Learning with Pierre: from branes to gravity

Size: px
Start display at page:

Download "Learning with Pierre: from branes to gravity"

Transcription

1 Learning with Pierre: from branes to gravity Cédric Deffayet (IAP and IHÉS, CNRS Paris) APC, May the 3rd 2018 Les Houches 1999 «the primordial Universe»

2 Frank Thuiller 1991 (Sur certains aspects géométriques des théories conformes bidimensionnelles) Emilian Dudas 1994 (Mécanismes de brisure de supersymétrie) François Pillon 1995 (Étude de la brisure de symétries dans des théories de cordes et de supergravité) Stéphane Lavignac 1997 (Le problème des hiérachies de masse dans les modèles supersymétriques) C.D (Aspects cosmologiques des théories de supercordes) Jean-François Dufaux 2004 (Modèles branaires en théories de gravité généralisées) Leonardo Sala 2009 (Search for beyond the standard model physics at the CMS experiment : supersymmetry and extra dimensions) Alejandro Bohé 2011 (Production d'ondes gravitationnelles par les cordes cosmiques avec jonctions) Alexis Helou 2015 (Beyond the trapping horizon : the apparent universe & the regular black hole) Mauro Pieroni 2016 (Classification des modèles d inflation et contraintes sur la physique fondamentale) The PhD students of Pierre

3 Frank Thuiller 1991 (Sur certains aspects géométriques des théories conformes bidimensionnelles) Emilian Dudas 1994 (Mécanismes de brisure de supersymétrie) François Pillon 1995 (Étude de la brisure de symétries dans des théories de cordes et de supergravité) High energy Stéphane Lavignac 1997 theoretical physics (Le problème des hiérachies de masse dans les modèles supersymétriques) The PhD students of Pierre C.D (Aspects cosmologiques des théories de supercordes) Jean-François Dufaux 2004 (Modèles branaires en théories de gravité généralisées) Cosmology Leonardo Sala 2009 (Search for beyond the standard model physics at the CMS experiment : supersymmetry and extra dimensions) Gravitation Alejandro Bohé 2011 (Production d'ondes gravitationnelles par les cordes cosmiques avec jonctions) Alexis Helou 2015 (Beyond the trapping horizon : the apparent universe & the regular black hole) Mauro Pieroni 2016 (Classification des modèles d inflation et contraintes sur la physique fondamentale)

4 Pierre was first my professor at the ENS (in 1993) where he was teaching (special) relativity and then at the «master 2» «CPM» Promotion 1996 (thanks to F. Derue)

5 Then my PhD director at Orsay LPT on «Cosmological aspects of superstring theories»

6 «Second string revolution» and discovery of the string web of dualities ADS-CFT correspondance (Maldacena) Scientific context: High energy theory Role played there by «D(irichlet)-branes» Brane-localized degrees of freedom

7 Scientific context: Cosmology 998- Discovery of the acceleration of the expansion of the Universe (SCP and HZT teams 1998, Nobel prize 2011) 001- Launch of WMAP mission (june 2001) Advent of «Precision cosmology»

8 Very good timing for the interests of Pierre!

9 I started my PhD in sept after one year.

10 Today: I am going to discuss some long lasting fruits of a simple equation obtained in our paper of 1999 : (the most cited paper of Pierre with more than 1000 citations)

11 Today: I am going to discuss some long lasting fruits of a simple equation obtained in our paper of 1999 : (the most cited paper of Pierre with more than 1000 citations) 19 years today!

12 Today: I am going to discuss some long lasting fruits of a simple equation obtained in our paper of 1999 : (the most cited paper of Pierre with more than 1000 citations) Brane gravity Brane cosmology

13 1998- Arkani-Hamed, Dimopoulos, Dvali (ADD) brane worlds «brane-worlds» Randall-Sundrum (RS) models Dvali-Gabadadze-Porrati (DGP) models Usual space-time (4 dimensions): that of a brane gravity Bulk space-time has 4+n dimensions

14 In ADD or RS brane worlds, the gravity potential V(r) between brane localized sources behaves as in 3+1 dimensions at large distances This result is obtained by perturbation theory (with a localized source) Newton constant G Newton I.e. one solves for h ¹ º defined by Metric on the brane g ¹ º = g (0) ¹ º + h ¹ º Background metric Small perturbation «generated» by a localized matter source Einstein equations

15 In ADD or RS brane worlds, the gravity potential V(r) between brane localized sources behaves as in 3+1 dimensions at large distances This result is obtained by perturbation theory (with a localized source) Newton constant G Newton I.e. one solves for h ¹ º defined by Metric on the brane Background metric Einstein equations g ¹ º = g (0) ¹ º + h ¹ º Contains brane localized sources Small perturbation «generated» by a localized matter source

16 In ADD or RS brane worlds, the gravity potential V(r) between brane localized sources behaves as in 3+1 dimensions at large distances This result is obtained by perturbation theory (with a localized source) Newton constant G Newton I.e. one solves for h ¹ º defined by Not suitable for cosmology! Metric on the brane Background metric Einstein equations g ¹ º = g (0) ¹ º + h ¹ º Contains brane localized sources Small perturbation «generated» by a localized matter source

17 Some space geometry! The brane localized matter is only sensitive to the curvature of the metric on the brane (and not the one of the bulk) i.e. to the intrinsic curvature of the surface mesured e.g. by G (4). The embedding of the surface into the defines a so called extrinsic curvature measured by a tensor K Ex: vs.

18 Geometrical relations between 5D curvature: G AB (5) Intrinsic curvature (4D) : G (4) Extrinsic curvature: K Generalized Gauss identities: 5D Curvature Intrinsic curvature Quadratic in the extrinsic curvature

19 Using this decomposition into Einstein equations (with a distributional source) 1/ By equating the distributional source, we get: Extrinsic Curvature Energy-momentum tensor» 2/ Inserting this is the generalized Gauss identities we find Kown by the buk» H 2 + Einstein equations Quadratic in S ¹ º ( or )

20 I.e. we get Or in cosmology

21 This applies generically to brane worlds (of codimension 1) E.g. 1.: Randall-Sundrum model (bulk is AdS 5 )

22 E.g. 2.: Dvali-Gabadadze-Porrati (DGP 2000) model (bulk is Minkowski 5 ) Pertubation theory : The Newton potential (computed perturbatively) behaves as However this is mediated by a resonance of massive gravitons and hence

23 E.g. 2.: Dvali-Gabadadze-Porrati (DGP 2000) model (bulk is Minkowski 5 ) Cosmology (applying the technique of our 1999 paper) : Equating the distributional source in the 5D Einstein equation still yields But now Inserting this is the generalized Gauss identities We get now a quadratic equation for the Hubble factor H

24 (C.D. 2000)

25 First concrete proposal to link the acceleration of the expansion of the Universe to a large distance modification of gravity (CD 2000; CD, Dvali, Gabadadze 2001) «Modified gravity» and «cosmology» (from WoS) «Modified gravity» (from WoS)

26 Lead to a new phenomenology of scalar-tensor theories via the «Galileons» and friends. The DGP model has a strong coupling in the scalar sector (CD, Dvali, Gabadadze, Vainshtein, 2002) This can be extracted taking a «decoupling limit» yielding a scalar theory with second order quadratic equations of motions (Luty, Porrati, Rattazzi, 2003)

27 This quadratic structure comes from the generalized Gauss identities Lead to a new phenomenology of scalar-tensor theories via the «Galileons» and friends. The DGP model has a strong coupling in the scalar sector ( (CD, Dvali, Gabadadze, Vainshtein, 2002) This can be extracted taking a «decoupling limit» (Together yielding a scalar with theory with second order quadratic ) equations of motions (Luty, Porrati, Rattazzi, 2003)

28 Lead to a new phenomenology of scalar-tensor theories via the «Galileons» and friends. The DGP model has a strong coupling in the scalar sector (CD, Dvali, Gabadadze, Vainshtein, 2002) This can be extracted taking a «decoupling limit» yielding a scalar theory with second order quadratic equations of motions (Luty, Porrati, Rattazzi, 2003) Generalized to Galileons (Nicolis, Rattazzi, Trincherini, 2009), covariant Galileons (CD, Esposito-Farese, Vikman, 2009), and the more recent «Beyond Horndeski» theories (Zumalacarregui, Garcia-Bellido, 2014; Gleyzes, Langlois, Piazza, Vernizzi, 2015)

29 Revival of «massive gravity» via the Vainshtein mechanism (First) attempt to give a mass to the graviton: Fierz and Pauli 1939 A massive and a massless graviton yield drastically different physical results (e.g. for light bending) (van Dam, Veltman; Zakharov; Iwasaki, 1970) A way out was suggested by Vainshtein in 1972 Criticized and new obstructions found by Boulware and Deser in 1972 The DGP cosmology provided the first hint in favour of the Vainshtein mechanism (CD,Dvali, Gabadadze, Vainshtein 2001)

30 This lead to new efforts in the search of a consistent theory of massive gravity using in particular the equivalent of the decoupling limit of DGP model (Creminelli, Nicolis, Papucci, Trincherini, 2005; CD, Rombouts, 2005) First explicit proof that the Vainshtein mechanism is working as expected in massive gravity (Babichev, CD, Ziour, 2009) Discovery of a family of massive gravity theory devoid of the Boulware Deser pathologies (de Rham, Gabadadze 2010; de Rham, Gabadadze, Tolley, 2011) 2016 «Massive gravity» (from WoS) 2000

31 Back to 1999

32

33 GPS (of the GDR): «Groupe de Priorité Supersymétrique»

34 Not to be confused with the «Groupe de Pelotons de Sécurité» (20 april 1999: «affaire des Paillottes» in Corsica )

35 Not to be confused with the «Groupe de Pelotons de Sécurité» (20 april 1999: «affaire des Paillottes» in Corsica ) Cargèse, Corsica summer 1998

36 Working under the supervision of Pierre was very inspiring! On the physics side, he was always optimistic! And also very pleasant on the human side! We miss him a lot.

Gravitational Waves. GR: 2 polarizations

Gravitational Waves. GR: 2 polarizations Gravitational Waves GR: 2 polarizations Gravitational Waves GR: 2 polarizations In principle GW could have 4 other polarizations 2 vectors 2 scalars Potential 4 `new polarizations Massive Gravity When

More information

Introduction to the Vainshtein mechanism

Introduction to the Vainshtein mechanism Introduction to the Vainshtein mechanism Eugeny Babichev LPT, Orsay School Paros 23-28 September 2013 based on arxiv:1107.1569 with C.Deffayet OUTLINE Introduction and motivation k-mouflage Galileons Non-linear

More information

Claudia de Rham July 30 th 2013

Claudia de Rham July 30 th 2013 Claudia de Rham July 30 th 2013 GR has been a successful theory from mm length scales to Cosmological scales Then why Modify Gravity? Why Modify Gravity in the IR? Late time acceleration & CC problem First

More information

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris

Braneworlds: gravity & cosmology. David Langlois APC & IAP, Paris Braneworlds: gravity & cosmology David Langlois APC & IAP, Paris Outline Introduction Extra dimensions and gravity Large (flat) extra dimensions Warped extra dimensions Homogeneous brane cosmology Brane

More information

Vainshtein mechanism. Lecture 3

Vainshtein mechanism. Lecture 3 Vainshtein mechanism Lecture 3 Screening mechanism Screening mechanisms The fifth force should act only on large scales and it should be hidden on small scales This implies that these mechanisms should

More information

«Massive Gravity» (some of its open problems)

«Massive Gravity» (some of its open problems) A short review on Cédric Deffayet (APC, Paris) «Massive Gravity» (some of its open problems) 1. Pauli-Fierz (PF) theory 2. Non linear PF theory 3. DGP Model Journée ANR Math-GR Méthodes Mathématiques pour

More information

Healthy theories beyond Horndeski

Healthy theories beyond Horndeski Healthy theories beyond Horndeski Jérôme Gleyzes, IPhT CEA Saclay with D. Langlois, F. Piazza and F. Vernizzi, arxiv:1404.6495, arxiv:1408.1952 ITP Heidelberg 26/11/14 Introduction to Horndeski Going safely

More information

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for?

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for? Topics on Galileons and generalized Galileons Pacific 2016, Moorea, Sept the 13th 1. What are scalar Galileons? Cédric Deffayet (IAP and IHÉS, CNRS Paris Bures sur Yvette) 2. What are they useful for?

More information

Nonlinear massive gravity and Cosmology

Nonlinear massive gravity and Cosmology Nonlinear massive gravity and Cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Chunshan Lin Why alternative gravity theories? Inflation

More information

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory Andrew J Tolley Case Western Reserve University Based on work to appear Why Massive Gravity? Massive Gravity Theories

More information

Aspects of massive gravity

Aspects of massive gravity Aspects of massive gravity Sébastien Renaux-Petel CNRS - IAP Paris Rencontres de Moriond, 22.03.2015 Motivations for modifying General Relativity in the infrared Present acceleration of the Universe: {z

More information

Black holes in massive gravity

Black holes in massive gravity Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096

More information

Non-local Modifications of Gravity and Cosmic Acceleration

Non-local Modifications of Gravity and Cosmic Acceleration Non-local Modifications of Gravity and Cosmic Acceleration Valeri Vardanyan Cargese-2017 In collaboration with: Yashar Akrami Luca Amendola Alessandra Silvestri arxiv:1702.08908 Late time cosmology The

More information

QUINTESSENTIAL INFLATION

QUINTESSENTIAL INFLATION QUINTESSENTIAL INFLATION Relic gravity waves M. SAMI Centre for Theoretical Physics Jamia Millia University New Delhi GC-2018 BRIEF OVER VIEW Acceleration Generic feature of cosmic history Late time acceleration:

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Kurt Hinterbichler, Chunshan Lin, Mark Trodden Why alternative gravity

More information

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th 2014 Claudia de Rham Modified Gravity Lorentz-Violating LV-Massive Gravity Ghost Condensate Horava- Lifshitz Cuscuton Extended

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

arxiv: v1 [hep-th] 1 Oct 2008

arxiv: v1 [hep-th] 1 Oct 2008 Cascading Gravity and Degravitation Claudia de Rham Dept. of Physics & Astronomy, McMaster University, Hamilton ON, Canada Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada arxiv:0810.069v1

More information

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris) Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (YITP Kyoto) Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshan

More information

Testing Gravity Cosmologically

Testing Gravity Cosmologically Testing Gravity Cosmologically Philippe Brax IPhT Saclay Asphon Toulouse March 2013 The Big Puzzle How do we know? measuring distances! Absolute luminosity. Received flux: what we see in the telescope

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

arxiv: v2 [hep-th] 12 Aug 2010

arxiv: v2 [hep-th] 12 Aug 2010 NYU-TH-06/13/10 August 13, 2010 Generalization of the Fierz-Pauli Action arxiv:1007.0443v2 [hep-th] 12 Aug 2010 Claudia de Rham 1 and Gregory Gabadadze 2 1 Départment de Physique Théorique, Université

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama Yukawa Institute for Theoretical Physics Kyoto University Based on collaborations with Katsuki Aoki, Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia

More information

Particle Physics and Cosmology III: Acceleration, Gravity & Extra Dimensions

Particle Physics and Cosmology III: Acceleration, Gravity & Extra Dimensions Particle Physics and Cosmology III: Acceleration, Gravity & Extra Dimensions Mark Trodden Center for Particle Cosmology University of Pennsylvania Third Lecture Puerto Vallarta Mexico 1/14/2011 Problems

More information

Cosmological perturbations in nonlinear massive gravity

Cosmological perturbations in nonlinear massive gravity Cosmological perturbations in nonlinear massive gravity A. Emir Gümrükçüoğlu IPMU, University of Tokyo AEG, C. Lin, S. Mukohyama, JCAP 11 (2011) 030 [arxiv:1109.3845] AEG, C. Lin, S. Mukohyama, To appear

More information

Modified Gravity and the Cascading DGP model

Modified Gravity and the Cascading DGP model Modified Gravity and the Cascading DGP model Fulvio Sbisà Universidade Federal do Espìrito Santo, Vitòria, ES, Brazil UFES, Vitòria, 04/03/2016 in collaboration with Kazuya Koyama Outline 1 The cosmic

More information

4D Gravity on a Brane in 5D Minkowski Space

4D Gravity on a Brane in 5D Minkowski Space NYU-TH/00/04/0 April 25, 2000 4D Gravity on a Brane in 5D Minkowski Space Gia Dvali, Gregory Gabadadze, Massimo Porrati Department of Physics, New York University, New York, NY 0003 Abstract We suggest

More information

On the Vainshtein Mechanism

On the Vainshtein Mechanism Gustavo Niz University of Guanajuato University of Guanajuato University of Guanajuato Leon Content Motivation The Vainshtein Mechanism Basics Exploring solutions and stability (perts) Relaxing symmetry

More information

The State of Theory. Mark Trodden University of Pennsylvania. Testing Gravity 2015 Simon Fraser University

The State of Theory. Mark Trodden University of Pennsylvania. Testing Gravity 2015 Simon Fraser University Mark Trodden University of Pennsylvania Testing Gravity 2015 Simon Fraser University Overview Motivations - background, and the problem of cosmic acceleration Why consider Modified gravity? What are the

More information

The nonlinear dynamical stability of infrared modifications of gravity

The nonlinear dynamical stability of infrared modifications of gravity The nonlinear dynamical stability of infrared modifications of gravity Aug 2014 In collaboration with Richard Brito, Vitor Cardoso and Matthew Johnson Why Study Modifications to Gravity? General relativity

More information

Moriond 2015 Gravitation Highlights (first part)

Moriond 2015 Gravitation Highlights (first part) Rencontres de Moriond Gravitation: 100 years after GR Moriond 2015 Gravitation Highlights (first part) Luc Blanchet Gravitation et Cosmologie (GRεCO) Institut d Astrophysique de Paris 28 mars 2015 Luc

More information

Cosmology and astrophysics of extra dimensions

Cosmology and astrophysics of extra dimensions Cosmology and astrophysics of extra dimensions Astrophysical tests of fundamental physics Porto, 27-29 March 2007 P. Binétruy, APC Paris Why extra dimensions? Often appear in the context of unifying gravitation

More information

F(T) gravity from higher dimensional theories and its cosmology

F(T) gravity from higher dimensional theories and its cosmology F(T) gravity from higher dimensional theories and its cosmology Main reference: arxiv:1304.6191 [gr-qc]. To appear in Phys. Lett. B. KMI-IEEC Joint International Workshop -- Inflation, Dark Energy, and

More information

Testing GR on Cosmological Scales

Testing GR on Cosmological Scales Testing GR on Cosmological Scales f(r) and DGP Worked Examples Wayne Hu Harvard Smithsonian Conference May 2012 Outline Testing Gravity Cosmologically f(r) (chameleon) and DGP (Vainshtein) worked examples

More information

Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham

Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham 2 (Planck 2013 Results. XVI. Cosmological Parameters) The Universe today 3 Credit: ESA/Planck The cosmological constant

More information

Massive gravity meets simulations?

Massive gravity meets simulations? Massive gravity meets simulations? Kazuya Koyama University of Portsmouth Non-linear massive gravity theory (de Rham, Gadadadze & Tolley 10) Two key features Self-acceleration A graviton mass accounts

More information

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Bimetric Theory (The notion of spacetime in Bimetric Gravity) Bimetric Theory (The notion of spacetime in Bimetric Gravity) Fawad Hassan Stockholm University, Sweden 9th Aegean Summer School on Einstein s Theory of Gravity and its Modifications Sept 18-23, 2017,

More information

Recent developments in bimetric theory

Recent developments in bimetric theory Review: Updated March 31, 2016 Recent developments in bimetric theory arxiv:1512.00021v2 [hep-th] 30 Mar 2016 Angnis Schmidt-May, 1 Mikael von Strauss 2 1 Institut für Theoretische Physik, Eidgenössische

More information

Dark Energy to Modified Gravity

Dark Energy to Modified Gravity Dark Energy to Modified Gravity Philippe Brax IPhT Saclay Workshop Invisibles July 2014 Paris The Big Puzzle Acceleration of the expansion Dark Energy? Modified gravity on large enough scales? The acceleration

More information

Tests of cosmological gravity

Tests of cosmological gravity Tests of cosmological gravity Jeremy Sakstein University of Pennsylvania Astrophysics Seminar UC Irvine 23 rd January 2018 Who am I? Particle-cosmology (baryogenesis, early universe) Modified gravity (dark

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

Strings and the Cosmos

Strings and the Cosmos Strings and the Cosmos Yeuk-Kwan Edna Cheung Perimeter Institute for Theoretical Physics University of Science and Technology, China May 27th, 2005 String Theory as a Grand Unifying Theory 60 s: theory

More information

Domain wall solution and variation of the fine structure constant in F(R) gravity

Domain wall solution and variation of the fine structure constant in F(R) gravity Domain wall solution and variation of the fine structure constant in F(R) gravity Reference: K. Bamba, S. Nojiri and S. D. Odintsov, Phys. Rev. D 85, 044012 (2012) [arxiv:1107.2538 [hep-th]]. 2012 Asia

More information

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY

HAMILTONIAN FORMULATION OF f (Riemann) THEORIES OF GRAVITY ABSTRACT We present a canonical formulation of gravity theories whose Lagrangian is an arbitrary function of the Riemann tensor, which, for example, arises in the low-energy limit of superstring theories.

More information

TESTING GRAVITY WITH COSMOLOGY

TESTING GRAVITY WITH COSMOLOGY 21 IV. TESTING GRAVITY WITH COSMOLOGY We now turn to the different ways with which cosmological observations can constrain modified gravity models. We have already seen that Solar System tests provide

More information

MASAHIDE YAMAGUCHI. Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity. (Tokyo Institute of Technology) Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 10/12/15@KICP, Exploring Theories of Modified Gravity arxiv:1509.02096,

More information

arxiv: v3 [hep-th] 30 May 2018

arxiv: v3 [hep-th] 30 May 2018 arxiv:1010.0246v3 [hep-th] 30 May 2018 Graviton mass and cosmological constant: a toy model Dimitrios Metaxas Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens,

More information

Dark Energy Theory. Mark Trodden University of Pennsylvania

Dark Energy Theory. Mark Trodden University of Pennsylvania Mark Trodden University of Pennsylvania 2015: the Spacetime Odyssey Continues Nordita, Stockholm, June 2, 2015 Overview Motivations - background, and the problem of cosmic acceleration Some possible approaches:

More information

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay A Panorama of Modified Gravity Philippe Brax IPhT Saclay The Universe accelerates: why? Maybe a landscape of Universes? Or not? The acceleration of the Universe could also be due to many mundane causes:

More information

Dark Energy Screening Mechanisms. Clare Burrage University of Nottingham

Dark Energy Screening Mechanisms. Clare Burrage University of Nottingham Dark Energy Screening Mechanisms Clare Burrage University of Nottingham The expansion of the Universe is accelerating "for the discovery of the accelerating expansion of the Universe through observations

More information

Testing Modified Gravity using WiggleZ David Parkinson

Testing Modified Gravity using WiggleZ David Parkinson Testing Modified Gravity using WiggleZ David Parkinson 1 Outline Introduction Modified Gravity models Structure Formation WiggleZ Dark Energy Survey Results Conclusions Testing Modified Gravity with WiggleZ

More information

The Dark Universe from Higher Dimensions and Strings

The Dark Universe from Higher Dimensions and Strings Transregional Collaborative Research Centre TRR 33: The Dark Universe The Dark Universe from Higher Dimensions and Strings related to: Project A1: Quintessence, Branes and Higher Dimensions (Nilles, Wetterich)

More information

Life with More Than 4: Extra Dimensions

Life with More Than 4: Extra Dimensions Life with More Than 4: Extra Dimensions Andrew Larkoski 4/15/09 Andrew Larkoski SASS 5 Outline A Simple Example: The 2D Infinite Square Well Describing Arbitrary Dimensional Spacetime Motivations for Extra

More information

Momentum relaxation in holographic massive gravity

Momentum relaxation in holographic massive gravity Momentum relaxation in holographic massive gravity Richard Davison Lorentz Institute, Leiden Based on 1306.5792 [hep-th] Gauge/Gravity Duality 2013, Munich July 30 th 2013 Introduction and motivation We

More information

Primordial perturbations from inflation. David Langlois (APC, Paris)

Primordial perturbations from inflation. David Langlois (APC, Paris) Primordial perturbations from inflation David Langlois (APC, Paris) Cosmological evolution Homogeneous and isotropic Universe Einstein s equations Friedmann equations The Universe in the Past The energy

More information

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute

Alternatives To Inflation. Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute Alternatives To Inflation Jean-Luc Lehners MPI for Gravitational Physics Albert-Einstein-Institute PLANCK data A simple universe: approximately homogeneous, isotropic, flat With, in addition, nearly scale-invariant,

More information

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris)

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris) Degenerate Higher-Order Scalar-Tensor (DHOST) theories David Langlois (APC, Paris) Higher order scalar-tensor theories Usual theories (Brans-Dicke, k-essence, ): L(r, ) Generalized theories: L(r µ r, r,

More information

arxiv: v1 [gr-qc] 12 Jun 2013

arxiv: v1 [gr-qc] 12 Jun 2013 Cosmological solutions for a two-branes system in a vacuum bulk Juan L. Pérez, Miguel A. García-Aspeitia, L. Arturo Ureña-López and Rubén Cordero. Departamento de Física, DCI, Campus León, Universidad

More information

Non-local infrared modifications of gravity and dark energy

Non-local infrared modifications of gravity and dark energy Non-local infrared modifications of gravity and dark energy Michele Maggiore Los Cabos, Jan. 2014 based on M. Jaccard, MM and E. Mitsou, 1305.3034, PR D88 (2013) MM, arxiv: 1307.3898 S. Foffa, MM and E.

More information

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University)

Sergei D. Odintsov (ICREA and IEEC-CSIC) Misao Sasaki (YITP, Kyoto University and KIAS) Presenter : Kazuharu Bamba (KMI, Nagoya University) Screening scenario for cosmological constant in de Sitter solutions, phantom-divide crossing and finite-time future singularities in non-local gravity Reference: K. Bamba, S. Nojiri, S. D. Odintsov and

More information

Holography and the cosmological constant

Holography and the cosmological constant String Pheno Ioannina, 22 June 2016 Holography and the cosmological constant CCTP/IPP/QCN University of Crete APC, Paris 1- Bibliography Ongoing work with Francesco Nitti (APC, Paris 7), Christos Charmousis,

More information

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay (associate researcher IAP)

A Panorama of Modified Gravity. Philippe Brax IPhT Saclay (associate researcher IAP) A Panorama of Modified Gravity Philippe Brax IPhT Saclay (associate researcher IAP) The Universe accelerates: why? Maybe a landscape of Universes? Or not? The acceleration of the Universe could also be

More information

Cosmology, Scalar Fields and Hydrodynamics

Cosmology, Scalar Fields and Hydrodynamics Cosmology, Scalar Fields and Hydrodynamics Alexander Vikman (CERN) THIS TALK IS BASED ON WORK IN PROGRESS AND Imperfect Dark Energy from Kinetic Gravity Braiding arxiv:1008.0048 [hep-th], JCAP 1010:026,

More information

The cosmological context

The cosmological context The cosmological context P. Binétruy AstroParticule et Cosmologie, Paris STE-Quest, ESTEC, 2013, May 22 Outline The Universe after Planck Where quantum physics meets gravity: the vacuum energy problem

More information

Gravity in the Braneworld and

Gravity in the Braneworld and Gravity in the Braneworld and the AdS/CFT Correspondence Takahiro TANAKA Department of Physics, Kyoto University, Kyoto 606-8502, Japan October 18, 2004 Abstract We discuss gravitational interaction realized

More information

Searching for dark energy in the laboratory. Clare Burrage University of Nottingham

Searching for dark energy in the laboratory. Clare Burrage University of Nottingham Searching for dark energy in the laboratory Clare Burrage University of Nottingham Outline What is dark energy? How does it interact with matter? Screening mechanisms: non-linear dark energy Searching

More information

CMB Polarization in Einstein-Aether Theory

CMB Polarization in Einstein-Aether Theory CMB Polarization in Einstein-Aether Theory Masahiro Nakashima (The Univ. of Tokyo, RESCEU) With Tsutomu Kobayashi (RESCEU) COSMO/CosPa 2010 Introduction Two Big Mysteries of Cosmology Dark Energy & Dark

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Dark energy cosmology in F(T) gravity

Dark energy cosmology in F(T) gravity Dark energy cosmology in F(T) gravity PLB 725, 368 (2013) [arxiv:1304.6191 [gr-qc]] KMI 2013 Dec. 12, 2013 Sakata-Hirata Hall Nagoya University Nagoya University Presenter : Kazuharu Bamba (KMI, Nagoya

More information

arxiv: v2 [hep-th] 23 Sep 2007

arxiv: v2 [hep-th] 23 Sep 2007 Ghosts in the self-accelerating universe Kazuya Koyama Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 2EG, UK arxiv:0709.2399v2 [hep-th] 23 Sep 2007 The self-accelerating

More information

Cosmological and astrophysical applications of vector-tensor theories

Cosmological and astrophysical applications of vector-tensor theories Cosmological and astrophysical applications of vector-tensor theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, M.Minamitsuji, S.Mukohyama, S.

More information

5D Linear Dilaton: Structure and Phenomenology

5D Linear Dilaton: Structure and Phenomenology 5D Linear Dilaton: Structure and Phenomenology CERN, INFN Genova Pisa - 7 Dec 2017 based on 1711.08437 in collaboration with G. Giudice, Y. Katz, M. McCullough and A. Urbano Extra-dimensions were fashionable

More information

Follow this and additional works at: Part of the Physics Commons

Follow this and additional works at:  Part of the Physics Commons University of Pennsylvania ScholarlyCommons Department of Physics Papers Department of Physics 4-1-1 Cascading Cosmology Nishant Agarwal Cornell University Rachel Bean Cornell University Justin Khoury

More information

Brane Gravity from Bulk Vector Field

Brane Gravity from Bulk Vector Field Brane Gravity from Bulk Vector Field Merab Gogberashvili Andronikashvili Institute of Physics, 6 Tamarashvili Str., Tbilisi 380077, Georgia E-mail: gogber@hotmail.com September 7, 00 Abstract It is shown

More information

Gauge / gravity duality in everyday life. Dan Kabat Lehman College / CUNY

Gauge / gravity duality in everyday life. Dan Kabat Lehman College / CUNY Gauge / gravity duality in everyday life Dan Kabat Lehman College / CUNY Queens College - 11/8/2017 Outline 1. About the title...* 2. What is it? 3. What is it good for? 4. My own interest: gauge => gravity

More information

COSMOLOGY IN HIGHER DIMENSIONS

COSMOLOGY IN HIGHER DIMENSIONS COSMOLOGY IN HIGHER DIMENSIONS 1. Introduction 2. Overview of Higher Dimensional Cosmology 3. Cosmology in Higher Dimensions 4. String Frame 5. Summary Kei-ichi MAEDA Waseda University 1. INTRODUCTION

More information

Physics Letters B 711 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 711 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics Letters B 711 01) 190 195 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Ghost free massive gravity in the Stücelberg language Claudia de

More information

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract MCTP-01-06 hep-th/010093 Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term F. A. Dilkes, M. J. Duff, James T. Liu and H. Sati Michigan Center for Theoretical Physics Randall

More information

...and the extradimensions quest

...and the extradimensions quest A brief introduction to the Randall-Sundrum Models...and the extradimensions quest Bruno BERTRAND Center for particle physics and phenomenology (CP3) CP3 Seminar : Randall-Sundrum models - Bruno BERTRAND

More information

Higuchi VS Vainshtein

Higuchi VS Vainshtein Higuchi VS Vainshtein ArXiv: 1206.3852+ soon to appear. Matteo Fasiello and Andrew J. Tolley Case Western Reserve University Outline The Higuchi bound The Vainshtein mechanism Higuchi vs Vainshtein drgt

More information

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory

Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory 1 Super Yang-Mills Theory in 10+2 dims. Another Step Toward M-theory Itzhak Bars University of Southern California Talk at 4 th Sakharov Conference, May 2009 http://physics.usc.edu/~bars/homepage/moscow2009_bars.pdf

More information

Testing Gravity using Astrophysics

Testing Gravity using Astrophysics Testing Gravity using Astrophysics Jeremy Sakstein Institute of Cosmology and Gravitation, Portsmouth Department of Applied Mathematics and Theoretical Physics, University of Cambridge 9 th May 2016 Why

More information

primordial avec les perturbations cosmologiques *

primordial avec les perturbations cosmologiques * Tests de l Univers primordial avec les perturbations cosmologiques * Filippo Vernizzi Batz-sur-Mer, 16 octobre, 2008 * Soustitré en anglais What is the initial condition? Standard single field inflation

More information

Gravity, Strings and Branes

Gravity, Strings and Branes Gravity, Strings and Branes Joaquim Gomis Universitat Barcelona Miami, 23 April 2009 Fundamental Forces Strong Weak Electromagnetism QCD Electroweak SM Gravity Standard Model Basic building blocks, quarks,

More information

Dark Energy & General Relativity «Some theoretical thoughts»

Dark Energy & General Relativity «Some theoretical thoughts» IAS workshop 24/11/2008 Dark Energy & General Relativity «Some theoretical thoughts» Jean-Philippe UZAN Cosmological models Theoretical physics Principles Local law of nature Extrapolations Cosmology models

More information

Testing gravity. Lam Hui Columbia University

Testing gravity. Lam Hui Columbia University Testing gravity Lam Hui Columbia University Symmetries & testing gravity Lam Hui Columbia University Symmetries & testing gravity Lam Hui Columbia University Outline: 1. Equivalence principle: a generic

More information

I am submitting herewith a dissertation written by Chad Aaron Middleton entitled

I am submitting herewith a dissertation written by Chad Aaron Middleton entitled To the Graduate Council: I am submitting herewith a dissertation written by Chad Aaron Middleton entitled Gravity in Extra Dimensions of Infinite Volume. I have examined the final electronic copy of this

More information

The Dark Sector ALAN HEAVENS

The Dark Sector ALAN HEAVENS The Dark Sector ALAN HEAVENS INSTITUTE FOR ASTRONOMY UNIVERSITY OF EDINBURGH AFH@ROE.AC.UK THIRD TRR33 WINTER SCHOOL PASSO DEL TONALE (ITALY) 6-11 DECEMBER 2009 Outline Dark Matter Dark Energy Dark Gravity

More information

Galileons. Axions and the Low Energy Frontier. Philippe Brax IPhT Saclay

Galileons. Axions and the Low Energy Frontier. Philippe Brax IPhT Saclay Galileons Axions and the Low Energy Frontier Philippe Brax IPhT Saclay Comment le sait-on? Mesure de distances! Dark Energy: anything which leads to the late time acceleration of the expansion of the Universe!

More information

arxiv: v2 [astro-ph.co] 16 Aug 2013

arxiv: v2 [astro-ph.co] 16 Aug 2013 arxiv:1204.5492v2 [astro-ph.co] 16 Aug 2013 Galileons in the Sky Claudia de Rham Départment de Physique Théorique and Center for Astroparticle Physics, Université de Genève, 24 Quai E. Ansermet, CH-1211

More information

Accidental SUSY at the LHC

Accidental SUSY at the LHC Accidental SUSY at the LHC Tony Gherghetta (University of Melbourne) PACIFIC 2011, Moorea, French Polynesia, September 12, 2011 with Benedict von Harling and Nick Setzer [arxiv:1104.3171] 1 What is the

More information

1. Introduction. [Arkani-Hamed, Dimopoulos, Dvali]

1. Introduction. [Arkani-Hamed, Dimopoulos, Dvali] 2014 Ï Ò (í «) Ò Ò Ù Åǽ À 20145 7 Content 1. Introduction and Motivation 2. f(r)-brane model and solutions 3. Localization of gravity on f(r)-brane 4. Gravity resonances on f(r)-brane 5. Corrections to

More information

Scalar fields and higher-derivative gravity in brane worlds

Scalar fields and higher-derivative gravity in brane worlds Scalar fields and higher-derivative gravity in brane worlds Dissertation of the faculty of physics of the Ludwig-Maximilians-Universität München submitted by Sebastian Pichler from Trostberg Munich, November

More information

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004

brane world cosmology An introduction to Andreas Müller Theory group LSW Advanced seminar LSW Heidelberg 03/03/2004 An introduction to brane world cosmology Andreas Müller Theory group LSW http://www.lsw.uni-heidelberg.de/users/amueller Advanced seminar LSW Heidelberg 03/03/2004 Overview principles bulk and brane extradimensions

More information

Stellar Black Holes, and the thermodynamic origin of Cosmic Acceleration

Stellar Black Holes, and the thermodynamic origin of Cosmic Acceleration Astrophysics Seminar Institut d Astrophysique de Paris Feb. 19, 2010 Stellar Black Holes, and the thermodynamic origin of Cosmic Acceleration Niayesh Afshordi 2/35 Outline Introduction Reviving Aether

More information

arxiv: v2 [astro-ph.co] 11 Sep 2011

arxiv: v2 [astro-ph.co] 11 Sep 2011 Orthogonal non-gaussianities from irac-born-infeld Galileon inflation Sébastien Renaux-Petel Centre for Theoretical Cosmology, epartment of Applied Mathematics and Theoretical Physics, University of Cambridge,

More information

arxiv:hep-ph/ v1 8 Feb 2000

arxiv:hep-ph/ v1 8 Feb 2000 Gravity, Particle Physics and their Unification 1 J. M. Maldacena Department of Physics Harvard University, Cambridge, Massachusetts 02138 arxiv:hep-ph/0002092v1 8 Feb 2000 1 Introduction Our present world

More information