree ad ca be forulaed repecively a follow:

10 Turih Joural of Aalyi ad Nuber Theory 5 ad ad a a, q w w w : b b w b w a a a, q w w w w : b b w b w b w Le a, hu we obai q q a, q a 6, Coider p S a equece We deal wih polyoial p S a, (parial u) aifyig he recurre relaio ad,, p wp w p w p w, p w a w Defie he Tura deeria a follow: (6) w p w p w p w, (7) We hall prove iequaliy of he for,, c w C w c C (8) Theore Aue p w aifie (6) The p p, Proof By (6), we have hi yield ha p w p w w p p p Coequely, we obai p (9) By he defiiio of w, we coclude ha w w p w, () he uig (9) ad (), we arrive a he deired aerio Thi coplee he proof Theore 4 Le he be icreaig equece If w, wu \, Proof I uffice o how ha w By he proof of Theore ad he fac ha p ad p, we coclude ha w p p p p Therefore, by he aupio of he heore, we have w Hece by iducio we obai w, g w : p p g w Defie a fucio he aifie he followig propery : Propoiio For we have wg w g w g w Proof A calculaio iplie ha p w p w w g w g w wp w p w p w wg w wp p w p w wg Theore 5 For we have, w w g w g w g w where g w p w p w, Proof We oberve ha ad g w p w p w wp, () g w g w p w p w p w p w w p p () Subracig () fro (), we coclude he deired aerio Theore 6 Coider ha p achieve (6) wih Le, be icreaig uch ha / ad The, ()

11 5 Turih Joural of Aalyi ad Nuber Theory w c, c, wu, Proof Clearly ha () i equivale o beig icreaig Defie he forula A w : g w g w g w Sice, herefore, i view of Theore 5, we obai w w, w (4) By Propoiio, we have he followig expreio : wg w g w A w g w g w Muliplyig Eq(5) by we arrive o (5) ad replacig by, A w A w g w Coequely, we coclude ha By ieraig he quaiie A A A ad A, we aai i A w A Bu by uilizig Eq(5) ad Eq(6), we fid A w g g g g Therefore, (4) becoe (6) A w : c Hece he proof Theore 7 Coider ha p achieve (6) wih p Le p, be decreaig uch ha / ad The, w C, C, wu, (7) Proof By leig :, wih he followig properie: li The la propery i valid by he oooiciy of i (7) Defie a polyoial P by uilizig a follow: for where aifyig p, U, P w w w Obviouly, P aifie :,,, P P P (8) li P P w P w Thi iplie ha P w, w U i uiforly bouded o a copac e for By he defiiio of he Tura deeria, we obai where uch ha w P w P w P w li We coclude ha here exi a coa C, uch ha,, w C w U Rear If i Theore 6 ad 7, we obai ha he coefficie a For exaple, if (arlie cla), he /, Thu, a Theore 7 iplie ha a w Moreover, he above reul ca be coidered for a equece of polyoial q a, 4 Applicaio I hi ecio, we uilize he Tura deeria o fied he coefficie boud of he clae S a ad a We have he followig propoiio Propoiio 4 Coider he clae S a The a ad a,, S a ad

12 Turih Joural of Aalyi ad Nuber Theory 5 Proof By uilizig ad repecively for fidig he upper boud of a ad a A copuaio iplie ha ad a a w w w w a w a w a w a w I view of Rear, we coclude ha a a w w w 4 4 a a, w 4 4, whe a Siilarly for a I he iilar aer of Propoiio 4, we have he followig reul: Propoiio 4 Coider he clae a Proof By uilizig q w q wq w obai a The :, we w a w a w, which iplie ha w 5 Cocluio whe a We ipoed a ew echique for fidig he coefficie boud Thi ehod baed o everal ype of arice The ajor ype wa he Tura i he ope ui di We proved he boudede of hi arix fro below a well a fro above We defied clae of aalyic fucio, depedig o oe coefficie, calculaig by oe pecial ype of parial u The abiliy of hee clae i coidered by uilizig he Hurwiz arix We illuraed oe applicaio of hi ehod for wo well defied clae (arlie ad covex) The above ehod ca be eployed o oher clae uch a uifor, cocave ec Coflic of Iere The auhor declare ha here i o coflic of iere regardig he publicaio of hi aricle Referece [] P Diee, The Taylor Serie Dover, New Yor (957) [] A Edrei, Sur le deria rcurre e le igulari due focio doe por o dveloppee de Taylor Copo Mah 7, -88 (94) [] D Caor, Power erie wih iegral coefficie Bull A Mah Soc 69, 6-66 (96) [4] R Wilo, Deeriaal crieria for eroorphic fucio Proc Lod Mah Soc 4, (954) [5] R Vei, P Dale, Deeria ad Their Applicaio i Maheaical Phyic Applied Maheaical Sciece, vol 4 Spriger, New Yor (999) [6] D Baal, Upper boud of ecod Hael deeria for a ew cla of aalyic fucio Appl Mah Le 6(), -7 () [7] K O Babalola, O H() Hael deeria for oe clae of uivale fucio Iequal Theory Appl 6, -7 (7) [8] R W Ibrahi, Bouded oliear fucioal derived by he geeralized Srivaava-Owa fracioal differeial operaor Ieraioal Joural of Aalyi, -7 () [9] Szego, Zur heorie der chliche abbiluge Mah A, 88- (98) [] S Owa, Parial u of cerai aalyic fucio I J Mah Mah Sci 5(), () [] M Daru, R W Ibrahi, Parial u of aalyic fucio of bouded urig wih applicaio Copu Appl Mah 9(), 8-88 () [] R W Ibrahi, M Daru, Ceáro parial u of cerai aalyic fucio, Joural of Iequaliie ad Applicaio, 5, -9 ()

13 Turih Joural of Aalyi ad Nuber Theory, 5, Vol, No 6, Available olie a hp://pubciepubco/ja//6/ Sciece ad Educaio Publihig DOI:69/ja--6- The Soluio of Iiial Value Proble for Secod-order Iegro-differeial Equaio wih Delayed Argue i Baach Space Tigig ua School of Maheaic ad Copuer Sciece, Shaxi Noral Uiveriy, Life, Shaxi 44, P R Chia Correpodig auhor: guaigig985@6co Received Sepeber 5, 5; Acceped Noveber, 5 Abrac By uig he parial order ehod ad oe ew copario reul, he axial or iial oluio of he iiial value proble for oliear ecod order iegro-differeial equaio wih delayed argue i Baach pace are iveigaed I hi paper, we require oly a lower oluio or a upper oluio ad oe weaer codiio preeed here, ad we exed ad iprove oe rece reul (ee [-]) Keyword: ecod-order iegro-differeial equaio, delayed argue, eaure of o-copace, oluio, oooe ieraive echique Cie Thi Aricle: Tigig ua, The Soluio of Iiial Value Proble for Secod-order Iegrodiffereial Equaio wih Delayed Argue i Baach Space Turih Joural of Aalyi ad Nuber Theory, vol, o 6 (5): doi: 69/ja--6- Iroducio The heory of differeial equaio wih deviaed argue i very ipora ad igifica brach of oliear aalyi I i worhwhile eioig ha differeial equaio wih deviaed argue appear ofe i iveigaio coeced wih aheaical phyic, echaic, egieerig, ecooic ad o o (cf [,,], for exaple) Oe of he baic proble coidered i he heory of differeial equaio wih deviaed argue i o eablih coveie codiio guaraeeig he exiece of oluio of hoe equaio, we refer o oe rece paper [,4,5,6,7] ad referece Le E be a real Baach pace wih ad le P be a coe i E The parial order i iroduced by coe P, ie, x, y E, x y if ad oly if y x P A coe P i aid o be oral if here exi a coa NP uch ha x, y E, x y iplie x NP y ; N P i called he oral coa of P Recall ha a coe P i aid o be regular if every icreaig ad bouded i order equece i E ha a lii, ie, x x x y iplie x x a for oe x E The regulariy of P iplie he oraliy of P Le E be he dual pace of E, P E x, x P i called he dual coe Obviouly, x P if ad oly if x, for all P Le P u C J, E : u for all J, C where J, a (a > ) ad, C J E deoe he Baach pace of all coiuou appig u : J E wih he or u C ax u : u J I i clear ha P C i a coe of he CJ, E ad o i defie a parial orderig i CJ, E Obviouly, he oraliy of P iplie he oraliy of P C ad he oral coa of P C ad P are he ae For furher deail o coe heory, oe ca refer o [,8,9] Le J, E u : J E u ecod C J, E u : J E u coiuouly differeiable, C - order coiuouly differeiable I hi paper, we coider he oluio for he followig iiial value proble (IVP) of oliear ecod-order iegro-differeial equaio of ixed ype i ordered Baach pace E,,,, u, u, u f Fu, u Tu Su u x, u x, where J, x, x E, F C J E E E E E, E, ad () CJ J u u T, u d, S h, u d a,,

14 Turih Joural of Aalyi ad Nuber Theory 55 Le, C D, R, h, C D, R, D, R a, D, R, J J, R, For ay ax,, D, h ax h,, D B C J, E, J, le B u u B, TB Tu u B, SB Su u B The oluio for iiial value proble (IVP) of oliear fir-order iegro-differeial equaio of ixed ype i ordered Baach pace have ade coiderable headway i rece year (ee [,6]) Bu here ha bee lile dicuio for he oluio of (IVP) () I he pecial cae where f doe o coai u ad u, he oluio for iiial value proble (IVP) () i Baach pace have oe reul (ee [,5]) I aoher pecial cae where f doe o coai u, i [4], Su obaied oe ew reul by uig Möch fixed poi heore ad ew copario reul I hi paper, we fir eablih a ew copario heore, ad he, by requirig oly a lower oluio or a upper oluio ad oe weaer codiio,we iveigae he exiece of he iial or axial oluio of he (IVP) (), where f coai u, Su ad delayed argue u are ore exeive ha hoe i [,5] Several Lea uder he codiio which The followig copario reul ad lea play a ipora role i hi paper Lea (Copario heore) Aue ha E i a Baach pace, P i a coe i E, o J, ad, u u C J E aifie, u, u Mu Ku Nu L Tu, () u where M, K, N, L are o-egaive coa, ad provided oe of he followig wo codiio hold (i) M K a 6N La a 6, N Na Na L e M K N e Na Na (ii), L N ae a e M K Na N The u, u, J Proof For ay he, P, le p u J p u, p u, p u, Tp Tu, J Thu, by () we have ha, p p Mp Kp Np L Tp, J, p Le p p he p C J R, p p d Hece, we have ha,, ad p M L, rdr p d K p d Np, J, () p Now, we hall prove ha I he cae of codiio (i), if p, J p i o rue, he here i a, a uch ha ax p :, he If, he p,, (), we have p,, So, icreaig i,, we have p which coradic p If, he here exi a, p Fro (), we have p Le The, by p i, uch ha p M L d K N L M K N,, Thu, we have ha p p p d a L M K N d M K a La Na 6 The, by p, we have which coradic (i) I he cae of codiio (ii) holdig, le N p e M K a a 6, 6N La

15 56 Turih Joural of Aalyi ad Nuber Theory ad applyig i o (), by a iilar proce, we ca obai, J, ad o p, J Therefore, p, J, which iplie ha p p, J By he arbirarily of J we have u, u, Lea i proved Lea [] Le B CJ, E bouded, he B P, be couable ad L J, R, ad : J u( ) d u B B d Lea [] Le B CJ, E equicoiuou, le B coiuou o J ad J be couable ad, J, he () i Bd B d J Lea 4 [,6] Aue ha C J, R aifie a M d M d M d, J where M, M, M are coa The, J, provided oe of he followig wo codiio hold a (i) MaM am e M am, (ii) a M am am Mai Reul We li for coveiece he followig aupio (H ): (i) There exi u C J E J aifyig, u Fu, J, u x, u x (ii) There exi v C J E, aifyig v Fv, J, v x, v x (H ): (i) Wheever J ad,, ui vi i C J, E u, u, ui vi u v,,,,,,,,,,,, M u v K u v N u v LT u v f u u u Tu Su f v v v Tv Sv, (ii) Wheever J ad,, u v i Q C J, E u, u, ui vi, u v,,,,,,,,,,, M u v K u v N u v LT u v f u u u Tu Su f v v v Tv Sv, where M, K, N, L are o-egaive coa ad aify (i) or (ii) i Lea i i (H ): (i) There exi h CJ E ad J, aifyig Fu h (ii) There exi g CJ E J, aifyig Fu g,, for ay u,, for ay u Q ad (H 4 ): For ay couable bouded equicoiuou e B u C J, E ad J,,,,,, f B B B TB SB c B c B c B c TB c SB 4 5 where,,,5 c i are o-egaive coa i aifyig oe of he followig wo codiio: (i) ac h e a a c c c M K N al ac4 5 c i M K N al ac4, i (ii) aa c i 4M K N i al ac4 ac5h E Theore Le P be a oral coe ad o J Aue ha codiio H i, H i, H i ad H 4 hold, he IVP() ha a iial oluio u i Moreover, here exi oooe icreaig ieraive equece u uch ha u u aifyig u u x x uiforly o J, where, u, u, u, Tu, Su f M u u d, () K u u N u u LT u u,, Proof Fir, for ay u C J, E, ha () ha a uique oluio u CJ E Nex, by(), we have i i eay o prove,, u, u, u, Tu, Su f M u u u x K u u d, () N u u LT u u u x,,,,

16 Turih Joural of Aalyi ad Nuber Theory 57,,,,,, u x,,, u u u f u Tu Su M u u K u u N u u LT u u By () ad (H )(i), we have u u M u u K u u N u u LT u u, u u u u, u u u u, () ad by Lea, we ca obai u u, uu, J Tha i u u, u u Suppoe u, u, u u, u u, by () ad H i we have, u u, u u, u u M u u K u u N u u LT u u ad o, by Lea, we have u u, u u, J Tha i u u, ad u u u Fro he above, by iducio, i i o difficul o prove ha u u u u, (4) u u u u (5) By (), (4) ad (H )(i), we ow u u x x hd v, (6) J, ad o, by (), (5) ad (6), we have u u x h d, J (7) The, le B u : N, B u N :, by he oraliy of P ad (6) (7), we ow ha u, u are bouded equece i CJ, E For ay u-, by (H )(i) ad (H )(i), i i eay o ow ha f, u, u, u, Tu, Su i bouded A he ae, by () ad (), i i o difficul o how ha u, u are equicoiuou o J, Le B, B, J, ad by he uifor boudede of B() ad uifor,, h,, i i eay o how ha coiuiy of (TB)(), (SB)() are bouded ad equicoiuou Therefore, by Lea, we have a TB, r Brdr r dr, (8) SB h, r Brdr h r dr, (9) he, fro (), (), (8), (9), (H 4 ), Lea ad, C J, R, ad Lea, we ow B,,, B, B, f B TB SB a MB KB d NB LTB c c B c B c TB c SB a d 4 5 4a M K B d 4aN Bd 4aL TBd a cc d ac d ac4 d ac5h d 4a M K d 4aN d 4aL d a c c M K d ac 4aN d ac4 4aL d ac5h d Siilarly, we have B c c M K d c 4N d c4 4L d c5h d () ()

17 58 Turih Joural of Aalyi ad Nuber Theory ge Le r ax,, by (), (), we ca a r M r d M r d M r d, J, where M a ci M K N, i M a c4 L, M a ch Therefore, by Lea 4 ad he codiio (i) or (ii) i,, J (H 4 ), we ee r Ad o Hece B, B The BB, are relaively copac e i CJ, E Accordig o (4), (5) ad he oraliy of P, we ow u, u are coverge equece repecively i CJ, E Hece, here exi a u C J, E ha aifie u u, u u, By aig lii i () a, we have, u, u, u x x f u, Tu, d, J, Su o, u i a oluio of (IVP)() i If here exi a v ad v i alo a oluio of (IVP)() i, he v u, u u ad, v, v, v f, v, Tv, Sv v x, v x () By (), () ad (H )(i), uig iducio, we ca afely obai, u v u v,,, () Leig i () ad uig he oraliy of P, we have u u v v, Tha i, oluio of (IVP)() i The proof of he heore i coplee Theore Le P E u i a iial be a oral coe ad o J Aue ha codiio (H)(ii), (H)(ii), (H)(ii) ad (H4) hold, he IVP() ha a axial oluio v i Q Moreover, here exi oooe decreaig ieraive equece v Q uch ha v uiforly o J, where v v aifyig, v, v, f v, Tv, Sv M v, v d (4) K v v N v v LT v v v x x,, Proof The proof of Theore i alo he ae a ha of Theore, o we oi i Theore Le P E be a regular coe ad o J Aue ha codiio (H)(i), (H)(i) ad (H)(i) hold, he he reul i Theore hold Proof Accordig o he proof of Theore, we have (4), (5), by he regulariy of P, we ca obai ha u v, u v, uiforly o J, he re of he proof i iilar o he proof of Theore Theore 4 Le P E be a regular coe ad o J Aue ha codiio (H) (ii), (H) (ii) ad (H)(ii) hold, he he reul i Theore hold Proof By uig he iilar ehod of he proof of Theore, we ca ge he correpodig cocluio Rear I (IVP)(), if f doe o coai he delayed argue u, u ad he differeial argue u he Theore iplie he ai reul of [,6], bu he codiio i hi paper are ore exeive ha hoe of [,6] So he reul preeed i hi paper geeralize ad uify he reul of [,6] Rear I paper [], he auhor dicued he proble (IVP)() i which f doe o coai u, u ad aue he icreae of Tu Obviouly i hi paper, i he geeral cae, we coider he ecod-order iegrodiffereial equaio i which f coai u, u ad weae he icreae of u, u, Tu, Su ad we obai he iial ad axial oluio ad he ieraio equece of (IVP) () Moreover, he codiio (H4) i hi paper are ore exeive ha hoe i [] Therefore Theore iprove ad geeralize he reul i [] Rear We ca ee ha Theore i uiable for ay eaure of o-copace which i equal o he Kuraowi eaure of o-copace fro he proof of Theore Acowledge The auhor ha he referee for hi\her careful readig of he aucrip ad ueful uggeio Suppor Thi wor i uppored by he NNSF of Chia (No54) ad he Scieific ad Techological

18 Turih Joural of Aalyi ad Nuber Theory 59 Iovaio Progra of Higher Educaio Iiuio i Shaxi (No45) Referece [] D J uo, Iiial value proble for ecod-order iegrodiffereial equaio i Baach pace, Noliear Aalyi, 7(999): 89- [] Liha Liu, Ieraive ehod for oluio ad coupled quaioluio of oliear iegro-differeial equaio of ixed ype i Baach pace, Noliear Aalyi, 4(): [] D J uo, V Lahiaha, X Z Liu, Noliear iegral equaio i abrac pace, Kluwer Acadeic Publiher, Dordrech, 996 [4] Hua Su, Liha Liu, Xiaoya Zhag, Yoghog Wu, lobal oluio of iiial value proble for oliear ecod-order iegro-differeial equaio of ixed ype i Baach pace, JMah>Appl, (7): 9-5 [5] Fagqi Che, Yuhu Che, O oooe ieraive-ehod for iiial value proble of oliear ecod-order iegrodiffereial equaio i Baach pace, Appl Mah Mech, (5)(): [6] Liha Liu, The oluio of oliear iegro-differeial equaio of ixed ype i Baach pace, Aca Mah Siica, 8(6)(995): 7-7 (i Chiee) [7] S W Du, V Lahiaha, Moooe ieraive echique for differeial equaio i Baach pace, J Mah Aal Appl, 87(98): [8] D J uo, V Lahiaha, Noliear proble i abrac coe, Acadeic Pre,Boo ad New Yor, 988 [9] Daju uo, Noliear Fucioal Aalyi, d edio, Sciece ad Techology, Jia, [] RP Agarwal, D ORega, PJY Wog, Poiive Soluio of Differeial, Differece ad Iegral Equaio, Kluwer Acadeic Publiher, Dordrech, 999 [] KDeilig, Noliear Fucioal Aalyi, Spriger-Verlag, Berli, 985 [] TA Buro, Differeial iequaliie for iegral ad delay differeial equaio, i: Xizhi Liu, David Siegel (Ed), Copario Mehod ad Sabiliy Theory, i: Lecure Noe i Pure ad Appl Mah, Deer, New Yor, 994 [] Wag, L Zhag, Sog, Iegral boudary value proble for fir order iegro-differeial equaio wih deviaig argue, J Copu Appl Mah, 5 (9) 6-6 [4] Wag, Boudary value proble for ye of oliear iegro-differeial equaio wih deviaig argue, J Copu Appl Mah, 4 () 56-6 [5] Wag, L Zhag, Sog, Sye of fir order ipulive fucioal differeial equaio wih deviaig argue ad oliear boudary codiio, Noliear Aalyi,74 () [6] Wag, Moooe ieraive echique for boudary value proble of a oliear fracioal differeial equaio wih deviaig argue, J Copu Appl Mah, 6 () 45-4 [7] Wag, SK Nouya, L Zhag, Exiece of uliple poiive oluio of a oliear arbirary order boudary value proble wih advaced argue, Elecroic Joural of Qualiaive Theory of Differeial Equaio 5 () -

19 Turih Joural of Aalyi ad Nuber Theory, 5, Vol, No 6, 6-64 Available olie a hp://pubciepubco/ja//6/4 Sciece ad Educaio Publihig DOI:69/ja--6-4 D e ad Srucure-Preervig Map Jori N Buloro, Robero B Corcio,, Lora S Alocera, Michael P Baldado Jr Maheaic Depare, Cebu Noral Uiveriy, Cebu Ciy, Philippie 6 Sciece Cluer, Uiveriy of he Philippie - Cebu Maheaic Depare, Negro Orieal Sae Uiveriy Correpodig auhor: rcorcio@yahooco Received Sepeber 9, 5; Acceped Deceber, 5 Abrac Thi paper iveigae D e of group i relaio o rucure-preervig ap I how coecio bewee o-ivoluio of group ad he cocep of D e I paricular, we prove ha he exiece of a eigroup ioorphi bewee he failie of D e of wo group i equivale o a exiece of a pecial ype of bijecio bewee he ube coaiig all elee of order greaer ha wo of he group Keyword: D e, o-ivoluio, orphi Cie Thi Aricle: Jori N Buloro, Robero B Corcio, Lora S Alocera, ad Michael P Baldado Jr, D e ad Srucure-Preervig Map Turih Joural of Aalyi ad Nuber Theory, vol, o 6 (5): 6-64 doi: 69/ja--6-4 Iroducio The elee of a group of order wo play a very ipora role o oly i group heory bu i oher brache of aheaic, hey are ow a ivoluio We call elee of order greaer ha wo a oivoluio i hi paper The rucure called D e i coruced wih he cocep of ivere ad reveal oe properie relaed o ivoluio [7] I fac, a group ha oly oe D e if ad oly if i i a eleeary abelia -group A ube D of a group i a D e wheever every elee of o i D ha i ivere i D Thi paper how reul ha would lead o he copario of he uber of o-ivoluio of wo arbirary group We udy coecio of rucural-preervig appig bewee group ad heir correpodig D e failie We borrow cocep ad oaio fro e heory [5] X \ Y x X x Y i he Le X ad Y be e, he coplee of Y i X If f : X Y i a fucio wih A X he f A f a a A, called he iage of A i f The cardialiy of a e X i deoed by X We deoe he e of all ivoluio of a group ogeher wih he ideiy elee by S ; ha i, S x x e A D e D of group i a iiu D e if ad oly if he ivere of each x D \ S i o i D [] Noe ha for a fiie group, hi idea coicide wih he iiu D e eioed i [6] We wrie T a he faily of all D e of a group ad T i he ube coaiig all iiu D e [] I wa how i [7] ha T i a eigroup wih repec o uio of e We deviae a lile o dicu he oivaio of D e ad oe relaed lieraure The defiiio of D e i V, E be a baed o doiaig e of graph Le graph ad D V D i aid o doiae if for ay u V \ D, here exi v D uch ha u, v E (ee []) A eioed i [], a pecial ype of graph coruced fro a group wa iroduced by Kadaay ad Saradache [4] i 9 A ideiy graph of a orivial group i a udireced graph fored by adjoiig every o-ideiy elee o he ideiy e of ad x, y are coeced wheever xy e I view of ideiy graph of fiie group, he poi coaied i a iiu D e for a pecial ype of iduced ubgraph called ar [] Hece, we ca view T i a a faily of ar relaed o he group Reul We ar by howig how T ca be geeraed fro he correpodig T i Propoiio Le be a group The T i geerae T a a eigroup Moreover, if T, where T T i T X Y X, Y T i i

20 Turih Joural of Aalyi ad Nuber Theory 6 Proof: Le D be i T If D \ S he D S ad we oly have oe D e i hi cae Tha i, T Ti Aue D \ S ad deoe x D S x D \ Coider a oepy ube A of uch ha, for each x A, x \ A We oberve ha D ca be expreed a \ \ \ D D A D A where D \ A ad D \ \ A are i T i Thu, T i geerae T We rear ha a iiu D e cao be wrie a a uio of wo diic D e Le x be i The we wrie ad T x D T x D T i x D T i x D The followig lea i [7] give a cerai characerizaio of he ivoluio i Lea [7] Le x be a o-ideiy elee of a group The x i a ivoluio if ad oly if T x T The followig propoiio i a refiee of Lea Propoiio Le be a orivial group A o-ideiy elee x i i a ivoluio if ad oly if Ti x Ti Proof: Le x be a ivoluio i Sice T x T, he Ti x Ti Suppoe Ti x Ti Le D T ad by Propoiio, D D D where D ad D ad D are elee of T i By aupio, D are boh i T i x Hece, X D Thi ea ha T x T, ad by Lea, x i a ivoluio The propoiio below prove ha a ioorphi of failie of D e preerve he iialiy propery Propoiio Le ad H be group ad : T T H be a eigroup ioorphi The D i a iiu D e D i a iiu D e of H of if ad oly if Proof: The cae Aue i S i rivial Suppoe S D i i o The here D i iiu while exi a lea oe pair proof of Propoiio, here exi uch ha Di Dj D y, y boh i D i A i he D j ad D i T i H wih y Dj ad y D I follow ha here exi diic D j ad ha Dj Dj ad D D Di Dj D Dj D D i T uch Bu hi iplie ha ad o Di Dj D Thi i a coradicio o a rear followig Propoiio For he covere, uppoe D i i a iiu while D i i o There exi diic where D D D D j ad D i T i i j Hece, Di Dj D Dj D where Dj D, hi i aburd Propoiio 4 Le ad H be group ad : T T H be a eigroup ioorphi If D T i ad x \ D he D x D y where y H \ D Proof: Suppoe D i i T i o coaiig a elee x of The D x i a elee of T where xx, i he oly pair of ivere i hi D e A i he proof of Propoiio, D x D D \ x x where D \ x x hooorphic propery of iplie ha i alo i T i The D \ x D D \ x x where D, D \ x x Propoiio Furher, here u exi H \ S H where (WLO) i T i H by y, y D ad y D \ x x y i Suppoe here exi aoher elee z which hare he ae characeriic wih y We ay aue ha y ad y ad z are i D x x of he above argue, D z are i D \ x \ while A a coequece ca be expreed a D \ z z D \ x x D x D y y where he hree facor are diic elee of T i H By he urjecive propery of ad Propoiio, here exi D i ad Thi ea ha T uch ha D j i i Di D \ y y Dj D z z ad \

21 6 Turih Joural of Aalyi ad Nuber Theory i j D x D D D \ x x By he properie of, we have ad o i j \ D x D D D x x i j D x D D D \ x x ( ) Sice he hree facor o he righ hadide of equaio ( ) are diic elee of T i, we ge a lea wo pair of ivere Bu we oly have x ad x fro he lef hadide of ( ), hi i aburd Hece, y ad u be he oly pair of ivere i D D \ x x ad o D x D y y Le u ow ae ad prove he ai reul of hi paper Theore Le ad H be group wih \ S The T i ioorphic o T H if ad oly if here : \ S H \ S uch ha exi a bijecio x x for ay x i \ S Proof: Le : T T H be a ioorphi We for he : \ S H \ S uch ha bijecio x x for ay x i \ S Firly, we chooe a fix D i T i Le x be i \ S, he eiher x D or x D If x D, he he pair x ad H H x uique i D x By Propoiio 4, here exi a uique pair y y i \ H H S where D x D y We ca ow for y ad x y x x i ad we proceed a i he fir cae If x D he x D Therefore, if x \ S he here exi a uique y H \ SH uch ha x y ad x y We how ha i a ijecio by way of coradicio Suppoe ha a b i \ S uch ha ad a o a b Sice a i apped o a a we for where a H \ S H, he D j ad D i T i : If a D he D D; j If a D he D D \ a a ; If b D he D D; j If b D he D D \ b b Hece, we have he followig cae: Cae : a D ad b D b a Now, Dj a D D \ a a D b D D \ b b D b D D b b Dj a D D \ a a Cae : a D ad b D j \ \ D \ a D D \ a a D b D b b D D b D \ b b D Cae : a D ad b D Dj a D \ a a D D b D D \ b b j D a D \ a a D Cae 4: a D ad b D j D a D \ a a D \ D b D b b D Noe ha i ay of he cae above, Dj a D D D b D D ad, for oe D D T D, \ i Now, he oly pair of ivere i Dj a i a a while oly b b i D b Le y a, a \ D Sice a b, he y D \ D \ Hece, y D D Dj a D D D y D D D b Sice i ijecive, we have Dj a = D b ad Thi furher iplie ha a ad a are boh i D, hi i a coradicio To how ha i i urjecive, aue a elee y H \ S H Uig D i T H, eiher y D or y D If y D, he y D ad he pair y y i uique i D y Furher, D y D D \ y y

22 where D \ y y Turih Joural of Aalyi ad Nuber Theory 6 i a iiu D e of H By Propoiio 4 ad he ioorphi : T T, we have D y uique pair x x However, i H T which coai a D y D D \ y y D y D D \ y y where D \ y y i i i we ay have x D ad x D \ y y x T WLO, Thu, we ae y ad x y x i which D x D D \ y y \ D x D D y y D x D y O he oher had, give ha y D, he y D We proceed a above owig ha y y i he oly pair of ivere i D y followig he ae paer of reaoig, we will ill obai a uique pair x ad x fro \ S i which we ca wrie y ad x y x Hece, x i urjecive Suig up, we have he required bijecio For he covere, uppoe here exi a bijecio S H S : \ \ uch ha x x for H ay x i \ S We for a eigroup ioorphi : T TH Le D be i T, he D S X where X \ S We defie by D S X H where X i he iage of X wih repec o The verificaio ha i a ioorphi i a rouie We prove ore properie ivolvig orphi ad D e Propoiio 5 Le : H be a ooorphi of group ad H The D i a D e of H he D i a D e of ; i If By ii If D i a iiu D e of H he D i a iiu D e of D be a D e of H ad x \ D Sice Proof: (i) Le i ijecive, he x u o be i D By aupio, ha x D x (ii) Suppoe D (i), D i a D e of If x i i D Thi iplie i a iiu D e of H By par x D S he x D \ By aupio, x x D Thu, x ad hi prove our clai We oberve ha if T a igleo eigroup (ha i, \ S ) he he followig hold rue vacuouly Lea Le : H be a appig of group ad D H where \ S If a ioorphi : T T H ha he propery ha D y D y, for D T i ad y \ D, he y D Proof: Le D Ti, y \ D, ad : T T H be a ioorphi uch ha D y D y wih a above Fro he proof of Propoiio 4, - i H - - D y D D y y where D D y y i T Now we have D y D D y y, iplyig ha cao be i D Oherwie, we y - will ge D D D y y which i aburd Theore Le : H be a ooorphi of group ad H where \ S The here exi a uch ha ioorphi : T T H D y D y, for every D T i ad y \ D, if ad oly if S \ H \ SH Proof: Suppoe : T T H i a ioorphi uch ha D y D y, for every D T i ad y \ D If z S he z x for oe \ x S \ Thu, z x x z z Auig ha would iply x x which ea x x ice i ijecive Thi i a coradicio Hece, z u be i H \ S H Now, if z H \ SH he chooe a iiu D e of H, ay D o coaiig z By Propoiio 4 ad, D z D y for oe y D \ By propery of, D z D y D y

23 64 Turih Joural of Aalyi ad Nuber Theory I i ow evide ha A i Lea, y D \ For he covere, aue ha S z S \ H \ SH We ow have a bijecio : \ S H \ SH uch ha x x for all x \ S By Theore, we have he ioorphi : T T H defied by where D D S X H T wih Le D be i i D S X where X \ S D S X for oe X \ S T ad y \ D Suppoe The D y S X y SH X y Bu we have X y X y Coequely, D y SH X y S X y D y H Referece [] J N Buloro ad J M P Balaceda Cojugaio acio o he faily of iiu D e of a group MS Thei, Uiveriy of he Philippie - Dilia, 5 [] T Haye, S Hedeiei ad P Slaer Fudaeal of doiaio i graph (Marcel Deer, Ic, New Yor, 998) [] T W Hugerford Algebra (Spriger-Verlag, Ic, New Yor, 976) [4] V Kadaay ad F Saradache roup a graph (Ediura CuAr, Roaia, 9) [5] D C Kurz Foudaio of abrac aheaic (Sigapore: Mcraw-Hill Ic, 99) [6] C J S Roero, J M Oola, J N Buloro ad M P Baldado, Jr O he D e of fiie group Ieraioal Joural of Algebra 8 (4), 6-68 [7] C J S Roero, J M Oola, J N Buloro ad M P Baldado, Jr Soe properie ofd e of a group Ieraioal Maheaical Foru 9 (4), 5-4

24 Turih Joural of Aalyi ad Nuber Theory, 5, Vol, No 6, Available olie a hp://pubciepubco/ja//6/5 Sciece ad Educaio Publihig DOI:69/ja--6-5 Soe Fixed Poi Theore of Iegral Type Coracio i Coe b-eric Space Rahi Shah, Abar Zada, Ihfaq Kha Depare of Maheaic, Uiveriy of Pehawar, Pehawar, Paia Correpodig auhor: afeer_rahi@yahooco Received Ocober 6, 5; Acceped Deceber, 5 Abrac I he pree paper, we iroduce he cocep of iegral ype coracio wih repec o coe b-eric pace Alo we proved oe fixed poi reul of iegral ype coracive appig i coe b-eric pace We give a exaple o uppor our ai reul Keyword: coe b-eric pace, fixed poi, iegral ype coracive appig Cie Thi Aricle: Rahi Shah, Abar Zada, ad Ihfaq Kha, Soe Fixed Poi Theore of Iegral Type Coracio i Coe b-eric Space Turih Joural of Aalyi ad Nuber Theory, vol, o 6 (5): doi: 69/ja--6-5 Iroducio The udy of fixed poi heory play a ipora role i applicaio of ay brache of aheaic Fidig a fixed poi of coracive appig becoe he ceer of rog reearch aciviy There are oe reearcher who have wored abou he fixed poi of coracive appig ee [4,] I 9, Baach [4] preeed a ipora reul regardig a coracio appig, ow a he Baach coracio priciple Bahi i [] iroduced he cocep of b-eric pace a a geeralizaio of eric pace He proved he coracio appig priciple i b-eric pace ha geeralized he faou Baach coracio priciple i eric pace The cocep of coe eric pace wa preeed by Haug ad Zhag [5] i 7 They replace a ordered Baach pace for he real uber ad proved oe fixed poi heore of coracive appig i coe eric pace Huai ad Shah give he cocep of coe b-eric pace a a geeralizaio of b-eric pace ad coe eric pace i [6] Alo hey iproved oe rece reul abou KKM appig i coe b-eric pace I, Braciari [8] iroduced he oio of iegral ype coracive appig i coplee eric pace ad udy he exiece of fixed poi for appig which are defied o coplee eric pace aifyig iegral ype coracio Recely F Khojaeh e al [9], preeed he cocep of iegral ype coracio i coe eric pace ad proved oe fixed poi heore i uch pace May reearcher udie variou coracio ad a lo of fixed poi heore are proved i differe pace; ee [-7,9,,,,,7,8,] I he ai ecio of hi paper we preeed oe fixed poi heore of Iegral ype coracive appig i eig of coe b-eric pace Moreover, we pree uiable exaple ha uppor our ai reul Preliiarie The followig defiiio ad reul will be eeded i hi paper Defiiio [5] Le be a real Baach pace ad be a ube of The i called coe if ad oly if: ; (i) i cloed, oepy ad (ii) cp dq for all pq, where cd, are oegaive real uber; (iii) Defiiio [5] Suppoe be a coe i real Baach pace, we defie a parial orderig wih repec o by p q q p We hall wrie p q o idicae ha p q bu p q, while p q will ad for q p i Defiiio [5] The coe i called oral if here i uber K uch ha for all pq,, p q iplie p K q The lea poiive uber K aifyig he above iequaliy i called he oral coa of coe Throughou hi paper we alway uppoe ha i a real Baach pace, i a coe i wih i ad i parial orderig wr coe Defiiio 4 [5] Le Y be a o-epy e Suppoe ha he appig d : Y Y aifie: d u, v for all u, v Y wih u v; (d) (d) d u, v if ad oly if u v; (d) d u, v d v, u for all u, v Y (d4) d u, v d u, w d w, v ; for all u, v, w Y The d i called a coe eric o Y ad (Y, d) i called a coe eric pace

25 66 Turih Joural of Aalyi ad Nuber Theory Exaple 5 [5] Suppoe R, u, v u, v R, Y R ad d : Y Y uch ha d u, v u v, u v, where i a coa The Yd, i coe eric pace Defiiio 6 [6] Le Y be a o-epy e ad be a give real uber A appig d : Y Y i aid o be coe b-eric if ad oly if, for all u, v, w i Y, he followig codiio are aified: d u, v for all u, v Y wih u v; (i) (ii) d u, v if ad oly if u v; (iii) d u, v d v, u for all u, v Y (iv) d u, v d u, w d w, v ; for all u, v, w Y The d i called a coe b-eric o Y ad (Y, d) i called a coe b-eric pace Exaple 7 [4] Le d : Y Y R, u, v u, v R, p p uch ha d u v u v u v where ad,,, p are coa The, Yd i coe b-eric pace Lea 8 [5] Le Yd, be a coe eric pace ad a oral coe wih oral coa K Le u N be a equece i Y The coverge o u if ad oly if u N li d u, u Lea 9 [5] Le Yd, be a coe eric pace ad a oral coe wih oral coa K Le u N be a equece i Y The i a Cauchy equece if ad oly if, u N li d u, u Lea [5] Le Yd, be a coe eric pace ad a equece i Y If i coverge, u N u N he i i a Cauchy equece Lea [5] Le Yd, be a coe eric pace ad be a oral coe wih oral coa K Le u ad v be wo equece i Y ad u u, v v a The d u, v d u, v a I, Braciari i [8] iroduced a geeral coracive codiio of iegral ype a follow Theore [8] Le Yd, be a coplee eric pace,,, ad f : Y Y i a appig uch ha for all x, y Y, d d d f x, f y d x, y where :,, i oegaive ad Lebegueiegrable appig which i uable (ie, wih fiie iegral) o each copac ube of, uch ha for each, d, he f ha a uique fixed poi a Y, uch ha for each x Y, li f x a I [9], Khojaeh e al defied ew cocep of iegral wih repec o a coe ad iroduce he Braciari reul i coe eric pace We recall heir idea o ha he paper will be elf coaied Defiiio Suppoe ha i a oral coe i Le a, b E ad a b We defie a, b: x : x b a, for oe,, a, b : x : x b a, for oe, Defiiio 4 The e a x, x,, x b i called a pariio for ab, if ad oly if he e xi, x) are pairwie dijoi ad i i ) Defiiio 5 For each pariio P of, icreaig fucio : ab,, a, b x, x b i ab ad each we defie coe lower uaio ad coe upper uaio a Co L, P : xi xi xi i Co U, P : xi xi xi i repecively Defiiio 6 Suppoe ha i a oral coe i : ab, ab, i called a iegrable fucio o wih repec o coe or o ipliciy, Coe iegrable fucio, if ad oly if for all pariio P of ab, where Co Co Co li L, P S li U, P Co S u be uique We how he coo value b Co S by a Le,, fucio x d x iply by x d ab deoe he e of all coe iegreble Lea 7 [9] Le f g a b b a,,, The followig wo aee hold () If a, b a, c, he b c f d f d a a, f a b,, b b b () for f g d f d gd a a for, a Defiiio 8 [9] The fucio : i called ubaddiive coe iegrable fucio if ad oly if for all cd,

Types Ideals on IS-Algebras

Types Ideals on IS-Algebras Ieraioal Joural of Maheaical Aalyi Vol. 07 o. 3 635-646 IARI Ld www.-hikari.co hp://doi.org/0.988/ija.07.7466 Type Ideal o IS-Algebra Sudu Najah Jabir Faculy of Educaio ufa Uiveriy Iraq Copyrigh 07 Sudu

More information

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar

EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D. S. Palimkar Ieraioal Joural of Scieific ad Research Publicaios, Volue 2, Issue 7, July 22 ISSN 225-353 EXISTENCE THEORY OF RANDOM DIFFERENTIAL EQUATIONS D S Palikar Depare of Maheaics, Vasarao Naik College, Naded

More information

On a Grouping Method for Constructing Mixed Orthogonal Arrays

On a Grouping Method for Constructing Mixed Orthogonal Arrays Ope Joural of Saiic 01 188-197 hp://dxdoiorg/1046/oj010 Publihed Olie April 01 (hp://wwwscirporg/joural/oj) O a Groupig Mehod for Corucig Mixed Orhogoal Array Chug-Yi Sue Depare of Maheaic Clevelad Sae

More information

The Time-optimal Problems for the Fuzzy R-solution of the Control Linear Fuzzy Integro-Differential Inclusions

The Time-optimal Problems for the Fuzzy R-solution of the Control Linear Fuzzy Integro-Differential Inclusions Aerica Joural of Modelig ad Opiizaio 23 Vol. No. 2 6- Available olie a hp://pub.ciepub.co/ajo//2/ Sciece ad Educaio Publihig DOI:.269/ajo--2- he ie-opial Proble for he Fuzzy R-oluio of he Corol Liear Fuzzy

More information

arxiv:math/ v1 [math.fa] 1 Feb 1994

arxiv:math/ v1 [math.fa] 1 Feb 1994 arxiv:mah/944v [mah.fa] Feb 994 ON THE EMBEDDING OF -CONCAVE ORLICZ SPACES INTO L Care Schü Abrac. I [K S ] i wa how ha Ave ( i a π(i) ) π i equivale o a Orlicz orm whoe Orlicz fucio i -cocave. Here we

More information

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by

State-Space Model. In general, the dynamic equations of a lumped-parameter continuous system may be represented by Sae-Space Model I geeral, he dyaic equaio of a luped-paraeer coiuou ye ay be repreeed by x & f x, u, y g x, u, ae equaio oupu equaio where f ad g are oliear vecor-valued fucio Uig a liearized echique,

More information

Meromorphic Functions Sharing Three Values *

Meromorphic Functions Sharing Three Values * Alied Maheaic 11 718-74 doi:1436/a11695 Pulihed Olie Jue 11 (h://wwwscirporg/joural/a) Meroorhic Fucio Sharig Three Value * Arac Chagju Li Liei Wag School o Maheaical Sciece Ocea Uiveriy o Chia Qigdao

More information

Comparison between Fourier and Corrected Fourier Series Methods

Comparison between Fourier and Corrected Fourier Series Methods Malaysia Joural of Mahemaical Scieces 7(): 73-8 (13) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/oural Compariso bewee Fourier ad Correced Fourier Series Mehods 1

More information

Ruled surfaces are one of the most important topics of differential geometry. The

Ruled surfaces are one of the most important topics of differential geometry. The CONSTANT ANGLE RULED SURFACES IN EUCLIDEAN SPACES Yuuf YAYLI Ere ZIPLAR Deparme of Mahemaic Faculy of Sciece Uieriy of Aara Tadoğa Aara Turey yayli@cieceaaraedur Deparme of Mahemaic Faculy of Sciece Uieriy

More information

( ) ( ) ( ) ( ) ( ) t ( ) ( ) ( ) ( ) [ ) Abstract. Keywords. 1. Introduction. Yunlong Gao, Yuting Sun, Guoguang Lin

( ) ( ) ( ) ( ) ( ) t ( ) ( ) ( ) ( ) [ ) Abstract. Keywords. 1. Introduction. Yunlong Gao, Yuting Sun, Guoguang Lin Ieraioal Joural of Moder Noliear Theory ad Applicaio 6 5 85- hp://wwwcirporg/oural/ia ISSN Olie: 67-9487 ISSN Pri: 67-9479 The Global Aracor ad Their Haudorff ad Fracal Dieio Eiaio for he Higher-Order

More information

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion

BE.430 Tutorial: Linear Operator Theory and Eigenfunction Expansion BE.43 Tuorial: Liear Operaor Theory ad Eigefucio Expasio (adaped fro Douglas Lauffeburger) 9//4 Moivaig proble I class, we ecouered parial differeial equaios describig rasie syses wih cheical diffusio.

More information

The Inverse of Power Series and the Partial Bell Polynomials

The Inverse of Power Series and the Partial Bell Polynomials 1 2 3 47 6 23 11 Joural of Ieger Sequece Vol 15 2012 Aricle 1237 The Ivere of Power Serie ad he Parial Bell Polyomial Miloud Mihoubi 1 ad Rachida Mahdid 1 Faculy of Mahemaic Uiveriy of Sciece ad Techology

More information

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming*

Some Properties of Semi-E-Convex Function and Semi-E-Convex Programming* The Eighh Ieraioal Symposium o Operaios esearch ad Is Applicaios (ISOA 9) Zhagjiajie Chia Sepember 2 22 29 Copyrigh 29 OSC & APOC pp 33 39 Some Properies of Semi-E-Covex Fucio ad Semi-E-Covex Programmig*

More information

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE

FIXED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE Mohia & Samaa, Vol. 1, No. II, December, 016, pp 34-49. ORIGINAL RESEARCH ARTICLE OPEN ACCESS FIED FUZZY POINT THEOREMS IN FUZZY METRIC SPACE 1 Mohia S. *, Samaa T. K. 1 Deparme of Mahemaics, Sudhir Memorial

More information

arxiv: v1 [math.nt] 13 Dec 2010

arxiv: v1 [math.nt] 13 Dec 2010 WZ-PROOFS OF DIVERGENT RAMANUJAN-TYPE SERIES arxiv:0.68v [mah.nt] Dec 00 JESÚS GUILLERA Abrac. We prove ome diverge Ramauja-ype erie for /π /π applyig a Bare-iegral raegy of he WZ-mehod.. Wilf-Zeilberger

More information

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY

SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO SOME PROBLEMS IN NUMBER THEORY VOL. 8, NO. 7, JULY 03 ISSN 89-6608 ARPN Jourl of Egieerig d Applied Sciece 006-03 Ai Reerch Publihig Nework (ARPN). All righ reerved. www.rpjourl.com SLOW INCREASING FUNCTIONS AND THEIR APPLICATIONS TO

More information

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments

Variational Iteration Method for Solving Differential Equations with Piecewise Constant Arguments I.J. Egieerig ad Maufacurig, 1,, 36-43 Publihed Olie April 1 i MECS (hp://www.mec-pre.e) DOI: 1.5815/ijem.1..6 Available olie a hp://www.mec-pre.e/ijem Variaioal Ieraio Mehod for Solvig Differeial Equaio

More information

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation

Two Implicit Runge-Kutta Methods for Stochastic Differential Equation Alied Mahemaic, 0, 3, 03-08 h://dx.doi.org/0.436/am.0.306 Publihed Olie Ocober 0 (h://www.scirp.org/oural/am) wo mlici Ruge-Kua Mehod for Sochaic Differeial quaio Fuwe Lu, Zhiyog Wag * Dearme of Mahemaic,

More information

CHAPTER 2 Quadratic diophantine equations with two unknowns

CHAPTER 2 Quadratic diophantine equations with two unknowns CHAPTER - QUADRATIC DIOPHANTINE EQUATIONS WITH TWO UNKNOWNS 3 CHAPTER Quadraic diophaie equaio wih wo ukow Thi chaper coi of hree ecio. I ecio (A), o rivial iegral oluio of he biar quadraic diophaie equaio

More information

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form

Research Article A Generalized Nonlinear Sum-Difference Inequality of Product Form Joural of Applied Mahemaics Volume 03, Aricle ID 47585, 7 pages hp://dx.doi.org/0.55/03/47585 Research Aricle A Geeralized Noliear Sum-Differece Iequaliy of Produc Form YogZhou Qi ad Wu-Sheg Wag School

More information

A quadratic convergence method for the management equilibrium model

A quadratic convergence method for the management equilibrium model (IJACSA Ieraioal Joural of Advaced Copuer Sciece ad Applicaios Vol No 9 03 A quadraic covergece ehod for he aagee equilibriu odel Jiayi Zhag Feixia School Liyi Uiversiy Feixia Shadog PRChia Absrac i his

More information

The Connection between the Basel Problem and a Special Integral

The Connection between the Basel Problem and a Special Integral Applied Mahemaics 4 5 57-584 Published Olie Sepember 4 i SciRes hp://wwwscirporg/joural/am hp://ddoiorg/436/am45646 The Coecio bewee he Basel Problem ad a Special Iegral Haifeg Xu Jiuru Zhou School of

More information

Computable Analysis of the Solution of the Nonlinear Kawahara Equation

Computable Analysis of the Solution of the Nonlinear Kawahara Equation Diache Lu e al IJCSE April Vol Iue 49-64 Compuale Aalyi of he Soluio of he Noliear Kawahara Equaio Diache Lu Jiai Guo Noliear Scieific eearch Ceer Faculy of Sciece Jiagu Uiveri Zhejiag Jiagu 3 Chia dclu@uj.edu.c

More information

Hadamard matrices from the Multiplication Table of the Finite Fields

Hadamard matrices from the Multiplication Table of the Finite Fields adamard marice from he Muliplicaio Table of he Fiie Field 신민호 송홍엽 노종선 * Iroducio adamard mari biary m-equece New Corucio Coe Theorem. Corucio wih caoical bai Theorem. Corucio wih ay bai Remark adamard

More information

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere

Solution of the Hyperbolic Partial Differential Equation on Graphs and Digital Spaces: a Klein Bottle a Projective Plane and a 4D Sphere Soluio of he Hyperbolic Parial Differeial Equaio o Graph ad Digial Space: a Klei Bole a Projecive Plae ad a 4D Sphere Alexader V. Evako Diae, Laboraory of Digial Techologie, Mocow, Ruia Email addre: evakoa@mail.ru

More information

E will be denoted by n

E will be denoted by n JASEM ISSN 9-8362 All rigs reserved Full-ex Available Olie a p:// wwwbiolieorgbr/ja J Appl Sci Eviro Mg 25 Vol 9 3) 3-36 Corollabiliy ad Null Corollabiliy of Liear Syses * DAVIES, I; 2 JACKREECE, P Depare

More information

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY

A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY U.P.B. Sci. Bull., Series A, Vol. 78, Iss. 2, 206 ISSN 223-7027 A TAUBERIAN THEOREM FOR THE WEIGHTED MEAN METHOD OF SUMMABILITY İbrahim Çaak I his paper we obai a Tauberia codiio i erms of he weighed classical

More information

Extremal graph theory II: K t and K t,t

Extremal graph theory II: K t and K t,t Exremal graph heory II: K ad K, Lecure Graph Theory 06 EPFL Frak de Zeeuw I his lecure, we geeralize he wo mai heorems from he las lecure, from riagles K 3 o complee graphs K, ad from squares K, o complee

More information

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract

An interesting result about subset sums. Nitu Kitchloo. Lior Pachter. November 27, Abstract A ieresig resul abou subse sums Niu Kichloo Lior Pacher November 27, 1993 Absrac We cosider he problem of deermiig he umber of subses B f1; 2; : : :; g such ha P b2b b k mod, where k is a residue class

More information

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim

e x x s 1 dx ( 1) n n!(n + s) + e s n n n=1 n!n s Γ(s) = lim Lecure 3 Impora Special FucioMATH-GA 45. Complex Variable The Euler gamma fucio The Euler gamma fucio i ofe ju called he gamma fucio. I i oe of he mo impora ad ubiquiou pecial fucio i mahemaic, wih applicaio

More information

A Comparative Study of Adomain Decompostion Method and He-Laplace Method

A Comparative Study of Adomain Decompostion Method and He-Laplace Method Applied Mahemaic,, 5, 5-6 Publihed Olie December i SciRe. hp://www.cirp.org/joural/am hp://d.doi.org/.6/am..5 A Comparaive Sudy of Adomai Decompoio Mehod ad He-Laplace Mehod Badradee A. A. Adam, Deparme

More information

MODERN CONTROL SYSTEMS

MODERN CONTROL SYSTEMS MODERN CONTROL SYSTEMS Lecure 9, Sae Space Repreeaio Emam Fahy Deparme of Elecrical ad Corol Egieerig email: emfmz@aa.edu hp://www.aa.edu/cv.php?dip_ui=346&er=6855 Trafer Fucio Limiaio TF = O/P I/P ZIC

More information

CHARACTERIZATIONS OF THE NON-UNIFORM IN TIME ISS PROPERTY AND APPLICATIONS

CHARACTERIZATIONS OF THE NON-UNIFORM IN TIME ISS PROPERTY AND APPLICATIONS CHARACTERIZATIONS OF THE NON-UNIFORM IN TIME ISS PROPERTY AND APPLICATIONS I. Karafyllis ad J. Tsiias Depare of Maheaics, Naioal Techical Uiversiy of Ahes, Zografou Capus 578, Ahes, Greece Eail: jsi@ceral.ua.gr.

More information

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R

Approximately Quasi Inner Generalized Dynamics on Modules. { } t t R Joural of Scieces, Islamic epublic of Ira 23(3): 245-25 (22) Uiversiy of Tehra, ISSN 6-4 hp://jscieces.u.ac.ir Approximaely Quasi Ier Geeralized Dyamics o Modules M. Mosadeq, M. Hassai, ad A. Nikam Deparme

More information

Application of Fixed Point Theorem of Convex-power Operators to Nonlinear Volterra Type Integral Equations

Application of Fixed Point Theorem of Convex-power Operators to Nonlinear Volterra Type Integral Equations Ieraioal Mahemaical Forum, Vol 9, 4, o 9, 47-47 HIKRI Ld, wwwm-hikaricom h://dxdoiorg/988/imf4333 licaio of Fixed Poi Theorem of Covex-ower Oeraors o Noliear Volerra Tye Iegral Equaios Ya Chao-dog Huaiyi

More information

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative

MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES. Boundary Value Problem for the Higher Order Equation with Fractional Derivative Malaysia Joural of Maheaical Scieces 7(): 3-7 (3) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural hoepage: hp://eispe.up.edu.y/joural Boudary Value Proble for he Higher Order Equaio wih Fracioal Derivaive

More information

The Importance of Ordering the Number of Lattice Points Inside a Rational Polyhedron Using Generating Functions

The Importance of Ordering the Number of Lattice Points Inside a Rational Polyhedron Using Generating Functions Ieraioal Joural of Copuer Sciece ad Elecroics Egieerig (IJCSEE Volue Issue ( ISSN 48 (Olie he Iporace of Orderig he Nuber of Laice ois Iside a Raioal olyhedro Usig Geeraig Fucios Halil Sopce Absrac I pure

More information

A note on Generalized Hermite polynomials

A note on Generalized Hermite polynomials INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND INFORMATICS Volue 8 14 A oe o Geeralized Herie poloials Cleee Cesarao Absrac B sarig fro he geeral heor of he oevariable Herie poloials we will iroduce

More information

The analysis of the method on the one variable function s limit Ke Wu

The analysis of the method on the one variable function s limit Ke Wu Ieraioal Coferece o Advaces i Mechaical Egieerig ad Idusrial Iformaics (AMEII 5) The aalysis of he mehod o he oe variable fucio s i Ke Wu Deparme of Mahemaics ad Saisics Zaozhuag Uiversiy Zaozhuag 776

More information

Bernstein Direct Method for Solving. Variational Problems

Bernstein Direct Method for Solving. Variational Problems Ieraioal Maheaical Foru, 5,, o. 48, 35-37 Bersei Direc Mehod for Solvig Variaioal Probles Sadeep Dixi*, Viee K. Sigh**, Ai K. Sigh*, O P. Sigh* *Depare of Applied Maheaics, Isiue of echology, Baaras Hidu

More information

1 Notes on Little s Law (l = λw)

1 Notes on Little s Law (l = λw) Copyrigh c 26 by Karl Sigma Noes o Lile s Law (l λw) We cosider here a famous ad very useful law i queueig heory called Lile s Law, also kow as l λw, which assers ha he ime average umber of cusomers i

More information

Fermat Numbers in Multinomial Coefficients

Fermat Numbers in Multinomial Coefficients 1 3 47 6 3 11 Joural of Ieger Sequeces, Vol. 17 (014, Aricle 14.3. Ferma Numbers i Muliomial Coefficies Shae Cher Deparme of Mahemaics Zhejiag Uiversiy Hagzhou, 31007 Chia chexiaohag9@gmail.com Absrac

More information

Matrix Form of The Bayes Theorem And Diagnostic Tests

Matrix Form of The Bayes Theorem And Diagnostic Tests IOSR Joural of Maheaic IOSR-JM e-issn: 78-578, p-issn: 319-765X. Volue 14, Iue 6 Ver. I Nov - Dec 018, PP 01-06 www.iorjoural.org Marix For of The Baye Theore Ad Diagoic Te María Magdala Pérez-Nio 1 Joé

More information

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13

PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL STIFF DIFFERENTIAL EQUATION SOLVER 13 Abrac PIECEWISE N TH ORDER ADOMIAN POLYNOMIAL A piecewie h order Adomia polyomial olver for iiial value differeial equaio capable of olvig highly iff problem i preeed here. Thi powerful echique which employ

More information

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1)

In this section we will study periodic signals in terms of their frequency f t is said to be periodic if (4.1) Fourier Series Iroducio I his secio we will sudy periodic sigals i ers o heir requecy is said o be periodic i coe Reid ha a sigal ( ) ( ) ( ) () or every, where is a uber Fro his deiiio i ollows ha ( )

More information

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations

Conditional distributions, exchangeable particle systems, and stochastic partial differential equations Codiioal diribuio, exchageable paricle yem, ad ochaic parial differeial equaio Da Cria, Thoma G. Kurz, Yoojug Lee 23 July 2 Abrac Sochaic parial differeial equaio whoe oluio are probabiliy-meaurevalued

More information

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K)

Common Fixed Point Theorem in Intuitionistic Fuzzy Metric Space via Compatible Mappings of Type (K) Ieraioal Joural of ahemaics Treds ad Techology (IJTT) Volume 35 umber 4- July 016 Commo Fixed Poi Theorem i Iuiioisic Fuzzy eric Sace via Comaible aigs of Tye (K) Dr. Ramaa Reddy Assisa Professor De. of

More information

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich)

AN EXTENSION OF LUCAS THEOREM. Hong Hu and Zhi-Wei Sun. (Communicated by David E. Rohrlich) Proc. Amer. Mah. Soc. 19(001, o. 1, 3471 3478. AN EXTENSION OF LUCAS THEOREM Hog Hu ad Zhi-Wei Su (Commuicaed by David E. Rohrlich Absrac. Le p be a prime. A famous heorem of Lucas saes ha p+s p+ ( s (mod

More information

Heat Equation Derivative Formulas for Vector Bundles

Heat Equation Derivative Formulas for Vector Bundles Joural of Fucioal Aalyi 183, 4218 (21) doi:1.16jfa.21.3746, available olie a hp:www.idealibrary.com o Hea Equaio Derivaive Formula for Vecor Budle Bruce K. Driver 1 Deparme of Mahemaic-112, Uiveriy of

More information

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES

VISCOSITY APPROXIMATION TO COMMON FIXED POINTS OF kn- LIPSCHITZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES Joral o Maheaical Scieces: Advaces ad Alicaios Vole Nber 9 Pages -35 VISCOSIY APPROXIMAION O COMMON FIXED POINS OF - LIPSCHIZIAN NONEXPANSIVE MAPPINGS IN BANACH SPACES HONGLIANG ZUO ad MIN YANG Deare o

More information

TIME RESPONSE Introduction

TIME RESPONSE Introduction TIME RESPONSE Iroducio Time repoe of a corol yem i a udy o how he oupu variable chage whe a ypical e ipu igal i give o he yem. The commoly e ipu igal are hoe of ep fucio, impule fucio, ramp fucio ad iuoidal

More information

Notes 03 largely plagiarized by %khc

Notes 03 largely plagiarized by %khc 1 1 Discree-Time Covoluio Noes 03 largely plagiarized by %khc Le s begi our discussio of covoluio i discree-ime, sice life is somewha easier i ha domai. We sar wih a sigal x[] ha will be he ipu io our

More information

Extended Laguerre Polynomials

Extended Laguerre Polynomials I J Coemp Mah Scieces, Vol 7, 1, o, 189 194 Exeded Laguerre Polyomials Ada Kha Naioal College of Busiess Admiisraio ad Ecoomics Gulberg-III, Lahore, Pakisa adakhaariq@gmailcom G M Habibullah Naioal College

More information

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY

PRIMARY DECOMPOSITION, ASSOCIATED PRIME IDEALS AND GABRIEL TOPOLOGY Orietal J. ath., Volue 1, Nuber, 009, Page 101-108 009 Orietal Acadeic Publiher PRIARY DECOPOSITION, ASSOCIATED PRIE IDEALS AND GABRIEL TOPOLOGY. EL HAJOUI, A. IRI ad A. ZOGLAT Uiverité ohaed V aculté

More information

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs

Mean Square Convergent Finite Difference Scheme for Stochastic Parabolic PDEs America Joural of Compuaioal Mahemaics, 04, 4, 80-88 Published Olie Sepember 04 i SciRes. hp://www.scirp.org/joural/ajcm hp://dx.doi.org/0.436/ajcm.04.4404 Mea Square Coverge Fiie Differece Scheme for

More information

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction

Some Newton s Type Inequalities for Geometrically Relative Convex Functions ABSTRACT. 1. Introduction Malaysia Joural of Mahemaical Scieces 9(): 49-5 (5) MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES Joural homepage: hp://eispem.upm.edu.my/joural Some Newo s Type Ieualiies for Geomerically Relaive Covex Fucios

More information

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS

CLOSED FORM EVALUATION OF RESTRICTED SUMS CONTAINING SQUARES OF FIBONOMIAL COEFFICIENTS PB Sci Bull, Series A, Vol 78, Iss 4, 2016 ISSN 1223-7027 CLOSED FORM EVALATION OF RESTRICTED SMS CONTAINING SQARES OF FIBONOMIAL COEFFICIENTS Emrah Kılıc 1, Helmu Prodiger 2 We give a sysemaic approach

More information

Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions

Extended Fermi-Dirac and Bose-Einstein functions with applications to the family of zeta functions Eeded Fermi-Dirac ad Boe-Eiei fucio wih applicaio o he family of zea fucio by M. Alam Chaudhry*, Aghar Qadir** ad Aifa Taaddiq** * Deparme of Mahemaic ad Saiic Kig Fahd Uiveriy of Peroleum ad Mieral Dhahra

More information

Lecture 15 First Properties of the Brownian Motion

Lecture 15 First Properties of the Brownian Motion Lecure 15: Firs Properies 1 of 8 Course: Theory of Probabiliy II Term: Sprig 2015 Isrucor: Gorda Zikovic Lecure 15 Firs Properies of he Browia Moio This lecure deals wih some of he more immediae properies

More information

A note on deviation inequalities on {0, 1} n. by Julio Bernués*

A note on deviation inequalities on {0, 1} n. by Julio Bernués* A oe o deviaio iequaliies o {0, 1}. by Julio Berués* Deparameo de Maemáicas. Faculad de Ciecias Uiversidad de Zaragoza 50009-Zaragoza (Spai) I. Iroducio. Le f: (Ω, Σ, ) IR be a radom variable. Roughly

More information

A NEW NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

A NEW NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS A NEW NUMERICAL TECHNIQUE FOR SOLVING FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS Oer Aca *, Duiru Baleau,3 Depare of Maheaics, Faculy of Ar ad Sciece, Siir Uiversiy, 56, Siir, Turey Depare of Maheaics ad

More information

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation.

Energy Density / Energy Flux / Total Energy in 1D. Key Mathematics: density, flux, and the continuity equation. ecure Phys 375 Eergy Desiy / Eergy Flu / oal Eergy i D Overview ad Moivaio: Fro your sudy of waves i iroducory physics you should be aware ha waves ca raspor eergy fro oe place o aoher cosider he geeraio

More information

Multifarious Implicit Summation Formulae of Hermite-Based Poly-Daehee Ploynomials

Multifarious Implicit Summation Formulae of Hermite-Based Poly-Daehee Ploynomials Appl. Mah. If. Sci. 12, No. 2, 305-310 (2018 305 Applied Maheaics & Iforaio Scieces A Ieraioal Joural hp://dx.doi.org/10.18576/ais/120204 Mulifarious Iplici Suaio Forulae of Herie-Based Poly-Daehee Ployoials

More information

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions.

TAKA KUSANO. laculty of Science Hrosh tlnlersty 1982) (n-l) + + Pn(t)x 0, (n-l) + + Pn(t)Y f(t,y), XR R are continuous functions. Iera. J. Mah. & Mah. Si. Vol. 6 No. 3 (1983) 559-566 559 ASYMPTOTIC RELATIOHIPS BETWEEN TWO HIGHER ORDER ORDINARY DIFFERENTIAL EQUATIONS TAKA KUSANO laculy of Sciece Hrosh llersy 1982) ABSTRACT. Some asympoic

More information

On The Eneström-Kakeya Theorem

On The Eneström-Kakeya Theorem Applied Mahemaics,, 3, 555-56 doi:436/am673 Published Olie December (hp://wwwscirporg/oural/am) O The Eesröm-Kakeya Theorem Absrac Gulsha Sigh, Wali Mohammad Shah Bharahiar Uiversiy, Coimbaore, Idia Deparme

More information

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws.

Calculus Limits. Limit of a function.. 1. One-Sided Limits...1. Infinite limits 2. Vertical Asymptotes...3. Calculating Limits Using the Limit Laws. Limi of a fucio.. Oe-Sided..... Ifiie limis Verical Asympoes... Calculaig Usig he Limi Laws.5 The Squeeze Theorem.6 The Precise Defiiio of a Limi......7 Coiuiy.8 Iermediae Value Theorem..9 Refereces..

More information

Review - Week 10. There are two types of errors one can make when performing significance tests:

Review - Week 10. There are two types of errors one can make when performing significance tests: Review - Week Read: Chaper -3 Review: There are wo ype of error oe ca make whe performig igificace e: Type I error The ull hypohei i rue, bu we miakely rejec i (Fale poiive) Type II error The ull hypohei

More information

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback

Lecture 25 Outline: LTI Systems: Causality, Stability, Feedback Lecure 5 Oulie: LTI Sye: Caualiy, Sabiliy, Feebac oucee: Reaig: 6: Lalace Trafor. 37-49.5, 53-63.5, 73; 7: 7: Feebac. -4.5, 8-7. W 8 oe, ue oay. Free -ay eeio W 9 will be oe oay, ue e Friay (o lae W) Fial

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 4, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 4, ISSN: Available olie a hp://sci.org J. Mah. Compu. Sci. 4 (2014), No. 4, 716-727 ISSN: 1927-5307 ON ITERATIVE TECHNIQUES FOR NUMERICAL SOLUTIONS OF LINEAR AND NONLINEAR DIFFERENTIAL EQUATIONS S.O. EDEKI *, A.A.

More information

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series

A Study On (H, 1)(E, q) Product Summability Of Fourier Series And Its Conjugate Series Mahemaical Theory ad Modelig ISSN 4-584 (Paper) ISSN 5-5 (Olie) Vol.7, No.5, 7 A Sudy O (H, )(E, q) Produc Summabiliy Of Fourier Series Ad Is Cojugae Series Sheela Verma, Kalpaa Saxea * Research Scholar

More information

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments

New Results on Oscillation of even Order Neutral Differential Equations with Deviating Arguments Advace i Pue Maheaic 9-53 doi: 36/ap3 Pubihed Oie May (hp://wwwscirpog/oua/ap) New Reu o Ociaio of eve Ode Neua Diffeeia Equaio wih Deviaig Ague Abac Liahog Li Fawei Meg Schoo of Maheaica Sye Sciece aiha

More information

Chapter 3 Moments of a Distribution

Chapter 3 Moments of a Distribution Chaper 3 Moes of a Disribuio Epecaio We develop he epecaio operaor i ers of he Lebesgue iegral. Recall ha he Lebesgue easure λ(a) for soe se A gives he legh/area/volue of he se A. If A = (3; 7), he λ(a)

More information

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix

A Complex Neural Network Algorithm for Computing the Largest Real Part Eigenvalue and the corresponding Eigenvector of a Real Matrix 4h Ieraioal Coferece o Sesors, Mecharoics ad Auomaio (ICSMA 06) A Complex Neural Newor Algorihm for Compuig he Larges eal Par Eigevalue ad he correspodig Eigevecor of a eal Marix HANG AN, a, XUESONG LIANG,

More information

Optimum design of complementary transient experiments for estimating thermal properties

Optimum design of complementary transient experiments for estimating thermal properties Opiu desig of copleeary rasie experies for esiaig heral properies Jaes V. Beck*, Filippo de Moe, Doald E. Aos *Depare of Mechaical Egieerig, Michiga Sae Uiversiy, USA Depare of Idusrial ad Iforaio Egieerig

More information

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017

Economics 8723 Macroeconomic Theory Problem Set 3 Sketch of Solutions Professor Sanjay Chugh Spring 2017 Deparme of Ecoomic The Ohio Sae Uiveriy Ecoomic 8723 Macroecoomic Theory Problem Se 3 Skech of Soluio Profeor Sajay Chugh Sprig 27 Taylor Saggered Nomial Price-Seig Model There are wo group of moopoliically-compeiive

More information

L-functions and Class Numbers

L-functions and Class Numbers L-fucios ad Class Numbers Sude Number Theory Semiar S. M.-C. 4 Sepember 05 We follow Romyar Sharifi s Noes o Iwasawa Theory, wih some help from Neukirch s Algebraic Number Theory. L-fucios of Dirichle

More information

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity

Research Article Generalized Equilibrium Problem with Mixed Relaxed Monotonicity e Scieific World Joural, Aricle ID 807324, 4 pages hp://dx.doi.org/10.1155/2014/807324 Research Aricle Geeralized Equilibrium Problem wih Mixed Relaxed Moooiciy Haider Abbas Rizvi, 1 Adem KJlJçma, 2 ad

More information

Online Supplement to Reactive Tabu Search in a Team-Learning Problem

Online Supplement to Reactive Tabu Search in a Team-Learning Problem Olie Suppleme o Reacive abu Search i a eam-learig Problem Yueli She School of Ieraioal Busiess Admiisraio, Shaghai Uiversiy of Fiace ad Ecoomics, Shaghai 00433, People s Republic of Chia, she.yueli@mail.shufe.edu.c

More information

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods"

Supplement for SADAGRAD: Strongly Adaptive Stochastic Gradient Methods Suppleme for SADAGRAD: Srogly Adapive Sochasic Gradie Mehods" Zaiyi Che * 1 Yi Xu * Ehog Che 1 iabao Yag 1. Proof of Proposiio 1 Proposiio 1. Le ɛ > 0 be fixed, H 0 γi, γ g, EF (w 1 ) F (w ) ɛ 0 ad ieraio

More information

Basic Results in Functional Analysis

Basic Results in Functional Analysis Preared by: F.. ewis Udaed: Suday, Augus 7, 4 Basic Resuls i Fucioal Aalysis f ( ): X Y is coiuous o X if X, (, ) z f( z) f( ) f ( ): X Y is uiformly coiuous o X if i is coiuous ad ( ) does o deed o. f

More information

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles

Fuzzy Dynamic Equations on Time Scales under Generalized Delta Derivative via Contractive-like Mapping Principles Idia Joural of Sciece ad echology Vol 9(5) DOI: 7485/ijs/6/v9i5/8533 July 6 ISSN (Pri) : 974-6846 ISSN (Olie) : 974-5645 Fuzzy Dyamic Euaios o ime Scales uder Geeralized Dela Derivaive via Coracive-lie

More information

Présentée pour obtenir le grade de. Docteur en Science **************TITRE**************

Présentée pour obtenir le grade de. Docteur en Science **************TITRE************** UNIVRSITÉ MOHAMD KHIDR FACULTÉ DS SCINCS XACTS T SCINC D LA NATUR T D LA VI BISKRA *************************** THÈS Préeée pour obeir le grade de Doceur e Sciece Spécialié: Probabilié **************TITR**************

More information

Math 6710, Fall 2016 Final Exam Solutions

Math 6710, Fall 2016 Final Exam Solutions Mah 67, Fall 6 Fial Exam Soluios. Firs, a sude poied ou a suble hig: if P (X i p >, he X + + X (X + + X / ( evaluaes o / wih probabiliy p >. This is roublesome because a radom variable is supposed o be

More information

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi

λiv Av = 0 or ( λi Av ) = 0. In order for a vector v to be an eigenvector, it must be in the kernel of λi Liear lgebra Lecure #9 Noes This week s lecure focuses o wha migh be called he srucural aalysis of liear rasformaios Wha are he irisic properies of a liear rasformaio? re here ay fixed direcios? The discussio

More information

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2)

( ) ( ) ( ) ( ) ( ) ( ) ( ) (2) UD 5 The Geeralized Riema' hypohei SV aya Khmelyy, Uraie Summary: The aricle pree he proo o he validiy o he geeralized Riema' hypohei o he bai o adjume ad correcio o he proo o he Riema' hypohei i he wor

More information

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003

ODEs II, Supplement to Lectures 6 & 7: The Jordan Normal Form: Solving Autonomous, Homogeneous Linear Systems. April 2, 2003 ODEs II, Suppleme o Lecures 6 & 7: The Jorda Normal Form: Solvig Auoomous, Homogeeous Liear Sysems April 2, 23 I his oe, we describe he Jorda ormal form of a marix ad use i o solve a geeral homogeeous

More information

Curvilinear Motion: Normal and Tangential Components

Curvilinear Motion: Normal and Tangential Components 15 Crviliear Moio: Noral ad Tageial Copoe Ref: Hibbeler 1.7, Bedford & Fowler: Dyaic.3 Whe he pah of a paricle i kow, a - coordiae ye wih a origi a he locaio of he paricle (a a ia i ie) ca be helpfl i

More information

Improvement Over General And Wider Class of Estimators Using Ranked Set Sampling

Improvement Over General And Wider Class of Estimators Using Ranked Set Sampling ITERATIOAL JOURAL OF SIETIFI & TEOLOG RESEAR VOLUME ISSUE 7 AUGUST ISS 77-866 Iprovee Over Geeral Ad ider lass of Esiaors Usi Raked Se Sapli V L Madoara iu Meha Raka Absrac: I his paper Iprovee over eeral

More information

Chemistry 1B, Fall 2016 Topics 21-22

Chemistry 1B, Fall 2016 Topics 21-22 Cheisry B, Fall 6 Topics - STRUCTURE ad DYNAMICS Cheisry B Fall 6 Cheisry B so far: STRUCTURE of aos ad olecules Topics - Cheical Kieics Cheisry B ow: DYNAMICS cheical kieics herodyaics (che C, 6B) ad

More information

N! AND THE GAMMA FUNCTION

N! AND THE GAMMA FUNCTION N! AND THE GAMMA FUNCTION Cosider he produc of he firs posiive iegers- 3 4 5 6 (-) =! Oe calls his produc he facorial ad has ha produc of he firs five iegers equals 5!=0. Direcly relaed o he discree! fucio

More information

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory

Ideal Amplifier/Attenuator. Memoryless. where k is some real constant. Integrator. System with memory Liear Time-Ivaria Sysems (LTI Sysems) Oulie Basic Sysem Properies Memoryless ad sysems wih memory (saic or dyamic) Causal ad o-causal sysems (Causaliy) Liear ad o-liear sysems (Lieariy) Sable ad o-sable

More information

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM

STRONG DEVIATION THEOREMS FOR THE SEQUENCE OF CONTINUOUS RANDOM VARIABLES AND THE APPROACH OF LAPLACE TRANSFORM Joural of Statitic: Advace i Theory ad Applicatio Volume, Number, 9, Page 35-47 STRONG DEVIATION THEORES FOR THE SEQUENCE OF CONTINUOUS RANDO VARIABLES AND THE APPROACH OF LAPLACE TRANSFOR School of athematic

More information

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition.

David Randall. ( )e ikx. k = u x,t. u( x,t)e ikx dx L. x L /2. Recall that the proof of (1) and (2) involves use of the orthogonality condition. ! Revised April 21, 2010 1:27 P! 1 Fourier Series David Radall Assume ha u( x,) is real ad iegrable If he domai is periodic, wih period L, we ca express u( x,) exacly by a Fourier series expasio: ( ) =

More information

Minimal Supersolutions of Convex BSDEs

Minimal Supersolutions of Convex BSDEs Miimal Superoluio of Covex BSDE Samuel Drapeau a,1,, Gregor Heye a,2,, Michael Kupper a,3, Jauary 22, 2013 ABSTRACT We udy he oliear operaor of mappig he ermial value ξ o he correpodig miimal uperoluio

More information

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4)

1. Solve by the method of undetermined coefficients and by the method of variation of parameters. (4) 7 Differeial equaios Review Solve by he mehod of udeermied coefficies ad by he mehod of variaio of parameers (4) y y = si Soluio; we firs solve he homogeeous equaio (4) y y = 4 The correspodig characerisic

More information

K3 p K2 p Kp 0 p 2 p 3 p

K3 p K2 p Kp 0 p 2 p 3 p Mah 80-00 Mo Ar 0 Chaer 9 Fourier Series ad alicaios o differeial equaios (ad arial differeial equaios) 9.-9. Fourier series defiiio ad covergece. The idea of Fourier series is relaed o he liear algebra

More information

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY

APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY APPROXIMATE SOLUTION OF FRACTIONAL DIFFERENTIAL EQUATIONS WITH UNCERTAINTY ZHEN-GUO DENG ad GUO-CHENG WU 2, 3 * School of Mahemaics ad Iformaio Sciece, Guagi Uiversiy, Naig 534, PR Chia 2 Key Laboraory

More information

On stability of first order linear impulsive differential equations

On stability of first order linear impulsive differential equations Ieraioal Joural of aisics ad Applied Mahemaics 218; 3(3): 231-236 IN: 2456-1452 Mahs 218; 3(3): 231-236 218 as & Mahs www.mahsoural.com Received: 18-3-218 Acceped: 22-4-218 IM Esuabaa Deparme of Mahemaics,

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE

NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Yugoslav Joural of Operaios Research 8 (2008, Number, 53-6 DOI: 02298/YUJOR080053W NEWTON METHOD FOR DETERMINING THE OPTIMAL REPLENISHMENT POLICY FOR EPQ MODEL WITH PRESENT VALUE Jeff Kuo-Jug WU, Hsui-Li

More information