Higuchi VS Vainshtein

Size: px
Start display at page:

Download "Higuchi VS Vainshtein"

Transcription

1 Higuchi VS Vainshtein ArXiv: soon to appear. Matteo Fasiello and Andrew J. Tolley Case Western Reserve University

2 Outline The Higuchi bound The Vainshtein mechanism Higuchi vs Vainshtein drgt setup FRW on FRW Despair not: a quicker route to the resolution

3 The Higuchi bound is a condition that stems from requiring stability from the classical theory of linear Massive Gravity L = L EH + L m = X p T q h 1 2 pt P p qt Q q + p T i PQ q (1) Roughly speaking: stability <==> Q, P positive definite (Higuchi + gradient instability) (2) Essential literature: A. Higuchi Nucl.Phys. B282 (1987) 397 S. Deser, A. Waldron Phys.Lett. B508 (2001) hep-th/ L.Grisa, L.Sorbo Phys.Lett. B686 (2010) arxiv:

4 Let s take a look example: Fierz-Pauli S = S EH m 2 4 Z d 4 x p ḡ (4) h µ h h f µ f f µ f i where: f µ =ḡ µ EH usual tensor decomposition T ij = T Tt ij +2@ (i T t j) ij ˆ@ ij T t + ˆ@ ij T l We are looking at the scalar here, the helicity 0 mode use ADM formalism solve constraint equations, solve for p t,h t canonical transformation: p l! p 0 + h t m 2 2H 2 /4H ; h l! q 0 + h t /2

5 I 0 = p 0 q 0 h 1 2 h 3 2 m 2 12H 2 ip h 12H 2 i 2 m 2 q 0 r 2 + m 2 9H 2 4 q 0 i 2 = m 2 2H 2 Immediately then, stability dictates: 2 > 0 in this setup, the Higuchi bound reads: m 2 > 2H 2

6 a quick, heuristic derivation: Vainshtein radius R µ + m 2 h µ T µ * underlying assumption: f µ 6=ḡ µ h µ 1 R m 2 therefore r<r V R r 2 ; GM r r V = M M 2 P m2 ) R GM r 3 m 2 1/3 r>r V C. Deffayet, G. Dvali, G. Gabadadze, A. Vainshtein hep-th/ Phys.Rev. D65 (2002) G. Chkareuli, D. Pirtskhalava airxiv

7 Inside the Vainshtein radius lies the region where one recovers GR schematically: 3H 2 = +3m 2 (1) one must require m 2 <H 2 Combining Higuchi and Vainshtein then: want our theory to be stable m 2 > 2H 2 GR works all around us m 2 <H 2

8 Clearly, there s a problem... In deriving the Higuchi bound, a number of assumptions were made: Shall we add matter content? Of course: Z S = S EH + S m 2 d 4 x p h 1 i g (4) 2 +V ( ) [Grisa and Sorbo, 2010] m 2 > 2(H 2 + Ḣ) but FP gravity, i.e. ghosts! Shall we use a different reference metric f? Yes, no reason not to. f µ 6=ḡ µ Plan: Study a ghost-free theory of massive gravity with matter content

9 drgt: Ghost-free m.g. theory at fully non-linear level * No Boulware-Deser Ghost, at all orders De Rham, Gabadadze, Tolley Hassan, Rosen * Screening mechanism in the non linear regime that restores continuity with G.R. as m approaches 0 * High enough cutoff so that the theory different regimes can be described S = S EH +2m 2 Z d 4 x p h g " 2 ( p g 1 f)+ 3 " 3 ( p g 1 f)+ 4 " 4 ( p g 1 f)i

10 Our set up * drgt theory of massive gravity with S m 2 =2m 2 Z d 4 x p h g " 2 ( p g 1 f)+ 3 " 3 (..)+ 4 " 4 (..)i " 2 (X) = 1 2 Tr2 [X] Tr[X 2 ] ; " 3 (X) = 1 6 Tr3 [X] 3Tr[X 2 ]Tr[X]+2Tr[X 3 ] " 4 (X) = 1 24 Tr4 [X] 6Tr[X 2 ]Tr 2 [X]+3Tr 2 [X 2 ]+8Tr[X 3 ]Tr[X] 6Tr[X 4 ] ** The reference metric f and g0 need not be the same, parametrize this as: f µ =(1+z)ḡ µ * * in ds

11 Higuchi bound: m 2 (1 z 2z 2 )(m 2 (1 z 2z 2 ) 2H 2 ) > 0 in other words, the Higuchi bound has the generic form m 2 ( m 2 2H 2 ) > 0 m is the dressed mass, we ask m 2 > 0 to avoid instabilities in the vector sector. Two branches of solutions: 0 <H< 3 2 H 0 ; H> 3 2 H 0 ; * 1+z = H/H0 m 2 > 2HH2 0 3H 0 2H. m 2 < 2HH 2 0 2H 3H 0. includes the H0 =H branch new branch apparently, for H>>H0, m 2 /H 2 0 > 1 this is a much weaker Higuchi bound, but Vainshtein will require the opposite inequality to hold, a.k.a. : back to square 1.

12 Add matter: L = L EH + L drgt + Z d 3 x p (4) g V ( ) Background: H 2 = m 2 (z Ḣ = 2 4 z 2 ) V 6 ; m z 2z 2 M +2Mz ; +3H + V 1 =0; V 1 = dv ( ) d ; ż = H (M 1 z); 1+z = b a = H H 0 0; H b ḃ Mb. * fµ = diag M 2 (t), (1 + z(t)) 2 a(t) 2 ; 3 =0= 4.

13 Ḣ drops out of the Higuchi inequality! The bound is independent from the equation of state for matter: m 2 (H) =m 2 H H 0 ( ) 2( ) H H 0 +( ) H2 H 2 0 2H 2. interesting feature, but the problem remains. Could the freedom on the alpha s pay off? It doesn t. Time evolution does not help either. poly (k) 1 (z) poly (k) 2 (z) 1 3 = 1= 4 structure also makes it hard. In this setup there is no regime which is simultaneously observationally acceptable and ghost-free.

14 A quicker method and a resolution of the H-V tension Use the properties of the mini superspace action: ds 2 = 2 dt 2 + b( 2 )d~x 2 B n m 2 M 2 Pl (1, 3, 4 ) S = Z dtna 3h 3M 2 Pl ȧ2 N 2 a 2 k a 2 N 3X n=0 A n b( ) a n 3X n=0 B n b( ) a n (a)i A n (3 n) =B n+1 (n + 1) field redefinition: =1/H 0 ln(a)+ /H 0 ; M = Na 3 ; = a 3 /3

15 fluctuations + diagonalize S (2) = Z dt h M 6M 2 Pl M 2 i 3M 2 Pl M 2! gravity sector has decoupled from helicity zero mode! we read off the Higuchi bound Proceeding analogously for bigravity, when f too is dynamical:! m 2 dressed(h) H 2 + H2 0 M 2 P M 2 f 2H 4 new!

16 What to do now? Fully bi-metric theories Inhomogeneities in the s? work in progress... Reasons to be hopeful: see Gabadadze et al., massive cosmologies.

Cosmological perturbations in nonlinear massive gravity

Cosmological perturbations in nonlinear massive gravity Cosmological perturbations in nonlinear massive gravity A. Emir Gümrükçüoğlu IPMU, University of Tokyo AEG, C. Lin, S. Mukohyama, JCAP 11 (2011) 030 [arxiv:1109.3845] AEG, C. Lin, S. Mukohyama, To appear

More information

Aspects of massive gravity

Aspects of massive gravity Aspects of massive gravity Sébastien Renaux-Petel CNRS - IAP Paris Rencontres de Moriond, 22.03.2015 Motivations for modifying General Relativity in the infrared Present acceleration of the Universe: {z

More information

Introduction to the Vainshtein mechanism

Introduction to the Vainshtein mechanism Introduction to the Vainshtein mechanism Eugeny Babichev LPT, Orsay School Paros 23-28 September 2013 based on arxiv:1107.1569 with C.Deffayet OUTLINE Introduction and motivation k-mouflage Galileons Non-linear

More information

Non-local Modifications of Gravity and Cosmic Acceleration

Non-local Modifications of Gravity and Cosmic Acceleration Non-local Modifications of Gravity and Cosmic Acceleration Valeri Vardanyan Cargese-2017 In collaboration with: Yashar Akrami Luca Amendola Alessandra Silvestri arxiv:1702.08908 Late time cosmology The

More information

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory

A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory A First Class Formulation of Massive Gravity - or Massive Gravity as a Gauge Theory Andrew J Tolley Case Western Reserve University Based on work to appear Why Massive Gravity? Massive Gravity Theories

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Kurt Hinterbichler, Chunshan Lin, Mark Trodden Why alternative gravity

More information

Claudia de Rham July 30 th 2013

Claudia de Rham July 30 th 2013 Claudia de Rham July 30 th 2013 GR has been a successful theory from mm length scales to Cosmological scales Then why Modify Gravity? Why Modify Gravity in the IR? Late time acceleration & CC problem First

More information

Black holes in massive gravity

Black holes in massive gravity Black holes in massive gravity Eugeny Babichev LPT, Orsay IAP PARIS, MARCH 14 2016 REVIEW: in collaboration with: R. Brito, M. Crisostomi, C. Deffayet, A. Fabbri,P. Pani, ARXIV:1503.07529 1512.04058 1406.6096

More information

New Model of massive spin-2 particle

New Model of massive spin-2 particle New Model of massive spin-2 particle Based on Phys.Rev. D90 (2014) 043006, Y.O, S. Akagi, S. Nojiri Phys.Rev. D90 (2014) 123013, S. Akagi, Y.O, S. Nojiri Yuichi Ohara QG lab. Nagoya univ. Introduction

More information

Bimetric Massive Gravity

Bimetric Massive Gravity Bimetric Massive Gravity Tomi Koivisto / Nordita (Stockholm) 21.11.2014 Outline Introduction Bimetric gravity Cosmology Matter coupling Conclusion Motivations Why should the graviton be massless? Large

More information

Nonlinear massive gravity and Cosmology

Nonlinear massive gravity and Cosmology Nonlinear massive gravity and Cosmology Shinji Mukohyama (Kavli IPMU, U of Tokyo) Based on collaboration with Antonio DeFelice, Emir Gumrukcuoglu, Chunshan Lin Why alternative gravity theories? Inflation

More information

Gravitational Waves. GR: 2 polarizations

Gravitational Waves. GR: 2 polarizations Gravitational Waves GR: 2 polarizations Gravitational Waves GR: 2 polarizations In principle GW could have 4 other polarizations 2 vectors 2 scalars Potential 4 `new polarizations Massive Gravity When

More information

Vainshtein mechanism. Lecture 3

Vainshtein mechanism. Lecture 3 Vainshtein mechanism Lecture 3 Screening mechanism Screening mechanisms The fifth force should act only on large scales and it should be hidden on small scales This implies that these mechanisms should

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama Yukawa Institute for Theoretical Physics Kyoto University Based on collaborations with Katsuki Aoki, Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia

More information

Fate of homogeneous and isotropic solutions in massive gravity

Fate of homogeneous and isotropic solutions in massive gravity Fate of homogeneous and isotropic solutions in massive gravity A. Emir Gümrükçüoğlu Kavli IPMU, University of Tokyo (WPI) AEG, Chunshan Lin, Shinji Mukohyama, JCAP 11 (2011) 030 AEG, Chunshan Lin, Shinji

More information

Massive gravity and cosmology

Massive gravity and cosmology Massive gravity and cosmology Shinji Mukohyama (YITP Kyoto) Based on collaboration with Antonio DeFelice, Garrett Goon, Emir Gumrukcuoglu, Lavinia Heisenberg, Kurt Hinterbichler, David Langlois, Chunshan

More information

Minimal theory of massive gravity

Minimal theory of massive gravity Minimal theory of massive gravity Antonio De Felice Yukawa Institute for Theoretical Physics, YITP, Kyoto U. 2-nd APCTP-TUS Workshop Tokyo, Aug 4, 2015 [with prof. Mukohyama] Introduction drgt theory:

More information

On the Vainshtein Mechanism

On the Vainshtein Mechanism Gustavo Niz University of Guanajuato University of Guanajuato University of Guanajuato Leon Content Motivation The Vainshtein Mechanism Basics Exploring solutions and stability (perts) Relaxing symmetry

More information

Bimetric Theory (The notion of spacetime in Bimetric Gravity)

Bimetric Theory (The notion of spacetime in Bimetric Gravity) Bimetric Theory (The notion of spacetime in Bimetric Gravity) Fawad Hassan Stockholm University, Sweden 9th Aegean Summer School on Einstein s Theory of Gravity and its Modifications Sept 18-23, 2017,

More information

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity)

On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) On the uniqueness of Einstein-Hilbert kinetic term (in massive (multi-)gravity) Andrew J. Tolley Case Western Reserve University Based on: de Rham, Matas, Tolley, ``New Kinetic Terms for Massive Gravity

More information

Massive gravity meets simulations?

Massive gravity meets simulations? Massive gravity meets simulations? Kazuya Koyama University of Portsmouth Non-linear massive gravity theory (de Rham, Gadadadze & Tolley 10) Two key features Self-acceleration A graviton mass accounts

More information

The nonlinear dynamical stability of infrared modifications of gravity

The nonlinear dynamical stability of infrared modifications of gravity The nonlinear dynamical stability of infrared modifications of gravity Aug 2014 In collaboration with Richard Brito, Vitor Cardoso and Matthew Johnson Why Study Modifications to Gravity? General relativity

More information

A New Approach to the Cosmological Constant Problem, and Dark Energy. Gregory Gabadadze

A New Approach to the Cosmological Constant Problem, and Dark Energy. Gregory Gabadadze A New Approach to the Cosmological Constant Problem, and Dark Energy Gregory Gabadadze New York University GG, Phys. Lett. B, 2014, and work in preparation with Siqing Yu October 12, 2015 Einstein s equations

More information

Massive gravity and Caustics: A definitive covariant constraint analysis

Massive gravity and Caustics: A definitive covariant constraint analysis Massive gravity and Caustics: A definitive covariant constraint analysis Cosmo 2014 - Chicago George Zahariade UC Davis August 29, 2014 1 / 18 Goals Motivation and goals de Rham-Gabadadze-Tolley massive

More information

MASAHIDE YAMAGUCHI. Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity. (Tokyo Institute of Technology)

MASAHIDE YAMAGUCHI. Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity. (Tokyo Institute of Technology) Perturbations of Cosmological and Black Hole Solutions in Massive gravity and Bi-gravity MASAHIDE YAMAGUCHI (Tokyo Institute of Technology) 10/12/15@KICP, Exploring Theories of Modified Gravity arxiv:1509.02096,

More information

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham

Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th Claudia de Rham Lorentz Center workshop Non-Linear Structure in the Modified Universe July 14 th 2014 Claudia de Rham Modified Gravity Lorentz-Violating LV-Massive Gravity Ghost Condensate Horava- Lifshitz Cuscuton Extended

More information

arxiv: v1 [hep-th] 1 Oct 2008

arxiv: v1 [hep-th] 1 Oct 2008 Cascading Gravity and Degravitation Claudia de Rham Dept. of Physics & Astronomy, McMaster University, Hamilton ON, Canada Perimeter Institute for Theoretical Physics, Waterloo, ON, Canada arxiv:0810.069v1

More information

QUINTESSENTIAL INFLATION

QUINTESSENTIAL INFLATION QUINTESSENTIAL INFLATION Relic gravity waves M. SAMI Centre for Theoretical Physics Jamia Millia University New Delhi GC-2018 BRIEF OVER VIEW Acceleration Generic feature of cosmic history Late time acceleration:

More information

arxiv: v1 [hep-th] 4 May 2015

arxiv: v1 [hep-th] 4 May 2015 New Branches of Massive Gravity D. Comelli a, M. Crisostomi b, K. Koyama b, L. Pilo c,d and G. Tasinato e a INFN, Sezione di Ferrara, I-35131 Ferrara, Italy b Institute of Cosmology and Gravitation, University

More information

Perturbations of Cosmological and Black hole solutions

Perturbations of Cosmological and Black hole solutions Perturbations of Cosmological and Black hole solutions in Bi-Gravity Daisuke Yoshida, Tokyo Institute of Technology Based on collaboration with Tsutomu Kobayashi, Masaru Siino, Masahide Yamaguchi (In progress)

More information

Non-local infrared modifications of gravity and dark energy

Non-local infrared modifications of gravity and dark energy Non-local infrared modifications of gravity and dark energy Michele Maggiore Los Cabos, Jan. 2014 based on M. Jaccard, MM and E. Mitsou, 1305.3034, PR D88 (2013) MM, arxiv: 1307.3898 S. Foffa, MM and E.

More information

Minimalism in Modified Gravity

Minimalism in Modified Gravity Minimalism in Modified Gravity Shinji Mukohyama (YITP, Kyoto U) Based on collaborations with Katsuki Aoki, Nadia Bolis, Antonio De Felice, Tomohiro Fujita, Sachiko Kuroyanagi, Francois Larrouturou, Chunshan

More information

D. f(r) gravity. φ = 1 + f R (R). (48)

D. f(r) gravity. φ = 1 + f R (R). (48) 5 D. f(r) gravity f(r) gravity is the first modified gravity model proposed as an alternative explanation for the accelerated expansion of the Universe [9]. We write the gravitational action as S = d 4

More information

PoS(Corfu2012)053. A new road to massive gravity? Eric Bergshoeff, Marija Kovačević, Lorena Parra and Thomas Zojer

PoS(Corfu2012)053. A new road to massive gravity? Eric Bergshoeff, Marija Kovačević, Lorena Parra and Thomas Zojer , Marija Kovačević, Lorena Parra and Thomas Zojer Centre for Theoretical Physics, University of Groningen, 9747 AG Groningen, The Netherlands E-mail: e.a.bergshoeff@rug.nl, m.kovacevic@rug.nl, l.parra.rodriguez@rug.nl,

More information

Inflationary Paradigm in Modified Gravity

Inflationary Paradigm in Modified Gravity Inflationary Paradigm in Modified Gravity Lavinia Heisenberg (ETH-ITS) Institute for Theoretical Studies, Zürich Jul. 21th, Nordita, Stockholm/Sweden Theoretical modelling of the Universe General Relativity

More information

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris)

Dark energy & Modified gravity in scalar-tensor theories. David Langlois (APC, Paris) Dark energy & Modified gravity in scalar-tensor theories David Langlois (APC, Paris) Introduction So far, GR seems compatible with all observations. Several motivations for exploring modified gravity Quantum

More information

The State of Theory. Mark Trodden University of Pennsylvania. Testing Gravity 2015 Simon Fraser University

The State of Theory. Mark Trodden University of Pennsylvania. Testing Gravity 2015 Simon Fraser University Mark Trodden University of Pennsylvania Testing Gravity 2015 Simon Fraser University Overview Motivations - background, and the problem of cosmic acceleration Why consider Modified gravity? What are the

More information

arxiv: v3 [hep-th] 30 May 2018

arxiv: v3 [hep-th] 30 May 2018 arxiv:1010.0246v3 [hep-th] 30 May 2018 Graviton mass and cosmological constant: a toy model Dimitrios Metaxas Department of Physics, National Technical University of Athens, Zografou Campus, 15780 Athens,

More information

arxiv: v2 [hep-th] 12 Aug 2010

arxiv: v2 [hep-th] 12 Aug 2010 NYU-TH-06/13/10 August 13, 2010 Generalization of the Fierz-Pauli Action arxiv:1007.0443v2 [hep-th] 12 Aug 2010 Claudia de Rham 1 and Gregory Gabadadze 2 1 Départment de Physique Théorique, Université

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Healthy theories beyond Horndeski

Healthy theories beyond Horndeski Healthy theories beyond Horndeski Jérôme Gleyzes, IPhT CEA Saclay with D. Langlois, F. Piazza and F. Vernizzi, arxiv:1404.6495, arxiv:1408.1952 ITP Heidelberg 26/11/14 Introduction to Horndeski Going safely

More information

arxiv: v2 [hep-th] 15 Nov 2010

arxiv: v2 [hep-th] 15 Nov 2010 NYU-TH-09/18/10 October 25, 2018 Cosmic Acceleration and the Helicity-0 Graviton arxiv:1010.1780v2 [hep-th] 15 Nov 2010 Claudia de Rham a, Gregory Gabadadze b, Lavinia Heisenberg a and David Pirtskhalava

More information

arxiv: v2 [hep-th] 6 Dec 2013

arxiv: v2 [hep-th] 6 Dec 2013 Cent. Eur. J. Phys. 1-16 Author version Central European Journal of Physics Sarah Folkerts 1, Cristiano Germani 1 and Nico Wintergerst 1 arxiv:1310.0453v2 [hep-th] 6 Dec 2013 1 Arnold Sommerfeld Center,

More information

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai.

Constraints on Inflationary Correlators From Conformal Invariance. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Constraints on Inflationary Correlators From Conformal Invariance Sandip Trivedi Tata Institute of Fundamental Research, Mumbai. Based on: 1) I. Mata, S. Raju and SPT, JHEP 1307 (2013) 015 2) A. Ghosh,

More information

Recent developments in bimetric theory

Recent developments in bimetric theory Review: Updated March 31, 2016 Recent developments in bimetric theory arxiv:1512.00021v2 [hep-th] 30 Mar 2016 Angnis Schmidt-May, 1 Mikael von Strauss 2 1 Institut für Theoretische Physik, Eidgenössische

More information

Dark energy and nonlocal gravity

Dark energy and nonlocal gravity Dark energy and nonlocal gravity Michele Maggiore Vacuum 2015, Barcelona based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB 2014, 1311.3421 Foffa, MM, Mitsou,

More information

arxiv: v2 [hep-th] 21 Sep 2014

arxiv: v2 [hep-th] 21 Sep 2014 Ghosts & Matter Couplings in Massive (bi-&multi-)gravity arxiv:1409.3834v2 [hep-th] 21 Sep 2014 Claudia de Rham, 1 Lavinia Heisenberg, 2,3 and Raquel H. Ribeiro 1 1 CERCA & Department of Physics, Case

More information

Null Energy Condition violations in bimetric gravity

Null Energy Condition violations in bimetric gravity Null Energy Condition violations in bimetric gravity arxiv:1206.3814v2 [gr-qc] 27 Jun 2012 Valentina Baccetti, Prado Martin-Moruno, and Matt Visser School of Mathematics, Statistics, and Operations Research,

More information

Canonical Cosmological Perturbation Theory using Geometrical Clocks

Canonical Cosmological Perturbation Theory using Geometrical Clocks Canonical Cosmological Perturbation Theory using Geometrical Clocks joint work with Adrian Herzog, Param Singh arxiv: 1712.09878 and arxiv:1801.09630 International Loop Quantum Gravity Seminar 17.04.2018

More information

Massive gravitons in arbitrary spacetimes

Massive gravitons in arbitrary spacetimes Massive gravitons in arbitrary spacetimes Mikhail S. Volkov LMPT, University of Tours, FRANCE Kyoto, YITP, Gravity and Cosmology Workshop, 6-th February 2018 C.Mazuet and M.S.V., Phys.Rev. D96, 124023

More information

arxiv: v2 [hep-th] 7 Jan 2016

arxiv: v2 [hep-th] 7 Jan 2016 Hairy black holes in scalar extended massive gravity arxiv:1510.0508v [hep-th] 7 Jan 016 Andrew J. Tolley, 1, De-Jun Wu,, and Shuang-Yong Zhou 1, 1 Department of Physics, Case Western Reserve University,

More information

Testing GR on Cosmological Scales

Testing GR on Cosmological Scales Testing GR on Cosmological Scales f(r) and DGP Worked Examples Wayne Hu Harvard Smithsonian Conference May 2012 Outline Testing Gravity Cosmologically f(r) (chameleon) and DGP (Vainshtein) worked examples

More information

Stable violation of the null energy condition and non-standard cosmologies

Stable violation of the null energy condition and non-standard cosmologies Paolo Creminelli (ICTP, Trieste) Stable violation of the null energy condition and non-standard cosmologies hep-th/0606090 with M. Luty, A. Nicolis and L. Senatore What is the NEC? Energy conditions: Singularity

More information

No unitary theory of PM spin two and gravity

No unitary theory of PM spin two and gravity AEI-2014-027 No unitary theory of PM spin two and gravity arxiv:1406.2335v1 [hep-th] 9 Jun 2014 Euihun JOUNG, a Wenliang LI a and Massimo TARONNA b,c a AstroParticule et Cosmologie 1 10 rue Alice Domon

More information

Galileon Cosmology ASTR448 final project. Yin Li December 2012

Galileon Cosmology ASTR448 final project. Yin Li December 2012 Galileon Cosmology ASTR448 final project Yin Li December 2012 Outline Theory Why modified gravity? Ostrogradski, Horndeski and scalar-tensor gravity; Galileon gravity as generalized DGP; Galileon in Minkowski

More information

Physics Letters B 711 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B.

Physics Letters B 711 (2012) Contents lists available at SciVerse ScienceDirect. Physics Letters B. Physics Letters B 711 01) 190 195 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Ghost free massive gravity in the Stücelberg language Claudia de

More information

arxiv: v4 [gr-qc] 4 Jul 2015

arxiv: v4 [gr-qc] 4 Jul 2015 NORDITA-2015-31 Bimetric gravity is cosmologically viable arxiv:1503.07521v4 [gr-qc] 4 Jul 2015 Yashar Akrami, 1,2, S.F. Hassan, 1,3, Frank Könnig, 1,2, Angnis Schmidt-May, 1,4, and Adam R. Solomon 1,2,5,

More information

Causal RG equation for Quantum Einstein Gravity

Causal RG equation for Quantum Einstein Gravity Causal RG equation for Quantum Einstein Gravity Stefan Rechenberger Uni Mainz 14.03.2011 arxiv:1102.5012v1 [hep-th] with Elisa Manrique and Frank Saueressig Stefan Rechenberger (Uni Mainz) Causal RGE for

More information

One-loop renormalization in a toy model of Hořava-Lifshitz gravity

One-loop renormalization in a toy model of Hořava-Lifshitz gravity 1/0 Università di Roma TRE, Max-Planck-Institut für Gravitationsphysik One-loop renormalization in a toy model of Hořava-Lifshitz gravity Based on (hep-th:1311.653) with Dario Benedetti Filippo Guarnieri

More information

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris)

Degenerate Higher-Order Scalar-Tensor (DHOST) theories. David Langlois (APC, Paris) Degenerate Higher-Order Scalar-Tensor (DHOST) theories David Langlois (APC, Paris) Higher order scalar-tensor theories Usual theories (Brans-Dicke, k-essence, ): L(r, ) Generalized theories: L(r µ r, r,

More information

Extended mimetic gravity:

Extended mimetic gravity: Extended mimetic gravity: Hamiltonian analysis and gradient instabilities Kazufumi Takahashi (JSPS fellow) Rikkyo University Based on KT, H. Motohashi, T. Suyama, and T. Kobayashi Phys. Rev. D 95, 084053

More information

Dark Energy Theory. Mark Trodden University of Pennsylvania

Dark Energy Theory. Mark Trodden University of Pennsylvania Mark Trodden University of Pennsylvania 2015: the Spacetime Odyssey Continues Nordita, Stockholm, June 2, 2015 Overview Motivations - background, and the problem of cosmic acceleration Some possible approaches:

More information

Cosmology in generalized Proca theories

Cosmology in generalized Proca theories 3-rd Korea-Japan workshop on dark energy, April, 2016 Cosmology in generalized Proca theories Shinji Tsujikawa (Tokyo University of Science) Collaboration with A.De Felice, L.Heisenberg, R.Kase, S.Mukohyama,

More information

arxiv: v1 [hep-th] 7 Mar 2017

arxiv: v1 [hep-th] 7 Mar 2017 NORDITA-2017-21 Partially Massless Graviton on Beyond Einstein Spacetimes Laura Bernard, 1 Cédric Deffayet, 2,3 Kurt Hinterbichler, 4 and Mikael von Strauss 2,5 arxiv:1703.02538v1 hep-th] 7 Mar 2017 1

More information

Testing Gravity Cosmologically

Testing Gravity Cosmologically Testing Gravity Cosmologically Philippe Brax IPhT Saclay Asphon Toulouse March 2013 The Big Puzzle How do we know? measuring distances! Absolute luminosity. Received flux: what we see in the telescope

More information

Testing Gravity using Astrophysics

Testing Gravity using Astrophysics Testing Gravity using Astrophysics Jeremy Sakstein Institute of Cosmology and Gravitation, Portsmouth ICG-KASI collaboration workshop 17 th September 2015 Things I would have said at the start of the week

More information

with EFTCAMB: The Hořava gravity case

with EFTCAMB: The Hořava gravity case Testing dark energy and modified gravity models with EFTCAMB: The Hořava gravity case Noemi Frusciante UPMC-CNRS, Institut d Astrophysique de Paris, Paris ERC-NIRG project no.307934 Based on NF, M. Raveri,

More information

Hamiltonian Bigravity and Cosmology

Hamiltonian Bigravity and Cosmology Vladimir O. Soloviev Institute for High Energy Physics named after A. A. Logunov of National Research Center Kurchatov Institute, Protvino (in the past Serpukhov), Russia Gravity and Cosmology 2018, YITP,

More information

Particle Physics and Cosmology III: Acceleration, Gravity & Extra Dimensions

Particle Physics and Cosmology III: Acceleration, Gravity & Extra Dimensions Particle Physics and Cosmology III: Acceleration, Gravity & Extra Dimensions Mark Trodden Center for Particle Cosmology University of Pennsylvania Third Lecture Puerto Vallarta Mexico 1/14/2011 Problems

More information

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for?

Topics on Galileons and generalized Galileons. Pacific 2016, Moorea, Sept the 13th. 1. What are scalar Galileons? 2. What are they useful for? Topics on Galileons and generalized Galileons Pacific 2016, Moorea, Sept the 13th 1. What are scalar Galileons? Cédric Deffayet (IAP and IHÉS, CNRS Paris Bures sur Yvette) 2. What are they useful for?

More information

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY MATHEMATICA TRIPOS Part III Wednesday 6 June 2001 9 to 11 PAPER 67 COSMOOGY Attempt THREE questions. The questions are of equal weight. Candidates may make free use of the information given on the accompanying

More information

Modified Gravity and the Cascading DGP model

Modified Gravity and the Cascading DGP model Modified Gravity and the Cascading DGP model Fulvio Sbisà Universidade Federal do Espìrito Santo, Vitòria, ES, Brazil UFES, Vitòria, 04/03/2016 in collaboration with Kazuya Koyama Outline 1 The cosmic

More information

Superfluids and the Cosmological Constant Problem

Superfluids and the Cosmological Constant Problem Superfluids and the Cosmological Constant Problem Adam R. Solomon Carnegie Mellon University With Justin Khoury & Jeremy Sakstein (UPenn) arxiv:1805.05937 (JCAP) Outline 1. Intro to the cosmological constant

More information

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2

S E.H. +S.F. = + 1 2! M 2(t) 4 (g ) ! M 3(t) 4 (g ) 3 + M 1 (t) 3. (g )δK µ µ M 2 (t) 2. δk µ νδk ν µ +... δk µ µ 2 M 3 (t) 2 S E.H. +S.F. = d 4 x [ 1 g 2 M PlR 2 + MPlḢg 2 00 MPl(3H 2 2 + Ḣ)+ + 1 2! M 2(t) 4 (g 00 + 1) 2 + 1 3! M 3(t) 4 (g 00 + 1) 3 + M 1 (t) 3 2 (g 00 + 1)δK µ µ M 2 (t) 2 δk µ µ 2 M 3 (t) 2 2 2 ] δk µ νδk ν

More information

arxiv: v1 [gr-qc] 25 Nov 2011

arxiv: v1 [gr-qc] 25 Nov 2011 Prepared for submission to JHEP Spherically Symmetric Solutions in Massive Gravity and Constraints from Galaxies arxiv:1111.5961v1 [gr-qc] 5 Nov 011 Stefan Sjörs a and Edvard Mörtsell a a Department of

More information

Mass-varying massive gravity with k-essence

Mass-varying massive gravity with k-essence Journal of Physics: Conference Series PAPER OPEN ACCESS Mass-varying massive gravity with k-essence To cite this article: Lunchakorn Tannukij 2017 J. Phys.: Conf. Ser. 883 012005 View the article online

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste

An all-scale exploration of alternative theories of gravity. Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste An all-scale exploration of alternative theories of gravity Thomas P. Sotiriou SISSA - International School for Advanced Studies, Trieste General Outline Beyond GR: motivation and pitfalls Alternative

More information

Momentum relaxation in holographic massive gravity

Momentum relaxation in holographic massive gravity Momentum relaxation in holographic massive gravity Richard Davison Lorentz Institute, Leiden Based on 1306.5792 [hep-th] Gauge/Gravity Duality 2013, Munich July 30 th 2013 Introduction and motivation We

More information

Degenerate theories with higher derivatives

Degenerate theories with higher derivatives Degenerate theories with higher derivatives Hayato Motohashi IFIC, University of Valencia 2017.03.02 Workshop on gravity & cosmology for young researchers, YITP 1 DOF = 2 initial conditions Ostrogradsky

More information

Status of Hořava Gravity

Status of Hořava Gravity Status of Institut d Astrophysique de Paris based on DV & T. P. Sotiriou, PRD 85, 064003 (2012) [arxiv:1112.3385 [hep-th]] DV & T. P. Sotiriou, JPCS 453, 012022 (2013) [arxiv:1212.4402 [hep-th]] DV, arxiv:1502.06607

More information

Emergent symmetries in the Canonical Tensor Model

Emergent symmetries in the Canonical Tensor Model Emergent symmetries in the Canonical Tensor Model Naoki Sasakura Yukawa Institute for Theoretical Physics, Kyoto University Based on collaborations with Dennis Obster arxiv:1704.02113 and a paper coming

More information

Effect of the Trace Anomaly on the Cosmological Constant. Jurjen F. Koksma

Effect of the Trace Anomaly on the Cosmological Constant. Jurjen F. Koksma Effect of the Trace Anomaly on the Cosmological Constant Jurjen F. Koksma Invisible Universe Spinoza Institute Institute for Theoretical Physics Utrecht University 2nd of July 2009 J.F. Koksma T. Prokopec

More information

Cosmology with moving bimetric fluids

Cosmology with moving bimetric fluids Prepared for submission to JCAP Cosmology with moving bimetric fluids arxiv:1608.06493v2 [gr-qc] 18 Nov 2016 Carlos García-García, Antonio L. Maroto, Prado Martín-Moruno Departamento de Física Teórica

More information

Implications of the Bicep2 Results (if the interpretation is correct) Antonio Riotto Geneva University & CAP

Implications of the Bicep2 Results (if the interpretation is correct) Antonio Riotto Geneva University & CAP Implications of the Bicep2 Results (if the interpretation is correct) Antonio Riotto Geneva University & CAP La Sapienza, Roma, 12/6/2014 Plan of the talk Short introduction to cosmological perturbations

More information

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract

Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term. Abstract MCTP-01-06 hep-th/010093 Quantum discontinuity between zero and infinitesimal graviton mass with a Λ term F. A. Dilkes, M. J. Duff, James T. Liu and H. Sati Michigan Center for Theoretical Physics Randall

More information

Inflation in Flatland

Inflation in Flatland Inflation in Flatland Austin Joyce Center for Theoretical Physics Columbia University Kurt Hinterbichler, AJ, Justin Khoury, 1609.09497 Theoretical advances in particle cosmology, University of Chicago,

More information

Recovering General Relativity from Hořava Theory

Recovering General Relativity from Hořava Theory Recovering General Relativity from Hořava Theory Jorge Bellorín Department of Physics, Universidad Simón Bolívar, Venezuela Quantum Gravity at the Southern Cone Sao Paulo, Sep 10-14th, 2013 In collaboration

More information

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes

Black Holes in Higher-Derivative Gravity. Classical and Quantum Black Holes Black Holes in Higher-Derivative Gravity Classical and Quantum Black Holes LMPT, Tours May 30th, 2016 Work with Hong Lü, Alun Perkins, Kelly Stelle Phys. Rev. Lett. 114 (2015) 17, 171601 Introduction Black

More information

Proof of the Weak Gravity Conjecture from Black Hole Entropy

Proof of the Weak Gravity Conjecture from Black Hole Entropy Proof of the Weak Gravity Conjecture from Black Hole Entropy Grant N. Remmen Berkeley Center for Theoretical Physics Miller Institute for Basic Research in Science University of California, Berkeley arxiv:1801.08546

More information

Cosmology from Brane Backreaction

Cosmology from Brane Backreaction Cosmology from Brane Backreaction Higher codimension branes and their bulk interactions w Leo van Nierop Outline Motivation Extra-dimensional cosmology Setup A 6D example Calculation Maximally symmetric

More information

arxiv: v2 [hep-th] 23 Sep 2007

arxiv: v2 [hep-th] 23 Sep 2007 Ghosts in the self-accelerating universe Kazuya Koyama Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth PO1 2EG, UK arxiv:0709.2399v2 [hep-th] 23 Sep 2007 The self-accelerating

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Synergizing Screening Mechanisms on Different Scales

Synergizing Screening Mechanisms on Different Scales Synergizing Screening Mechanisms on Different Scales Jeremy Sakstein University of Pennsylvania Probing the dark sector and general relativity at all scales CERN 17 th August 2017 Or. What should astrophysical

More information

arxiv: v2 [physics.gen-ph] 25 Apr 2013

arxiv: v2 [physics.gen-ph] 25 Apr 2013 Off Diagonal Ekpyrotic Scenarios and Equivalence of Modified, Massive and/or Einstein Gravity arxiv:1304.1080v2 [physics.gen-ph] 25 Apr 2013 Sergiu I. Vacaru Rector s Office, Alexandru Ioan Cuza University,

More information

Dark Energy at the Speed of Gravitational Waves

Dark Energy at the Speed of Gravitational Waves New probes of gravity and cosmic acceleration Nordita & BCCP Theoretical Cosmology in the Light of Data - July 2017 with A. Barreira, F. Montanari, J. Renk (1707.xxxxx) D. Bettoni, JM Ezquiaga, K. Hinterbichler

More information

arxiv: v3 [hep-th] 14 May 2013

arxiv: v3 [hep-th] 14 May 2013 Strong Coupling and Bounds on the Graviton Mass in Massive Gravity Clare Burrage, Nemanja Kaloper, and Antonio Padilla School of Physics and Astronomy, University of Nottingham, Nottingham NG7 RD, UK Department

More information

Gravitational mechanisms to self-tune the cosmological constant: obstructions and ways forward

Gravitational mechanisms to self-tune the cosmological constant: obstructions and ways forward Gravitational mechanisms to self-tune the cosmological constant: obstructions and ways forward Florian Niedermann, and Antonio Padilla, School of Physics and Astronomy, University of Nottingham, Nottingham

More information

Oddities of the Universe

Oddities of the Universe Oddities of the Universe Koushik Dutta Theory Division, Saha Institute Physics Department, IISER, Kolkata 4th November, 2016 1 Outline - Basics of General Relativity - Expanding FRW Universe - Problems

More information

Nonlocal gravity and comparison with cosmological datasets

Nonlocal gravity and comparison with cosmological datasets Nonlocal gravity and comparison with cosmological datasets Michele Maggiore Cosmology on Safari, Jan. 2015 based on Jaccard, MM, Mitsou, PRD 2013, 1305.3034 MM, PRD 2014, 1307.3898 Foffa, MM, Mitsou, PLB

More information