Quantum Mechanics and Stellar Spectroscopy

Size: px
Start display at page:

Download "Quantum Mechanics and Stellar Spectroscopy"

Transcription

1 Quantum Mechanics and Stella Spectoscopy Recall the electic foce. Like gavity it is a 1/ 2 foce/ That is: F elec = Z 1Z 2 e 2 2 whee Z 1 and Z 2 ae the (intege) numbes of electonic chages. Similaly, the electic potential enegy is Ze Potons in nucleus. Electons obit like planets. The neuton was not discoveed until 1932 (Chadwick) e Ruthefod Atom (1911) F elec = F cent Ze 2 2 = m e v2 = Ze2 m e v 2 fo a single electon Z = 1,2,3, H, He, Li, etc classically, any value of v o is allowed. Much like planets. E elec = Z 1Z 2 e 2

2 Ze Potons in nucleus. Electons obit like planets. The neuton was not discoveed until 1932 (Chadwick) KE = 1 2 m ev 2 = Ze2 2 v= Ze2 m e e Ruthefod Atom (1911) F elec = F cent Ze 2 2 = m e v2 Total enegy: = Ze2 m e v 2 E tot = KE + PE= m e v2 2 Ze2 = Ze2 2 Ze2 = Ze2 2 i.e., 2KE = -PE (if PE is negative) Viial theoem still woks fo the electic foce. Z = 1,2,3, classically, any value of v o is allowed. BUT, Ze e Ruthefod Atom (1911) v = Ze2 m e F = m e a = m ev 2 a= v2 = Ze2 m e 2 E tot = Ze2 2 As the electon moves in its obit it is acceleated, and theefoe emits adiation. Because enegy is being adiated, the total enegy of the system must decease become moe negative. This means must get smalle and v must incease. But smalle and lage v also imply geate acceleation and adiation. In appoximately 10-6 s the electon spials into the nucleus. Goodbye univese The solution lies in the wave-like popety of the electon and of all matte Fo wavelike phenomena e.g., light, intefeence is expected L L = D/d! Young s expeiment Thomas Young ealy 1800 s fo light.

3 Same basic esult obtained using electons λ = h p 8e - 270e - In 1924, Louis-Victo de Boglie fomulated the DeBoglie hypothesis, claiming that all matte, not just light, has a wavelike natue. He elated the wavelength (denoted as ) and the momentum (denoted as p) λ = h p 2,000e - 60,000e - Hitachi labs (1989). A popety of ou univese This is a little like the elation we had fo photons E = hν = hc/λ but if E = pc The condition that a paticle cannot be localized to a egion x smalle than its wavelength = h/p also implies λ < Δx p Δx > h p> h Δx λ = h p paticle_duality Light and paticles like the electon (and neuton and poton) all have wavelengths and the shote the wavelength the highe the momentum p. Electons always have some motion egadless of thei tempeatue because thei wavelength cannot be zeo (aka Heisenbeg Uncetainty Pinciple) One cannot confine a paticle to a egion x without making its momentum incease p= h is the "degeneate" limit Δx

4 Conside one electon in a contacting box m # v As you squeeze on the box, the paticle in the box has to move faste. h h λ = = p mv # m λ v The squeezing povides the enegy to incease v A little thought will show how this is going to solve ou poblem with the stability of matte (and also, late, the existence of white dwafs) As the electon is foced into a smalle and smalle volume, it must move faste. Ultimately this kinetic enegy can suppot it against the electical attaction of the nucleus. Since p = h λ 1 2 m e v2 = p2 2m e 1 λ 2 ~ 1 2 but Ze2 1 The kinetic enegy inceases quadatically with 1/, the electical potential, only linealy. Thee comes a minimum adius whee the electon cannot adiate because the sum of its potential and kinetic enegies has eached a minimum. Enegy KE 1 2 At lage distance electical epulsion dominates. At shot distances the quantum mechanical kinetic enegy is lage. Radius PE 1 Gound state of the hydogen atom Neils Boh (1913) (lowest possible enegy state) Must fit the wavelength of the electon inside a cicle of adius, the aveage distance between the electon and the poton. e - + p λ = 2π = h p h h p = = λ 2π mv m v p h KE = = = = m 2m 2 m(4 π ) 2 e PE = as befoe Note that PE goes as 1/ and KE goes as 1/ 2 The 2 hee is athe abitay but gives the ight answe and omits deepe discussion of wave functions new QM enegy

5 Enegy 1 KE 2 PE 1 Fo a single electon bound to a single poton, i.e., hydogen. At o o KE = 1 2 PE h 2 2m e (4π ) = Ze2 2 o h 2 2m e Ze = 4π o h 2 o = 4π 2 Z e 2 m e 2 i.e., p = h 2π and KE = 1 2 m ev 2 = (m e v)2 2m e = p2 2m e Enegy would have to be povided to the electon to make it move any close to the poton (because it would have to move faste), moe enegy than e 2 / can give. This is the (aveage) adius of the gound state of the hydogen atom, A. It is pemanently stable. Thee is no state with lowe enegy to make a tansition to. Howeve, thee also exist excited states of atoms that have a tansitoy existence. o Fo Z=1 (hydogen) o = A = x10 9 cm Fo atoms with a single electon H, He +, etc. Solve as befoe: n 2 h 2 = = 0.53 n2 4π 2 Ze 2 m e Z Angstoms E tot = Ze2 2 = 2π 2 Z 2 e 4 m e n 2 h 2 E tot n=3 = 13.6 ev Z 2 n 2 Fo atoms with only a single electon. Fo hydogen Z = 1 Boh s Fist Postulate The only possible states of the electon ae those fo which mv = nh 2π 1eV eg n = 1 is the "gound state" n = 1 n=2 n=3 In the full quantum mechanical solution the electon is descibed by a wave function that gives its pobability fo being found at any paticula distance fom the nucleus. In the simplest case these distibutions ae spheical. The adius in the Boh model is the aveage adius but the enegy is pecise. *

6 * Boh s Second Postulate All obitals fom n = 1 though 4 Numbe electons pe shell is 2n 2, but don t always completely fill one shell befoe stating on the next. 2, 8, 18 2, 10, 18, 36 He, Ne, A, K Only the gound state, n = 1, is pemanently stable Boh s Second Postulate Radiation in the fom of a single quantum (photon) is Emitted (o absobed) as the electon makes a tansition Fom one state to anothe. The enegy in the photon is the Diffeence between the enegies of the two states. emission absoption E m E n + hν (o E n +hν E m ) m > n hν = hc λ = E m E n 1 λ = E m E n = 2π 2 Z 2 e 4 m e 1 hc h 3 c n 1 2 m 2 1 = Z 2 1 λ mn n 1 2 m 2 λ mn = A 1 Z 2 n m 2 (fo atoms with only one electon) cm 1 E.g., m = 2, n = 1, Z = 1 m = 3, n = 1, Z = o λ = A = o = = 1216 A 3 m = 3,n = 2, Z = λ = = o = = 1026A 8 λ = = = = o 5 =6563A 1 λ mn = A 1 Z 2 n m 2 Lines that stat o end on n=1 ae called the Lyman seies. All ae between and 1216 A. Lines that stat o end on n=2 ae called the Balme seies. All ae between 3646 and 6564 A.

7 BALMER SERIES H α,β,γ, H # H # Hydogen emission line spectum Balme seies H # Adjusting the enegy of each state in hydogen by adding 13.6 ev (so that the gound state becomes zeo), one gets a diagam whee the enegies of the tansitions can be ead off easily. Ly α,β,γ,... Peak numb e Wavelength of peak (nm) mecuy mecuy Species poducing peak tebium fom Tb tebium fom Tb mecuy possibly mecuy mecuy o euopium in Eu +3 :Y 2 O 3 o tebium likely Tb possibly tebium fom Tb likely euopium in Eu +3 :Y 2 O 3 Fluoescent Light Fixtue ed geen violet likely euopium in Eu +3 :Y 2 O likely euopium in Eu +3 :Y 2 O euopium in Eu +3 :Y 2 O likely tebium fom Tb likely euopium in Eu +3 :Y 2 O likely euopium in Eu +3 :Y 2 O likely euopium in Eu +3 :Y 2 O 3

8 How ae excited states populated? Absob a photon of the ight enegy Collisions Ionization - ecombination Emission H-alpha Absoption Ly-alpha

9 Stas show absoption line specta Absoption Line Spectum (not the sun) Hydogen Flux Wavelength When we examine the specta of stas, with a few exceptions to be discussed late, we see blackbody specta with a supeposition of absoption lines. The identity and intensity of the spectal lines that ae pesent eflect the tempeatue, density and composition of the stella photosphee. Blackbody Emission line spectum Absoption line spectum Detemined fom spectal analysis but the most abundant elements (H) do not always have the stongest lines as we shall see

10 The sola spectum C = Balme alpha F = Balme beta f = Balme gamma B = oxygen D = sodium H, K = singly ionized calcium othes = Fe, Mg, Na, etc. As the tempeatue in a gas is aised, electons will be emoved by collisions and inteactions with light. The gas comes ionized. The degee of ionization depends on the atom consideed and the tempeatue. Wollaton (1802) discoveed dak lines in the sola spectum. Faunhaufe ediscoveed them (1817) and studied the systematics Notation: Ionization stages H I neutal hydogen 1 p 1 e H II ionized hydogen 1 p 0 e He I neutal helium 2 p 2 e He II singly ionized helium 2 p 1 e He III doubly ionized helium 2 p 0 e C I neutal cabon 6 p 6 e C II C + 6 p 5 e C III C ++ 6 p 4 e etc. The ionization enegy is the enegy equied to emove a single electon fom a given ion. The excitation enegy is the enegy equied to excite an electon fom the gound state to the fist excited state. ae Ion Excitation enegy (ev) Ionization enegy (ev) H I He I He II Li I Ne I Na I Mg I Ca I Li is He plus one poton, Na is Ne plus 1 poton, Ca is A plus 2 potons. The noble gases have closed electon shells and ae vey stable.

11 Some of the stonge lines in stas Faction MS stas sola neighbohood O > 25,000 K Delta Oionis 1/3,000,000 B 11,000 25,000 Pleiades bightest 1/800 A ,000 Siius 1/160 F Canopus 1/133 G Sun 1/13 K Actuus 1/8 M < 3500 Poxima Centaui 3/4 Main sequence stas would look like this to the human eye Ou sun s spectal class is G2-V

12 Spectal Sequence H β H α Cannon futhe efined the spectal classification system by dividing the classes into numbeed subclasses: Ca II Fo example, A was divided into A0 A1 A2 A3... A9 Between 1911 and 1924, she classified about 220,000 stas, published as the Heny Dape Catalog.

13 Summay of spectoscopic types He II stong, He I inceasing fom O4 to O9 H pominent 10 4 in He II has same wavelength as 5 2 in H I Balme Seies Tansition 3 -> 2 4 -> 2 5 -> 2 6 -> 2 7-> 2 Name H H H H H Wavelength He I lines dominate H inceasing in stength Colo Red Bluegeen Violet Violet Ultaviolet

14 H lines each maximum stength. Ca II gowing. Fe II, Si II, Mg II each Ca II lines stongest, H lines weak, neutal metal lines stong. G-band of CH is stong. H γ = 4341A H δ = 4102 A H lines stat to decease in stength. Ca II stong. Fe I gowing in stength. Mg II deceasing. H lines weak. Lines of neutal metals pesent but weakening. Majo chaacteistic is bands fom molecules like TiO and MgH (Pat of) the sola spectum DISTINGUISHING MAIN SEQUENCE STARS The suface gavity g = GM R 2 of a sta is clealy lage fo a smalle adius (if M is constant) To suppot itself against this highe gavity, a the stella photosphee must have a lage pessue. As we shall see late fo an ideal gas P = n k T whee n is the numbe density and T is the tempeatue. If two stas have the same tempeatue, T, the one with the highe pessue (smalle adius) will have the lage n, i.e., its atoms will be moe closely cowded togethe. This has two effects: 1) At a geate density (and the same T) a gas is less ionized 2) If the density is high, the electons in one atom feel the pesence of othe neaby nuclei. This makes thei binding enegy less cetain. This speading of the enegy level is called Stak boadening

15 Note: Suface gavity on the main sequence is highe fo lowe mass stas R M 0.65 GM R 2 deceases with inceasing M All 3 stas have the same tempeatue but, The supegiants have the naowest absoption lines Small Main-Sequence stas have the boadest lines Giants ae intemediate in line width and adius Luminosity Classes In 1943, Mogan & Keenan added the Luminosity Class as a second classification paamete: Ia = Bight Supegiants Ib = Supegiants II = Bight Giants III = Giants IV = Subgiants V = Main sequence

Quantum Mechanics and Stellar Spectroscopy

Quantum Mechanics and Stellar Spectroscopy Quantum Mechanics and Stella Spectoscopy Recall the electic foce. Like gavity it is a 1/ 2 foce/ That is: e = 4.803 10 10 esu e 2 = 2.307 10 19 dyne cm 2 F elec = Z 1 Z 2 e2 2 whee Z 1 and Z 2 ae the (intege)

More information

Quantum Mechanics and Stellar Spectroscopy.

Quantum Mechanics and Stellar Spectroscopy. Quantum Mechanics and Stellar Spectroscopy http://apod.nasa.gov/apod/ Recall the electric force. Like gravity it is a 1/r 2 force/ That is: F elec = Z 1 Z 2 e2 r 2 where Z 1 and Z 2 are the (integer) numbers

More information

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf " #, # $ work function.

PHYSICS 4E FINAL EXAM SPRING QUARTER 2010 PROF. HIRSCH JUNE 11 Formulas and constants: hc =12,400 ev A ; k B. = hf  #, # $ work function. PHYSICS 4E FINAL EXAM SPRING QUARTER 1 Fomulas and constants: hc =1,4 ev A ; k B =1/11,6 ev/k ; ke =14.4eVA ; m e c =.511"1 6 ev ; m p /m e =1836 Relativistic enegy - momentum elation E = m c 4 + p c ;

More information

20th Century Atomic Theory - Hydrogen Atom

20th Century Atomic Theory - Hydrogen Atom 0th Centuy Atomic Theoy - Hydogen Atom Ruthefod s scatteing expeiments (Section.5, pp. 53-55) in 1910 led to a nuclea model of the atom whee all the positive chage and most of the mass wee concentated

More information

Introduction to Nuclear Forces

Introduction to Nuclear Forces Intoduction to Nuclea Foces One of the main poblems of nuclea physics is to find out the natue of nuclea foces. Nuclea foces diffe fom all othe known types of foces. They cannot be of electical oigin since

More information

CHEM1101 Worksheet 3: The Energy Levels Of Electrons

CHEM1101 Worksheet 3: The Energy Levels Of Electrons CHEM1101 Woksheet 3: The Enegy Levels Of Electons Model 1: Two chaged Paticles Sepaated by a Distance Accoding to Coulomb, the potential enegy of two stationay paticles with chages q 1 and q 2 sepaated

More information

Physics 107 TUTORIAL ASSIGNMENT #8

Physics 107 TUTORIAL ASSIGNMENT #8 Physics 07 TUTORIAL ASSIGNMENT #8 Cutnell & Johnson, 7 th edition Chapte 8: Poblems 5,, 3, 39, 76 Chapte 9: Poblems 9, 0, 4, 5, 6 Chapte 8 5 Inteactive Solution 8.5 povides a model fo solving this type

More information

Determining solar characteristics using planetary data

Determining solar characteristics using planetary data Detemining sola chaacteistics using planetay data Intoduction The Sun is a G-type main sequence sta at the cente of the Sola System aound which the planets, including ou Eath, obit. In this investigation

More information

Section 11. Timescales Radiation transport in stars

Section 11. Timescales Radiation transport in stars Section 11 Timescales 11.1 Radiation tanspot in stas Deep inside stas the adiation eld is vey close to black body. Fo a black-body distibution the photon numbe density at tempeatue T is given by n = 2

More information

Nuclear and Particle Physics - Lecture 20 The shell model

Nuclear and Particle Physics - Lecture 20 The shell model 1 Intoduction Nuclea and Paticle Physics - Lectue 0 The shell model It is appaent that the semi-empiical mass fomula does a good job of descibing tends but not the non-smooth behaviou of the binding enegy.

More information

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o

( n x ( ) Last Time Exam 3 results. Question. 3-D particle in box: summary. Modified Bohr model. 3-D Hydrogen atom. r n. = n 2 a o Last Time Exam 3 esults Quantum tunneling 3-dimensional wave functions Deceasing paticle size Quantum dots paticle in box) This week s honos lectue: Pof. ad histian, Positon Emission Tomogaphy Tue. Dec.

More information

Physics 505 Homework No. 9 Solutions S9-1

Physics 505 Homework No. 9 Solutions S9-1 Physics 505 Homewok No 9 s S9-1 1 As pomised, hee is the tick fo summing the matix elements fo the Stak effect fo the gound state of the hydogen atom Recall, we need to calculate the coection to the gound

More information

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below. Fall 2007 Qualifie Pat II 12 minute questions 11) A thin, unifom od of mass M is suppoted by two vetical stings, as shown below. Find the tension in the emaining sting immediately afte one of the stings

More information

7.2. Coulomb s Law. The Electric Force

7.2. Coulomb s Law. The Electric Force Coulomb s aw Recall that chaged objects attact some objects and epel othes at a distance, without making any contact with those objects Electic foce,, o the foce acting between two chaged objects, is somewhat

More information

PHYSICS 272 Electric & Magnetic Interactions

PHYSICS 272 Electric & Magnetic Interactions PHYS 7: Matte and Inteactions II -- Electic And Magnetic Inteactions http://www.physics.pudue.edu/academic_pogams/couses/phys7/ PHYSICS 7 Electic & Magnetic Inteactions Lectue 3 Chaged Objects; Polaization

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces Foces Lectue 3 Basic Physics of Astophysics - Foce and Enegy http://apod.nasa.gov/apod/ Momentum is the poduct of mass and velocity - a vecto p = mv (geneally m is taken to be constant) An unbalanced foce

More information

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241

20-9 ELECTRIC FIELD LINES 20-9 ELECTRIC POTENTIAL. Answers to the Conceptual Questions. Chapter 20 Electricity 241 Chapte 0 Electicity 41 0-9 ELECTRIC IELD LINES Goals Illustate the concept of electic field lines. Content The electic field can be symbolized by lines of foce thoughout space. The electic field is stonge

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

= 4 3 π( m) 3 (5480 kg m 3 ) = kg.

= 4 3 π( m) 3 (5480 kg m 3 ) = kg. CHAPTER 11 THE GRAVITATIONAL FIELD Newton s Law of Gavitation m 1 m A foce of attaction occus between two masses given by Newton s Law of Gavitation Inetial mass and gavitational mass Gavitational potential

More information

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics

Class 2. Lesson 1 Stationary Point Charges and Their Forces. Basic Rules of Electrostatics. Basic Rules of Electrostatics Lesson 1 Stationay Point Chages and Thei Foces Class Today we will: lean the basic chaacteistics o the electostatic oce eview the popeties o conductos and insulatos lean what is meant by electostatic induction

More information

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS

DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS DEVIL PHYSICS THE BADDEST CLASS ON CAMPUS IB PHYSICS LSN 10-: MOTION IN A GRAVITATIONAL FIELD Questions Fom Reading Activity? Gavity Waves? Essential Idea: Simila appoaches can be taken in analyzing electical

More information

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria

Quantum Mechanics and General Relativity: Creation Creativity. Youssef Al-Youssef, 2 Rama Khoulandi. University of Aleppo, Aleppo, Syria Quantum Mechanics and Geneal Relativity: Ceation Ceativity Youssef Al-Youssef, Rama Khoulandi Univesity of Aleppo, Aleppo, Syia Abstact This aticle is concened with a new concept of quantum mechanics theoy

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces Lectue 3 Basic Physics of Astophysics - Foce and Enegy http://apod.nasa.gov/apod/ Foces Momentum is the poduct of mass and velocity - a vecto p = mv (geneally m is taken to be constant) An unbalanced foce

More information

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r>

Electric Field. y s +q. Point charge: Uniformly charged sphere: Dipole: for r>>s :! ! E = 1. q 1 r 2 ˆr. E sphere. at <0,r,0> at <0,0,r> Electic Field Point chage: E " ˆ Unifomly chaged sphee: E sphee E sphee " Q ˆ fo >R (outside) fo >s : E " s 3,, at z y s + x Dipole moment: p s E E s "#,, 3 s "#,, 3 at

More information

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field

Lecture 3.7 ELECTRICITY. Electric charge Coulomb s law Electric field Lectue 3.7 ELECTRICITY Electic chage Coulomb s law Electic field ELECTRICITY Inteaction between electically chages objects Many impotant uses Light Heat Rail tavel Computes Cental nevous system Human body

More information

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925)

2 Lecture 2: The Bohr atom (1913) and the Schrödinger equation (1925) 1 Lectue 1: The beginnings of quantum physics 1. The Sten-Gelach expeiment. Atomic clocks 3. Planck 1900, blackbody adiation, and E ω 4. Photoelectic effect 5. Electon diffaction though cystals, de Boglie

More information

Ch 13 Universal Gravitation

Ch 13 Universal Gravitation Ch 13 Univesal Gavitation Ch 13 Univesal Gavitation Why do celestial objects move the way they do? Keple (1561-1630) Tycho Bahe s assistant, analyzed celestial motion mathematically Galileo (1564-1642)

More information

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B.

? this lecture. ? next lecture. What we have learned so far. a Q E F = q E a. F = q v B a. a Q in motion B. db/dt E. de/dt B. PHY 249 Lectue Notes Chapte 32: Page 1 of 12 What we have leaned so fa a a F q a a in motion F q v a a d/ Ae thee othe "static" chages that can make -field? this lectue d/? next lectue da dl Cuve Cuve

More information

Charges, Coulomb s Law, and Electric Fields

Charges, Coulomb s Law, and Electric Fields Q&E -1 Chages, Coulomb s Law, and Electic ields Some expeimental facts: Expeimental fact 1: Electic chage comes in two types, which we call (+) and (). An atom consists of a heavy (+) chaged nucleus suounded

More information

Universal Gravitation

Universal Gravitation Chapte 1 Univesal Gavitation Pactice Poblem Solutions Student Textbook page 580 1. Conceptualize the Poblem - The law of univesal gavitation applies to this poblem. The gavitational foce, F g, between

More information

OSCILLATIONS AND GRAVITATION

OSCILLATIONS AND GRAVITATION 1. SIMPLE HARMONIC MOTION Simple hamonic motion is any motion that is equivalent to a single component of unifom cicula motion. In this situation the velocity is always geatest in the middle of the motion,

More information

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE.

Unit 6 Practice Test. Which vector diagram correctly shows the change in velocity Δv of the mass during this time? (1) (1) A. Energy KE. Unit 6 actice Test 1. Which one of the following gaphs best epesents the aiation of the kinetic enegy, KE, and of the gaitational potential enegy, GE, of an obiting satellite with its distance fom the

More information

kg 2 ) 1.9!10 27 kg = Gm 1

kg 2 ) 1.9!10 27 kg = Gm 1 Section 6.1: Newtonian Gavitation Tutoial 1 Pactice, page 93 1. Given: 1.0 10 0 kg; m 3.0 10 0 kg;. 10 9 N; G 6.67 10 11 N m /kg Requied: Analysis: G m ; G m G m Solution: G m N m 6.67!10 11 kg ) 1.0!100

More information

Chapter 13 Gravitation

Chapter 13 Gravitation Chapte 13 Gavitation In this chapte we will exploe the following topics: -Newton s law of gavitation, which descibes the attactive foce between two point masses and its application to extended objects

More information

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons

Electrostatics. 3) positive object: lack of electrons negative object: excess of electrons Electostatics IB 12 1) electic chage: 2 types of electic chage: positive and negative 2) chaging by fiction: tansfe of electons fom one object to anothe 3) positive object: lack of electons negative object:

More information

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract

A thermodynamic degree of freedom solution to the galaxy cluster problem of MOND. Abstract A themodynamic degee of feedom solution to the galaxy cluste poblem of MOND E.P.J. de Haas (Paul) Nijmegen, The Nethelands (Dated: Octobe 23, 2015) Abstact In this pape I discus the degee of feedom paamete

More information

Scattering in Three Dimensions

Scattering in Three Dimensions Scatteing in Thee Dimensions Scatteing expeiments ae an impotant souce of infomation about quantum systems, anging in enegy fom vey low enegy chemical eactions to the highest possible enegies at the LHC.

More information

Quantum tunneling: α-decay

Quantum tunneling: α-decay Announcements: Quantum tunneling: α-decay Exam 2 solutions ae posted on CULean Homewok solutions will be posted by 7pm tonight Next weeks homewok will be available by noon tomoow Homewok aveage fo set

More information

Chapter Sixteen: Electric Charge and Electric Fields

Chapter Sixteen: Electric Charge and Electric Fields Chapte Sixteen: Electic Chage and Electic Fields Key Tems Chage Conducto The fundamental electical popety to which the mutual attactions o epulsions between electons and potons ae attibuted. Any mateial

More information

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1

Anyone who can contemplate quantum mechanics without getting dizzy hasn t understood it. --Niels Bohr. Lecture 17, p 1 Anyone who can contemplate quantum mechanics without getting dizzy hasn t undestood it. --Niels Boh Lectue 17, p 1 Special (Optional) Lectue Quantum Infomation One of the most moden applications of QM

More information

Doublet structure of Alkali spectra:

Doublet structure of Alkali spectra: Doublet stuctue of : Caeful examination of the specta of alkali metals shows that each membe of some of the seies ae closed doublets. Fo example, sodium yellow line, coesponding to 3p 3s tansition, is

More information

The Millikan Experiment: Determining the Elementary Charge

The Millikan Experiment: Determining the Elementary Charge LAB EXERCISE 7.5.1 7.5 The Elementay Chage (p. 374) Can you think of a method that could be used to suggest that an elementay chage exists? Figue 1 Robet Millikan (1868 1953) m + q V b The Millikan Expeiment:

More information

3.012 Fund of Mat Sci: Bonding Lecture 5/6. Comic strip removed for copyright reasons.

3.012 Fund of Mat Sci: Bonding Lecture 5/6. Comic strip removed for copyright reasons. 3.12 Fund of Mat Sci: Bonding Lectue 5/6 THE HYDROGEN ATOM Comic stip emoved fo copyight easons. Last Time Metal sufaces and STM Diac notation Opeatos, commutatos, some postulates Homewok fo Mon Oct 3

More information

1 Dark Cloud Hanging over Twentieth Century Physics

1 Dark Cloud Hanging over Twentieth Century Physics We ae Looking fo Moden Newton by Caol He, Bo He, and Jin He http://www.galaxyanatomy.com/ Wuhan FutueSpace Scientific Copoation Limited, Wuhan, Hubei 430074, China E-mail: mathnob@yahoo.com Abstact Newton

More information

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an

! E da = 4πkQ enc, has E under the integral sign, so it is not ordinarily an Physics 142 Electostatics 2 Page 1 Electostatics 2 Electicity is just oganized lightning. Geoge Calin A tick that sometimes woks: calculating E fom Gauss s law Gauss s law,! E da = 4πkQ enc, has E unde

More information

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces.

Lecture 3. Basic Physics of Astrophysics - Force and Energy. Forces. Tue Wed Thu Thu Lectue 3 Basic Physics of Astophysics - Foce and Enegy ISB 165 Wed 5 Thu 4 http://apod.nasa.gov/apod/ Foces Momentum is the poduct of mass and velocity - a vecto p = mv (geneally m is taken

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stella Stuctue and Evolution Theoetical Stella odels Conside each spheically symmetic shell of adius and thickness d. Basic equations of stella stuctue ae: 1 Hydostatic equilibium π dp dp d G π = G =.

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Pat 1: Electic Foce 1.1: Review of Vectos Review you vectos! You should know how to convet fom pola fom to component fom and vice vesa add and subtact vectos multiply vectos by scalas Find the esultant

More information

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE

MODULE 5 ADVANCED MECHANICS GRAVITATIONAL FIELD: MOTION OF PLANETS AND SATELLITES VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLIN MODUL 5 ADVANCD MCHANICS GRAVITATIONAL FILD: MOTION OF PLANTS AND SATLLITS SATLLITS: Obital motion of object of mass m about a massive object of mass M (m

More information

Physics 235 Chapter 5. Chapter 5 Gravitation

Physics 235 Chapter 5. Chapter 5 Gravitation Chapte 5 Gavitation In this Chapte we will eview the popeties of the gavitational foce. The gavitational foce has been discussed in geat detail in you intoductoy physics couses, and we will pimaily focus

More information

Algebra-based Physics II

Algebra-based Physics II lgebabased Physics II Chapte 19 Electic potential enegy & The Electic potential Why enegy is stoed in an electic field? How to descibe an field fom enegetic point of view? Class Website: Natual way of

More information

Physics 2212 GH Quiz #2 Solutions Spring 2016

Physics 2212 GH Quiz #2 Solutions Spring 2016 Physics 2212 GH Quiz #2 Solutions Sping 216 I. 17 points) Thee point chages, each caying a chage Q = +6. nc, ae placed on an equilateal tiangle of side length = 3. mm. An additional point chage, caying

More information

Physics: Work & Energy Beyond Earth Guided Inquiry

Physics: Work & Energy Beyond Earth Guided Inquiry Physics: Wok & Enegy Beyond Eath Guided Inquiy Elliptical Obits Keple s Fist Law states that all planets move in an elliptical path aound the Sun. This concept can be extended to celestial bodies beyond

More information

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by

Problem 1. Part b. Part a. Wayne Witzke ProblemSet #1 PHY 361. Calculate x, the expected value of x, defined by Poblem Pat a The nomal distibution Gaussian distibution o bell cuve has the fom f Ce µ Calculate the nomalization facto C by equiing the distibution to be nomalized f Substituting in f, defined above,

More information

1) Emits radiation at the maximum intensity possible for every wavelength. 2) Completely absorbs all incident radiation (hence the term black ).

1) Emits radiation at the maximum intensity possible for every wavelength. 2) Completely absorbs all incident radiation (hence the term black ). Radiation laws Blackbody adiation Planck s Law Any substance (solid, liquid o gas) emits adiation accoding to its absolute tempeatue, measued in units of Kelvin (K = o C + 73.5). The efficiency at which

More information

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0.

c n ψ n (r)e ient/ h (2) where E n = 1 mc 2 α 2 Z 2 ψ(r) = c n ψ n (r) = c n = ψn(r)ψ(r)d 3 x e 2r/a0 1 πa e 3r/a0 r 2 dr c 1 2 = 2 9 /3 6 = 0. Poblem {a} Fo t : Ψ(, t ψ(e iet/ h ( whee E mc α (α /7 ψ( e /a πa Hee we have used the gound state wavefunction fo Z. Fo t, Ψ(, t can be witten as a supeposition of Z hydogenic wavefunctions ψ n (: Ψ(,

More information

Lecture 24 Stability of Molecular Clouds

Lecture 24 Stability of Molecular Clouds Lectue 4 Stability of Molecula Clouds 1. Stability of Cloud Coes. Collapse and Fagmentation of Clouds 3. Applying the iial Theoem Refeences Oigins of Stas & Planetay Systems eds. Lada & Kylafis http://cfa-www.havad.edu/cete

More information

m1 m2 M 2 = M -1 L 3 T -2

m1 m2 M 2 = M -1 L 3 T -2 GAVITATION Newton s Univesal law of gavitation. Evey paticle of matte in this univese attacts evey othe paticle with a foce which vaies diectly as the poduct of thei masses and invesely as the squae of

More information

Between any two masses, there exists a mutual attractive force.

Between any two masses, there exists a mutual attractive force. YEAR 12 PHYSICS: GRAVITATION PAST EXAM QUESTIONS Name: QUESTION 1 (1995 EXAM) (a) State Newton s Univesal Law of Gavitation in wods Between any two masses, thee exists a mutual attactive foce. This foce

More information

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1)

EM-2. 1 Coulomb s law, electric field, potential field, superposition q. Electric field of a point charge (1) EM- Coulomb s law, electic field, potential field, supeposition q ' Electic field of a point chage ( ') E( ) kq, whee k / 4 () ' Foce of q on a test chage e at position is ee( ) Electic potential O kq

More information

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and

Extra notes for circular motion: Circular motion : v keeps changing, maybe both speed and Exta notes fo cicula motion: Cicula motion : v keeps changing, maybe both speed and diection ae changing. At least v diection is changing. Hence a 0. Acceleation NEEDED to stay on cicula obit: a cp v /,

More information

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1

AST 121S: The origin and evolution of the Universe. Introduction to Mathematical Handout 1 Please ead this fist... AST S: The oigin and evolution of the Univese Intoduction to Mathematical Handout This is an unusually long hand-out and one which uses in places mathematics that you may not be

More information

On the Sun s Electric-Field

On the Sun s Electric-Field On the Sun s Electic-Field D. E. Scott, Ph.D. (EE) Intoduction Most investigatos who ae sympathetic to the Electic Sun Model have come to agee that the Sun is a body that acts much like a esisto with a

More information

MOLECULES BONDS. ENERGY LEVELS electronic vibrational rotational. P461 - Molecules 1

MOLECULES BONDS. ENERGY LEVELS electronic vibrational rotational. P461 - Molecules 1 BONDS MOLECULES Ionic: closed shell (+) o open shell (-) Covalent: both open shells neutal ( shae e) Othe (skip): van de Waals (He- He) Hydogen bonds (in DNA, poteins, etc) ENERGY LEVELS electonic vibational

More information

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements:

HW #5 Hints. Today. HW #5 Hints. HW #5 Hints. Announcements: Today HW #5 Hints Announcements: HW and Exta cedit #3 due 2/25 HW hints + Recap the 2nd law of themodynamics Electic and Magnetic Foces and thei unification the Foce Field concept -1-1) The speed at D

More information

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun

Gravitation. Chapter 12. PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman. Lectures by James Pazun Chapte 12 Gavitation PowePoint Lectues fo Univesity Physics, Twelfth Edition Hugh D. Young and Roge A. Feedman Lectues by James Pazun Modified by P. Lam 5_31_2012 Goals fo Chapte 12 To study Newton s Law

More information

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other

17.1 Electric Potential Energy. Equipotential Lines. PE = energy associated with an arrangement of objects that exert forces on each other Electic Potential Enegy, PE Units: Joules Electic Potential, Units: olts 17.1 Electic Potential Enegy Electic foce is a consevative foce and so we can assign an electic potential enegy (PE) to the system

More information

PHYS 2135 Exam I February 13, 2018

PHYS 2135 Exam I February 13, 2018 Exam Total /200 PHYS 2135 Exam I Febuay 13, 2018 Name: Recitation Section: Five multiple choice questions, 8 points each Choose the best o most nealy coect answe Fo questions 6-9, solutions must begin

More information

Nuclear models: Shell model

Nuclear models: Shell model Lectue 3 Nuclea models: Shell model WS0/3: Intoduction to Nuclea and Paticle Physics,, Pat I Nuclea models Nuclea models Models with stong inteaction between the nucleons Liquid dop model α-paticle model

More information

Interatomic Forces. Overview

Interatomic Forces. Overview Inteatomic Foces Oveview an de Walls (shot ange ~1/ 6, weak ~0.010.1 e) Ionic (long ange, ~1/, stong ~510 e) Metallic (no simple dependence, ~0.1e) Covalent (no simple dependence, diectional,~3 e) Hydogen

More information

Escape Velocity. GMm ] B

Escape Velocity. GMm ] B 1 PHY2048 Mach 31, 2006 Escape Velocity Newton s law of gavity: F G = Gm 1m 2 2, whee G = 667 10 11 N m 2 /kg 2 2 3 10 10 N m 2 /kg 2 is Newton s Gavitational Constant Useful facts: R E = 6 10 6 m M E

More information

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018

Physics 2B Chapter 22 Notes - Magnetic Field Spring 2018 Physics B Chapte Notes - Magnetic Field Sping 018 Magnetic Field fom a Long Staight Cuent-Caying Wie In Chapte 11 we looked at Isaac Newton s Law of Gavitation, which established that a gavitational field

More information

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature)

Recap. Centripetal acceleration: v r. a = m/s 2 (towards center of curvature) a = c v 2 Recap Centipetal acceleation: m/s 2 (towads cente of cuvatue) A centipetal foce F c is equied to keep a body in cicula motion: This foce poduces centipetal acceleation that continuously changes

More information

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E)

Chapter 22: Electric Fields. 22-1: What is physics? General physics II (22102) Dr. Iyad SAADEDDIN. 22-2: The Electric Field (E) Geneal physics II (10) D. Iyad D. Iyad Chapte : lectic Fields In this chapte we will cove The lectic Field lectic Field Lines -: The lectic Field () lectic field exists in a egion of space suounding a

More information

Electric Field, Potential Energy, & Voltage

Electric Field, Potential Energy, & Voltage Slide 1 / 66 lectic Field, Potential negy, & oltage Wok Slide 2 / 66 Q+ Q+ The foce changes as chages move towads each othe since the foce depends on the distance between the chages. s these two chages

More information

Name Midterm Exam March 4, 2010

Name Midterm Exam March 4, 2010 Name Midtem Exam Mach 4, 00 This test consists of thee pats. Fo the fist pat, you may wite you answes diectly on the exam, if you wish. Fo the othe pats, use sepaate sheets of pape. Useful equations can

More information

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1 PROBLEM SET #3A AST242 Figue 1. Two concentic co-axial cylindes each otating at a diffeent angula otation ate. A viscous fluid lies between the two cylindes. 1. Couette Flow A viscous fluid lies in the

More information

Flux. Area Vector. Flux of Electric Field. Gauss s Law

Flux. Area Vector. Flux of Electric Field. Gauss s Law Gauss s Law Flux Flux in Physics is used to two distinct ways. The fist meaning is the ate of flow, such as the amount of wate flowing in a ive, i.e. volume pe unit aea pe unit time. O, fo light, it is

More information

AP Physics - Coulomb's Law

AP Physics - Coulomb's Law AP Physics - oulomb's Law We ve leaned that electons have a minus one chage and potons have a positive one chage. This plus and minus one business doesn t wok vey well when we go in and ty to do the old

More information

5.111 Lecture Summary #6 Monday, September 15, 2014

5.111 Lecture Summary #6 Monday, September 15, 2014 5.111 Lectue Summay #6 Monday, Septembe 15, 014 Readings fo today: Section 1.9 Atomic Obitals. Section 1.10 Electon Spin, Section 1.11 The Electonic Stuctue of Hydogen. (Same sections in 4 th ed.) Read

More information

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N

F g. = G mm. m 1. = 7.0 kg m 2. = 5.5 kg r = 0.60 m G = N m 2 kg 2 = = N Chapte answes Heinemann Physics 4e Section. Woked example: Ty youself.. GRAVITATIONAL ATTRACTION BETWEEN SMALL OBJECTS Two bowling balls ae sitting next to each othe on a shelf so that the centes of the

More information

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer.

15 B1 1. Figure 1. At what speed would the car have to travel for resonant oscillations to occur? Comment on your answer. Kiangsu-Chekiang College (Shatin) F:EasteHolidaysAssignmentAns.doc Easte Holidays Assignment Answe Fom 6B Subject: Physics. (a) State the conditions fo a body to undego simple hamonic motion. ( mak) (a)

More information

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4)

= e2. = 2e2. = 3e2. V = Ze2. where Z is the atomic numnber. Thus, we take as the Hamiltonian for a hydrogenic. H = p2 r. (19.4) Chapte 9 Hydogen Atom I What is H int? That depends on the physical system and the accuacy with which it is descibed. A natual stating point is the fom H int = p + V, (9.) µ which descibes a two-paticle

More information

Extrasolar Planets. Detection Methods. Direct Imaging. Introduction. = Requires two ingredients:

Extrasolar Planets. Detection Methods. Direct Imaging. Introduction. = Requires two ingredients: D D O O D D O O D D G S D X 9 1 G S D X Detection ethods 9 3 Possible ways to detect extasola planets: Diect ethod:... diect imaging of planet xtasola Planets ndiect ethods: seach fo evidence fo......

More information

2018 Physics. Advanced Higher. Finalised Marking Instructions

2018 Physics. Advanced Higher. Finalised Marking Instructions National Qualifications 018 018 Physics Advanced Highe Finalised Making Instuctions Scottish Qualifications Authoity 018 The infomation in this publication may be epoduced to suppot SQA qualifications

More information

Revision Guide for Chapter 16

Revision Guide for Chapter 16 Revision Guide fo Chapte 16 Contents Revision Checklist Revision Notes lectic field... 5 Invese squae laws... 7 lectic potential... 9 lecton... 9 Foce on a moving chage... 10 Mass and enegy... 1 Relativistic

More information

Chem 453/544 Fall /08/03. Exam #1 Solutions

Chem 453/544 Fall /08/03. Exam #1 Solutions Chem 453/544 Fall 3 /8/3 Exam # Solutions. ( points) Use the genealized compessibility diagam povided on the last page to estimate ove what ange of pessues A at oom tempeatue confoms to the ideal gas law

More information

Today in Astronomy 142: the Milky Way s disk

Today in Astronomy 142: the Milky Way s disk Today in Astonomy 14: the Milky Way s disk Moe on stas as a gas: stella elaxation time, equilibium Diffeential otation of the stas in the disk The local standad of est Rotation cuves and the distibution

More information

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00

Preliminary Exam: Quantum Physics 1/14/2011, 9:00-3:00 Peliminay Exam: Quantum Physics /4/ 9:-: Answe a total of SIX questions of which at least TWO ae fom section A and at least THREE ae fom section B Fo you answes you can use eithe the blue books o individual

More information

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors. Chapte 0. Gases Chaacteistics of Gases All substances have thee phases: solid, liquid, and gas. Substances that ae liquids o solids unde odinay conditions may also exist as gases. These ae often efeed

More information

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD

TAMPINES JUNIOR COLLEGE 2009 JC1 H2 PHYSICS GRAVITATIONAL FIELD TAMPINES JUNIOR COLLEGE 009 JC1 H PHYSICS GRAVITATIONAL FIELD OBJECTIVES Candidates should be able to: (a) show an undestanding of the concept of a gavitational field as an example of field of foce and

More information

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50

working pages for Paul Richards class notes; do not copy or circulate without permission from PGR 2004/11/3 10:50 woking pages fo Paul Richads class notes; do not copy o ciculate without pemission fom PGR 2004/11/3 10:50 CHAPTER7 Solid angle, 3D integals, Gauss s Theoem, and a Delta Function We define the solid angle,

More information

Physics 181. Assignment 4

Physics 181. Assignment 4 Physics 181 Assignment 4 Solutions 1. A sphee has within it a gavitational field given by g = g, whee g is constant and is the position vecto of the field point elative to the cente of the sphee. This

More information

EXAM NMR (8N090) November , am

EXAM NMR (8N090) November , am EXA NR (8N9) Novembe 5 9, 9. 1. am Remaks: 1. The exam consists of 8 questions, each with 3 pats.. Each question yields the same amount of points. 3. You ae allowed to use the fomula sheet which has been

More information

21 MAGNETIC FORCES AND MAGNETIC FIELDS

21 MAGNETIC FORCES AND MAGNETIC FIELDS CHAPTER 1 MAGNETIC ORCES AND MAGNETIC IELDS ANSWERS TO OCUS ON CONCEPTS QUESTIONS 1. (d) Right-Hand Rule No. 1 gives the diection of the magnetic foce as x fo both dawings A and. In dawing C, the velocity

More information

Molecular dynamics simulation of ultrafast laser ablation of fused silica

Molecular dynamics simulation of ultrafast laser ablation of fused silica IOP Publishing Jounal of Physics: Confeence Seies 59 (27) 1 14 doi:1.188/1742-6596/59/1/22 Eighth Intenational Confeence on Lase Ablation Molecula dynamics simulation of ultafast lase ablation of fused

More information

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1

GRAVITATION. Einstein Classes, Unit No. 102, 103, Vardhman Ring Road Plaza, Vikas Puri Extn., New Delhi -18 PG 1 Einstein Classes, Unit No. 0, 0, Vahman Ring Roa Plaza, Vikas Pui Extn., New Delhi -8 Ph. : 96905, 857, E-mail einsteinclasses00@gmail.com, PG GRAVITATION Einstein Classes, Unit No. 0, 0, Vahman Ring Roa

More information

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c Chapte 6 Geneal Relativity 6.1 Towads the Einstein equations Thee ae seveal ways of motivating the Einstein equations. The most natual is pehaps though consideations involving the Equivalence Pinciple.

More information

The geometric construction of Ewald sphere and Bragg condition:

The geometric construction of Ewald sphere and Bragg condition: The geometic constuction of Ewald sphee and Bagg condition: The constuction of Ewald sphee must be done such that the Bagg condition is satisfied. This can be done as follows: i) Daw a wave vecto k in

More information

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued

Many Electron Atoms. Electrons can be put into approximate orbitals and the properties of the many electron systems can be catalogued Many Electon Atoms The many body poblem cannot be solved analytically. We content ouselves with developing appoximate methods that can yield quite accuate esults (but usually equie a compute). The electons

More information