Describing Homing and Distinguishing Sequences for Nondeterministic Finite State Machines via Synchronizing Automata

Size: px
Start display at page:

Download "Describing Homing and Distinguishing Sequences for Nondeterministic Finite State Machines via Synchronizing Automata"

Transcription

1 Describing Homing and Distinguishing Sequences for Nondeterministic Finite State Machines via Synchronizing Automata Natalia Kushik and Nina Yevtushenko Tomsk State University, Russia

2 2 Motivation Relies on pure mathematical interest J o Finite automata and (synchronizing) experiments with them are well studied However o Many reactive systems are often described using Finite State Machines (FSMs) o Experiments with FSMs should be also considered We reduce the problem of deriving preset homing/distinguishing experiments for nondeterministic FSMs to solving the synchronizing problem for automata

3 Outline 1) Finite State Machines (FSMs) and Automata 2) Experiments with FSMs 3) Reducing the problem of deriving homing sequences for FSMs to deriving synchronizing sequences for automata 4) Reducing the problem of deriving distinguishing sequences for FSMs to deriving synchronizing sequences for automata 5) Complexity issues for distinguishing sequences for nondeterministic FSMs 6) Conclusions and Future Work 3

4 Finite State Machines and Automata Finite state machines (FSMs) and Automata describe the behavior of discrete event systems Differently from automata, FSMs usually model the behavior of reactive systems Reactive systems mostly work in query/request mode FSM transitions are labeled with input/output pairs i/o a s 1 s 2 FSM transition s 1 s 2 Automata transition 4

5 Finite State Machine (FSM) i/o 2 S = (S, I, O, h S ) is FSM - S is a finite nonempty set of states - I and O are finite input and output alphabets - h S S I O S is the behavior relation i/o 1 1 i/o 1,o 3 2 i i i FSM o 1 o 2 o 3 5

6 FSM S = (S, I, O, h S ) can be - deterministic if for each pair (s, i) S I there exists at most one pair (o, sʹ ) O S such that (s, i, o, sʹ ) h S otherwise, S is nondeterministic - complete if for each pair (s, i) S I there exists (o, sʹ ) O S such that (s, i, o, sʹ ) h S otherwise, S is partial - observable if for each triple (s, i, o) S I O there exists at most one state sʹ S such that (s, i, o, sʹ ) h S otherwise, S is nonobservable This FSM is nondeterministic, complete and observable i/o 1 1 i/o i/o 1, o 3

7 Distinguishing sequence Distinguishing = separating for nondeterministic machines A distinguishing (input) sequence α allows to determine the initial state of the machine under experiment After applying α at any state s and observing an output response β the initial state s becomes known Separating sequence α s 1 s 2 α/β 1 α/β 2 s m α/β m s 1ʹ s 2ʹ s mʹ out(s i, α) out(s j, α) = (Preset) distinguishing experiment = applying α + observing β i + drawing a conclusion about s i 7

8 Homing sequence A homing (input) sequence α allows to determine the final state Homing sequence α of the machine under experiment after applying s 1 s 2 s m α After applying α at any α/β 1 α/β state s and observing an 2 α/β m output response β the final state sʹ becomes known s 1ʹ s 2ʹ s mʹ (Preset) homing experiment = applying α + observing β i + drawing a conclusion about s i ʹ 8

9 Synchronizing sequence A synchronizing sequence α takes the machine under experiment to a given state after applying α After applying α at any state the final state is sʹ Synchronizing sequence α s 1 s 2 s m α/β α/β 2 1 α/βm sʹ For a synchronizing sequence output reactions are not taken into account synchronizing sequences are usually derived for automata (machines without outputs) 9

10 Does there exist a distinguishing sequence? The decision problem is considered DISTINGUISHING problem Input: complete deterministic FSM S = (S, I, O, h S ) Output: Does there exist a distinguishing sequence for S? The problem of checking the existence of a distinguishing sequence for deterministic FSMs is PSPACE-complete Lee, D., Yannakakis, M.,

11 One way to derive a distinguishing sequence for nondeterministic FSM Derive a truncated successor tree (TST) o ((s 1, i j, o, s 1ʹ, ) h S & (s 2, i j, o, s 2ʹ ) h S ) - Truncating rules Rule 1 P is the empty set Rule 2 Set P contains a subset that labels another node of the path from the root to the node labeled by the set P Rule 3 P contains a singleton 11 i 1 s 1,s 2 i j i n s ʹ 1, s ʹ 2, s ʺ 1, s ʺ 2... s 1,s 2 Pʹ α sequence P α is a distinguishing sequence iff it labels the path truncated by Rule 1

12 One way to derive a homing sequence for nondeterministic FSM Derive a truncated successor tree (TST) o ((s 1, i j, o, s 1ʹ ) h S & (s 2, i j, o, s 2ʹ ) h S ) - Truncating rules Rule 1 P is the empty set Rule 2 Set P apart from singletons contains a set labeling a node at a higher tree level Rule 3 P contains only singletons 12 i 1 P s 1,s 2 i j i n s ʹ 1, s ʹ 2, s ʺ 1, s ʺ 2... s 1,s 2 Pʹ α sequence α is a homing sequence iff it labels the path truncated by Rule 1 or Rule 3

13 Another way to derive homing and distinguishing sequences Let s derive homing/distinguishing sequences for nondeterministic FSMs without addressing truncated trees Huge truncated successor tree Compact automaton that preserves all the necessary sequences Why and what it gives to us? o Always nice to have an alternative method o Might help to estimate the complexity of related decision and derivation problems for distinguishing and homing sequences o Can help to construct special FSM classes with low complexity bounds 13

14 14 Idea Let s look over the languages Given complete nondeterministic FSM S = (S, I, O, h S ) L home (S) is the set of all homing sequences of S L dist (S) is the set of all distinguishing sequences of S Our objective : to derive an automaton A with the set L synch (A) of synchronizing sequences such that o L dist (S) = L synch (A) o L home (S) = L synch (A) And the question is : does there exist such automaton and if it exists then how to derive such automaton?

15 Deriving automata of interest i 1 s 1,s 2 i j i n s ʹ 1, s ʹ 2, s ʺ 1, s ʺ 2... The truncated successor tree looks like this s 1!, s2! These are the automaton transitions i j s 1,s 2 15 i j s 1!!, s2!! The designated sink state where each path of interest is terminated

16 Deriving an automaton S 2 home S 2 home S 2 home s j, s k states :, j < k, designated state sink actions : inputs of FSM S For each input i I For each state s of the automaton S 2 j, s k home Add to the automaton S 2 home the transition ( s j, s k, i, s p, s t ), if s p, s t is the io-successor of s j, s k for some output o O Add to the automaton S 2 home the transition ( s j, s k, i, sink) if for each output o O the io-successor of s j, s k is a singleton or states s j and s k are separated by the input i Add to the automaton S 2 home the transition (sink, i, sink) EndFor EndFor 16

17 Example FSM S 4 17

18 S 4 truncated successor tree A shortest homing sequence traverses a sequence of all state subsets which are not singletons 0,1, 2,3 1, 2,3,, 0, 2,3 2,3,, 0,1,3 1,3 0,3,, 18

19 FSM S 4 and its automaton S 2 home A shortest synchronizing sequence for S 2 home is i 0 i 1 i 0 i 2 i 0 i 1 i 0 19

20 Deriving an automaton S 2 dist S 2 dist states :, j < k, designated state sink S 2 dist actions : inputs of FSM S For each input i I For each state s of the automaton S 2 j, s k dist Add to the automaton S 2 dist the transition ( s j, s k, i, sink), if states s j and s k are separated by the input i Add to the automaton S 2 dist the transition ( s j, s k, i, s p, s t ), if for each o O, the io-successors of states s j and s k do not coincide and s p, s t is the ioʹ -successor of s j, s k for some oʹ O Add to the automaton S 2 dist the transition (sink, i, sink) EndFor EndFor 20 s j, s k

21 Properties of S 2 home and S2 dist L home (S) = L synch (S 2 home ) L dist (S) = L synch (S 2 dist ) FSM S is homing if and only if the automaton S 2 home is synchronizing There exists a distinguishing sequence for S if and only if the automaton S 2 dist is synchronizing S 2 home can be nondeterministic can be nondeterministic and partial S 2 dist 21

22 Some complexity issues The number of S 2 home and S2 dist exceed I n 2 (n 1), S = n transitions does not When I is O(n k ), S 2 home and S2 dist can be derived in a polynomial time and can be stored in a polynomial space The problem of checking the existence of a distinguishing sequence for complete nondeterministic observable FSMs is PSPACE-complete 22

23 Conclusions and future work The problem of deriving homing/distinguishing sequences for a possibly nondeterministic FSM can be reduced to that of deriving a synchronizing sequence for a nondeterministic (partial) automaton 23 It is interesting To study specific FSM classes that result in automata S 2 home and S2 dist with synchronizing sequences of polynomial length To consider adaptive homing and distinguishing experiments and check whether the similar reduction is possible

24 Thank you! 24

DISTINGUISHABILITY RELATIONS BETWEEN INITIALIZED NONDETERMINISTIC FSMs. Nina Yevtushenko Tomsk State University, Russia April, 12, 2011

DISTINGUISHABILITY RELATIONS BETWEEN INITIALIZED NONDETERMINISTIC FSMs. Nina Yevtushenko Tomsk State University, Russia April, 12, 2011 DISTINGUISHABILITY RELATIONS BETWEEN INITIALIZED NONDETERMINISTIC FSMs Nina Yevtushenko Tomsk State University, Russia April, 12, 2011 Outline 1. Why do we need distinguishability relations? 2. External

More information

DISTINGUING NON-DETERMINISTIC TIMED FINITE STATE MACHINES

DISTINGUING NON-DETERMINISTIC TIMED FINITE STATE MACHINES DISTINGUING NON-DETERMINISTIC TIMED FINITE STATE MACHINES Maxim Gromov 1, Khaled El-Fakih 2, Natalia Shabaldina 1, Nina Yevtushenko 1 1 Tomsk State University, 36 Lenin Str.. Tomsk, 634050, Russia gromov@sibmail.com,

More information

arxiv: v3 [cs.fl] 2 Jul 2018

arxiv: v3 [cs.fl] 2 Jul 2018 COMPLEXITY OF PREIMAGE PROBLEMS FOR DETERMINISTIC FINITE AUTOMATA MIKHAIL V. BERLINKOV arxiv:1704.08233v3 [cs.fl] 2 Jul 2018 Institute of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg,

More information

Automata-based Verification - III

Automata-based Verification - III COMP30172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20: email: howard.barringer@manchester.ac.uk March 2009 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

DIAGNOSING MULTIPLE FAULTS IN COMMUNICATING FINITE STATE MACHINES

DIAGNOSING MULTIPLE FAULTS IN COMMUNICATING FINITE STATE MACHINES DIAGNOSING MULTIPLE FAULTS IN COMMUNICATING FINITE STATE MACHINES Khaled El-Fakih+, Nina Yevtushenko++ and Gregor v. Bochmann+ +School of Information Technology and Engineering,University of Ottawa, ON,

More information

Automata-based Verification - III

Automata-based Verification - III CS3172: Advanced Algorithms Automata-based Verification - III Howard Barringer Room KB2.20/22: email: howard.barringer@manchester.ac.uk March 2005 Third Topic Infinite Word Automata Motivation Büchi Automata

More information

Theory of Computation

Theory of Computation Thomas Zeugmann Hokkaido University Laboratory for Algorithmics http://www-alg.ist.hokudai.ac.jp/ thomas/toc/ Lecture 3: Finite State Automata Motivation In the previous lecture we learned how to formalize

More information

Homing and Synchronizing Sequences

Homing and Synchronizing Sequences Homing and Synchronizing Sequences Sven Sandberg Information Technology Department Uppsala University Sweden 1 Outline 1. Motivations 2. Definitions and Examples 3. Algorithms (a) Current State Uncertainty

More information

CSCI 1590 Intro to Computational Complexity

CSCI 1590 Intro to Computational Complexity CSCI 59 Intro to Computational Complexity Overview of the Course John E. Savage Brown University January 2, 29 John E. Savage (Brown University) CSCI 59 Intro to Computational Complexity January 2, 29

More information

Finite Universes. L is a fixed-length language if it has length n for some

Finite Universes. L is a fixed-length language if it has length n for some Finite Universes Finite Universes When the universe is finite (e.g., the interval 0, 2 1 ), all objects can be encoded by words of the same length. A language L has length n 0 if L =, or every word of

More information

Sanjit A. Seshia EECS, UC Berkeley

Sanjit A. Seshia EECS, UC Berkeley EECS 219C: Computer-Aided Verification Explicit-State Model Checking: Additional Material Sanjit A. Seshia EECS, UC Berkeley Acknowledgments: G. Holzmann Checking if M satisfies : Steps 1. Compute Buchi

More information

Model-Based Testing: Testing from Finite State Machines

Model-Based Testing: Testing from Finite State Machines Model-Based Testing: Testing from Finite State Machines Mohammad Mousavi University of Leicester, UK IPM Summer School 2017 Mousavi FSM-Based Testing IPM 2017 1 / 64 Finite State Machines Outline 1 Finite

More information

Deterministic Finite Automaton (DFA)

Deterministic Finite Automaton (DFA) 1 Lecture Overview Deterministic Finite Automata (DFA) o accepting a string o defining a language Nondeterministic Finite Automata (NFA) o converting to DFA (subset construction) o constructed from a regular

More information

Chapter 2: Finite Automata

Chapter 2: Finite Automata Chapter 2: Finite Automata 2.1 States, State Diagrams, and Transitions Finite automaton is the simplest acceptor or recognizer for language specification. It is also the simplest model of a computer. A

More information

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal

CSE 311 Lecture 23: Finite State Machines. Emina Torlak and Kevin Zatloukal CSE 3 Lecture 3: Finite State Machines Emina Torlak and Kevin Zatloukal Topics Finite state machines (FSMs) Definition and examples. Finite state machines with output Definition and examples. Finite state

More information

Decision, Computation and Language

Decision, Computation and Language Decision, Computation and Language Non-Deterministic Finite Automata (NFA) Dr. Muhammad S Khan (mskhan@liv.ac.uk) Ashton Building, Room G22 http://www.csc.liv.ac.uk/~khan/comp218 Finite State Automata

More information

PRINCIPLES AND METHODS OF TESTING FINITE STATE MACHINES A SURVEY. David Lee. Mihalis Yannakakis. AT&T Bell Laboratories Murray Hill, New Jersey

PRINCIPLES AND METHODS OF TESTING FINITE STATE MACHINES A SURVEY. David Lee. Mihalis Yannakakis. AT&T Bell Laboratories Murray Hill, New Jersey PRINCIPLES AND METHODS OF TESTING FINITE STATE MACHINES A SURVEY David Lee Mihalis Yannakakis AT&T Bell Laboratories Murray Hill, New Jersey ABSTRACT With advanced computer technology, systems are getting

More information

Classes and conversions

Classes and conversions Classes and conversions Regular expressions Syntax: r = ε a r r r + r r Semantics: The language L r of a regular expression r is inductively defined as follows: L =, L ε = {ε}, L a = a L r r = L r L r

More information

Equivalence of Regular Expressions and FSMs

Equivalence of Regular Expressions and FSMs Equivalence of Regular Expressions and FSMs Greg Plaxton Theory in Programming Practice, Spring 2005 Department of Computer Science University of Texas at Austin Regular Language Recall that a language

More information

Automatic Verification of Parameterized Data Structures

Automatic Verification of Parameterized Data Structures Automatic Verification of Parameterized Data Structures Jyotirmoy V. Deshmukh, E. Allen Emerson and Prateek Gupta The University of Texas at Austin The University of Texas at Austin 1 Outline Motivation

More information

Finite Automata. Seungjin Choi

Finite Automata. Seungjin Choi Finite Automata Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr 1 / 28 Outline

More information

Finite-State Machines (Automata) lecture 12

Finite-State Machines (Automata) lecture 12 Finite-State Machines (Automata) lecture 12 cl a simple form of computation used widely one way to find patterns 1 A current D B A B C D B C D A C next 2 Application Fields Industry real-time control,

More information

Peter Wood. Department of Computer Science and Information Systems Birkbeck, University of London Automata and Formal Languages

Peter Wood. Department of Computer Science and Information Systems Birkbeck, University of London Automata and Formal Languages and and Department of Computer Science and Information Systems Birkbeck, University of London ptw@dcs.bbk.ac.uk Outline and Doing and analysing problems/languages computability/solvability/decidability

More information

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT COVERAGE

TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT COVERAGE TESTING TIMED FINITE STATE MACHINES WITH GUARANTEED FAULT COVERAGE Khaled El-Fakih 1, Nina Yevtushenko 2 *, Hacene Fouchal 3 1 American University o Sharjah, PO Box 26666, UAE kelakih@aus.edu 2 Tomsk State

More information

COM364 Automata Theory Lecture Note 2 - Nondeterminism

COM364 Automata Theory Lecture Note 2 - Nondeterminism COM364 Automata Theory Lecture Note 2 - Nondeterminism Kurtuluş Küllü March 2018 The FA we saw until now were deterministic FA (DFA) in the sense that for each state and input symbol there was exactly

More information

Foundations of Informatics: a Bridging Course

Foundations of Informatics: a Bridging Course Foundations of Informatics: a Bridging Course Week 3: Formal Languages and Semantics Thomas Noll Lehrstuhl für Informatik 2 RWTH Aachen University noll@cs.rwth-aachen.de http://www.b-it-center.de/wob/en/view/class211_id948.html

More information

Finite-state machines (FSMs)

Finite-state machines (FSMs) Finite-state machines (FSMs) Dr. C. Constantinides Department of Computer Science and Software Engineering Concordia University Montreal, Canada January 10, 2017 1/19 Finite-state machines (FSMs) and state

More information

Automata and Languages

Automata and Languages Automata and Languages Prof. Mohamed Hamada Software Engineering Lab. The University of Aizu Japan Nondeterministic Finite Automata with empty moves (-NFA) Definition A nondeterministic finite automaton

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata COMP2600 Formal Methods for Software Engineering Katya Lebedeva Australian National University Semester 2, 206 Slides by Katya Lebedeva. COMP 2600 Nondeterministic Finite

More information

Theory of Computation

Theory of Computation Theory of Computation COMP363/COMP6363 Prerequisites: COMP4 and COMP 6 (Foundations of Computing) Textbook: Introduction to Automata Theory, Languages and Computation John E. Hopcroft, Rajeev Motwani,

More information

Embedded systems specification and design

Embedded systems specification and design Embedded systems specification and design David Kendall David Kendall Embedded systems specification and design 1 / 21 Introduction Finite state machines (FSM) FSMs and Labelled Transition Systems FSMs

More information

Finite State Machines 2

Finite State Machines 2 Finite State Machines 2 Joseph Spring School of Computer Science 1COM0044 Foundations of Computation 1 Discussion Points In the last lecture we looked at: 1. Abstract Machines 2. Finite State Machines

More information

Automata, Logic and Games: Theory and Application

Automata, Logic and Games: Theory and Application Automata, Logic and Games: Theory and Application 1. Büchi Automata and S1S Luke Ong University of Oxford TACL Summer School University of Salerno, 14-19 June 2015 Luke Ong Büchi Automata & S1S 14-19 June

More information

Introduction to Formal Languages, Automata and Computability p.1/42

Introduction to Formal Languages, Automata and Computability p.1/42 Introduction to Formal Languages, Automata and Computability Pushdown Automata K. Krithivasan and R. Rama Introduction to Formal Languages, Automata and Computability p.1/42 Introduction We have considered

More information

Computation Theory Finite Automata

Computation Theory Finite Automata Computation Theory Dept. of Computing ITT Dublin October 14, 2010 Computation Theory I 1 We would like a model that captures the general nature of computation Consider two simple problems: 2 Design a program

More information

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs CSE : Foundations of Computing Lecture : Finite State Machine Minimization & NFAs State Minimization Many different FSMs (DFAs) for the same problem Take a given FSM and try to reduce its state set by

More information

Finite Automata and Regular Languages (part III)

Finite Automata and Regular Languages (part III) Finite Automata and Regular Languages (part III) Prof. Dan A. Simovici UMB 1 / 1 Outline 2 / 1 Nondeterministic finite automata can be further generalized by allowing transitions between states without

More information

Introduction to Computers & Programming

Introduction to Computers & Programming 16.070 Introduction to Computers & Programming Theory of computation: What is a computer? FSM, Automata Prof. Kristina Lundqvist Dept. of Aero/Astro, MIT Models of Computation What is a computer? If you

More information

Using a Minimal Number of Resets when Testing from a Finite State Machine

Using a Minimal Number of Resets when Testing from a Finite State Machine Using a Minimal Number of Resets when Testing from a Finite State Machine R. M. Hierons a a Department of Information Systems and Computing, Brunel University, Uxbridge, Middlesex, UB8 3PH, United Kingdom

More information

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo

INF Introduction and Regular Languages. Daniel Lupp. 18th January University of Oslo. Department of Informatics. Universitetet i Oslo INF28 1. Introduction and Regular Languages Daniel Lupp Universitetet i Oslo 18th January 218 Department of Informatics University of Oslo INF28 Lecture :: 18th January 1 / 33 Details on the Course consists

More information

Kolmogorov structure functions for automatic complexity

Kolmogorov structure functions for automatic complexity Kolmogorov structure functions for automatic complexity Bjørn Kjos-Hanssen June 16, 2015 Varieties of Algorithmic Information, University of Heidelberg Internationales Wissenschaftssentrum History 1936:

More information

Simplification of finite automata

Simplification of finite automata Simplification of finite automata Lorenzo Clemente (University of Warsaw) based on joint work with Richard Mayr (University of Edinburgh) Warsaw, November 2016 Nondeterministic finite automata We consider

More information

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is,

T (s, xa) = T (T (s, x), a). The language recognized by M, denoted L(M), is the set of strings accepted by M. That is, Recall A deterministic finite automaton is a five-tuple where S is a finite set of states, M = (S, Σ, T, s 0, F ) Σ is an alphabet the input alphabet, T : S Σ S is the transition function, s 0 S is the

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Not A DFA Does not have exactly one transition from every state on every symbol: Two transitions from q 0 on a No transition from q 1 (on either a or b) Though not a DFA,

More information

Nondeterministic Finite Automata

Nondeterministic Finite Automata Nondeterministic Finite Automata Lecture 6 Section 2.2 Robb T. Koether Hampden-Sydney College Mon, Sep 5, 2016 Robb T. Koether (Hampden-Sydney College) Nondeterministic Finite Automata Mon, Sep 5, 2016

More information

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo

EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories. Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo EE249 - Fall 2012 Lecture 18: Overview of Concrete Contract Theories 1 Alberto Sangiovanni-Vincentelli Pierluigi Nuzzo Outline: Contracts and compositional methods for system design Where and why using

More information

Finite State Machines Transducers Markov Models Hidden Markov Models Büchi Automata

Finite State Machines Transducers Markov Models Hidden Markov Models Büchi Automata Finite State Machines Transducers Markov Models Hidden Markov Models Büchi Automata Chapter 5 Deterministic Finite State Transducers A Moore machine M = (K,, O,, D, s, A), where: K is a finite set of states

More information

Using Multiple Adaptive Distinguishing Sequences for Checking Sequence Generation

Using Multiple Adaptive Distinguishing Sequences for Checking Sequence Generation Using Multiple Adaptive Distinguishing Sequences for Checking Sequence Generation Canan Güniçen 1, Guy-Vincent Jourdan 2, and Hüsnü Yenigün 1 1 Sabanci University, Istanbul, Turkey {canangunicen,yenigun}@sabanciuniv.edu

More information

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA) Deterministic Finite Automata Non deterministic finite automata Automata we ve been dealing with have been deterministic For every state and every alphabet symbol there is exactly one move that the machine

More information

Unranked Tree Automata with Sibling Equalities and Disequalities

Unranked Tree Automata with Sibling Equalities and Disequalities Unranked Tree Automata with Sibling Equalities and Disequalities Wong Karianto Christof Löding Lehrstuhl für Informatik 7, RWTH Aachen, Germany 34th International Colloquium, ICALP 2007 Xu Gao (NFS) Unranked

More information

Timo Latvala. March 7, 2004

Timo Latvala. March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness Timo Latvala March 7, 2004 Reactive Systems: Safety, Liveness, and Fairness 14-1 Safety Safety properties are a very useful subclass of specifications.

More information

School of Information Technology and Engineering University of Ottawa Ottawa, Canada

School of Information Technology and Engineering University of Ottawa Ottawa, Canada Using Adaptive Distinguishing Sequences in Checking Sequence Constructions Robert M. Hierons Guy-Vincent Jourdan Hasan Ural Husnu Yenigun School of Information Systems, Computing and Mathematics Brunel

More information

Synthesis from Probabilistic Components

Synthesis from Probabilistic Components Synthesis from Probabilistic Components Yoad Lustig, Sumit Nain, and Moshe Y. Vardi Department of Computer Science Rice University, Houston, TX 77005, USA yoad.lustig@gmail.com, nain@cs.rice.edu, vardi@cs.rice.edu

More information

C2.1 Regular Grammars

C2.1 Regular Grammars Theory of Computer Science March 22, 27 C2. Regular Languages: Finite Automata Theory of Computer Science C2. Regular Languages: Finite Automata Malte Helmert University of Basel March 22, 27 C2. Regular

More information

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège

Temporal logics and explicit-state model checking. Pierre Wolper Université de Liège Temporal logics and explicit-state model checking Pierre Wolper Université de Liège 1 Topics to be covered Introducing explicit-state model checking Finite automata on infinite words Temporal Logics and

More information

C2.1 Regular Grammars

C2.1 Regular Grammars Theory of Computer Science March 6, 26 C2. Regular Languages: Finite Automata Theory of Computer Science C2. Regular Languages: Finite Automata Malte Helmert University of Basel March 6, 26 C2. Regular

More information

Data Structures in Java

Data Structures in Java Data Structures in Java Lecture 21: Introduction to NP-Completeness 12/9/2015 Daniel Bauer Algorithms and Problem Solving Purpose of algorithms: find solutions to problems. Data Structures provide ways

More information

CSC236 Week 11. Larry Zhang

CSC236 Week 11. Larry Zhang CSC236 Week 11 Larry Zhang 1 Announcements Next week s lecture: Final exam review This week s tutorial: Exercises with DFAs PS9 will be out later this week s. 2 Recap Last week we learned about Deterministic

More information

Theory of computation: initial remarks (Chapter 11)

Theory of computation: initial remarks (Chapter 11) Theory of computation: initial remarks (Chapter 11) For many purposes, computation is elegantly modeled with simple mathematical objects: Turing machines, finite automata, pushdown automata, and such.

More information

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005

Complexity Theory. Knowledge Representation and Reasoning. November 2, 2005 Complexity Theory Knowledge Representation and Reasoning November 2, 2005 (Knowledge Representation and Reasoning) Complexity Theory November 2, 2005 1 / 22 Outline Motivation Reminder: Basic Notions Algorithms

More information

Automata Theory (2A) Young Won Lim 5/31/18

Automata Theory (2A) Young Won Lim 5/31/18 Automata Theory (2A) Copyright (c) 2018 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later

More information

The State Explosion Problem

The State Explosion Problem The State Explosion Problem Martin Kot August 16, 2003 1 Introduction One from main approaches to checking correctness of a concurrent system are state space methods. They are suitable for automatic analysis

More information

Advanced Automata Theory 10 Transducers and Rational Relations

Advanced Automata Theory 10 Transducers and Rational Relations Advanced Automata Theory 10 Transducers and Rational Relations Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced

More information

Antichain Algorithms for Finite Automata

Antichain Algorithms for Finite Automata Antichain Algorithms for Finite Automata Laurent Doyen 1 and Jean-François Raskin 2 1 LSV, ENS Cachan & CNRS, France 2 U.L.B., Université Libre de Bruxelles, Belgium Abstract. We present a general theory

More information

Pushdown Automata: Introduction (2)

Pushdown Automata: Introduction (2) Pushdown Automata: Introduction Pushdown automaton (PDA) M = (K, Σ, Γ,, s, A) where K is a set of states Σ is an input alphabet Γ is a set of stack symbols s K is the start state A K is a set of accepting

More information

Models for Efficient Timed Verification

Models for Efficient Timed Verification Models for Efficient Timed Verification François Laroussinie LSV / ENS de Cachan CNRS UMR 8643 Monterey Workshop - Composition of embedded systems Model checking System Properties Formalizing step? ϕ Model

More information

Pushdown Automata. Chapter 12

Pushdown Automata. Chapter 12 Pushdown Automata Chapter 12 Recognizing Context-Free Languages We need a device similar to an FSM except that it needs more power. The insight: Precisely what it needs is a stack, which gives it an unlimited

More information

SOLUTION: SOLUTION: SOLUTION:

SOLUTION: SOLUTION: SOLUTION: Convert R and S into nondeterministic finite automata N1 and N2. Given a string s, if we know the states N1 and N2 may reach when s[1...i] has been read, we are able to derive the states N1 and N2 may

More information

Finite Automata. Mahesh Viswanathan

Finite Automata. Mahesh Viswanathan Finite Automata Mahesh Viswanathan In this lecture, we will consider different models of finite state machines and study their relative power. These notes assume that the reader is familiar with DFAs,

More information

Weak Alternating Automata Are Not That Weak

Weak Alternating Automata Are Not That Weak Weak Alternating Automata Are Not That Weak Orna Kupferman Hebrew University Moshe Y. Vardi Rice University Abstract Automata on infinite words are used for specification and verification of nonterminating

More information

Nondeterminism. September 7, Nondeterminism

Nondeterminism. September 7, Nondeterminism September 7, 204 Introduction is a useful concept that has a great impact on the theory of computation Introduction is a useful concept that has a great impact on the theory of computation So far in our

More information

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata.

Clarifications from last time. This Lecture. Last Lecture. CMSC 330: Organization of Programming Languages. Finite Automata. CMSC 330: Organization of Programming Languages Last Lecture Languages Sets of strings Operations on languages Finite Automata Regular expressions Constants Operators Precedence CMSC 330 2 Clarifications

More information

CS21 Decidability and Tractability

CS21 Decidability and Tractability CS21 Decidability and Tractability Lecture 3 January 9, 2017 January 9, 2017 CS21 Lecture 3 1 Outline NFA, FA equivalence Regular Expressions FA and Regular Expressions January 9, 2017 CS21 Lecture 3 2

More information

Monadic Second Order Logic and Automata on Infinite Words: Büchi s Theorem

Monadic Second Order Logic and Automata on Infinite Words: Büchi s Theorem Monadic Second Order Logic and Automata on Infinite Words: Büchi s Theorem R. Dustin Wehr December 18, 2007 Büchi s theorem establishes the equivalence of the satisfiability relation for monadic second-order

More information

Comparing State Machines: Equivalence and Refinement

Comparing State Machines: Equivalence and Refinement Chapter 14 Comparing State Machines: Equivalence and Refinement Hongwei Zhang http://www.cs.wayne.edu/~hzhang/ Ack.: this lecture is prepared in part based on slides of Lee, Sangiovanni-Vincentelli, Seshia.

More information

Chapter Two: Finite Automata

Chapter Two: Finite Automata Chapter Two: Finite Automata In theoretical computer science, automata theory is the study of abstract machines (or more appropriately, abstract 'mathematical' machines or systems) and the computational

More information

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u,

1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, 1. Draw a parse tree for the following derivation: S C A C C A b b b b A b b b b B b b b b a A a a b b b b a b a a b b 2. Show on your parse tree u, v, x, y, z as per the pumping theorem. 3. Prove that

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures and Instructions 23.10. 3.11. 17.11. 24.11. 1.12. 11.12.

More information

Einführung in die Computerlinguistik

Einführung in die Computerlinguistik Einführung in die Computerlinguistik Context-Free Grammars (CFG) Laura Kallmeyer Heinrich-Heine-Universität Düsseldorf Summer 2016 1 / 22 CFG (1) Example: Grammar G telescope : Productions: S NP VP NP

More information

Variable Automata over Infinite Alphabets

Variable Automata over Infinite Alphabets Variable Automata over Infinite Alphabets Orna Grumberg a, Orna Kupferman b, Sarai Sheinvald b a Department of Computer Science, The Technion, Haifa 32000, Israel b School of Computer Science and Engineering,

More information

Introduction to Theoretical Computer Science. Motivation. Automata = abstract computing devices

Introduction to Theoretical Computer Science. Motivation. Automata = abstract computing devices Introduction to Theoretical Computer Science Motivation Automata = abstract computing devices Turing studied Turing Machines (= computers) before there were any real computers We will also look at simpler

More information

Formal Languages, Automata and Compilers

Formal Languages, Automata and Compilers Formal Languages, Automata and Compilers Lecure 4 2017-18 LFAC (2017-18) Lecture 4 1 / 31 Curs 4 1 Grammars of type 3 and finite automata 2 Closure properties for type 3 languages 3 Regular Expressions

More information

September 7, Formal Definition of a Nondeterministic Finite Automaton

September 7, Formal Definition of a Nondeterministic Finite Automaton Formal Definition of a Nondeterministic Finite Automaton September 7, 2014 A comment first The formal definition of an NFA is similar to that of a DFA. Both have states, an alphabet, transition function,

More information

Introduction to Kleene Algebras

Introduction to Kleene Algebras Introduction to Kleene Algebras Riccardo Pucella Basic Notions Seminar December 1, 2005 Introduction to Kleene Algebras p.1 Idempotent Semirings An idempotent semiring is a structure S = (S, +,, 1, 0)

More information

Finite Automata. Finite Automata

Finite Automata. Finite Automata Finite Automata Finite Automata Formal Specification of Languages Generators Grammars Context-free Regular Regular Expressions Recognizers Parsers, Push-down Automata Context Free Grammar Finite State

More information

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization

EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization EECS 144/244: Fundamental Algorithms for System Modeling, Analysis, and Optimization Discrete Systems Lecture: Automata, State machines, Circuits Stavros Tripakis University of California, Berkeley Stavros

More information

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43

Finite Automata. Dr. Neil T. Dantam. Fall CSCI-561, Colorado School of Mines. Dantam (Mines CSCI-561) Finite Automata Fall / 43 Finite Automata Dr. Neil T. Dantam CSCI-561, Colorado School of Mines Fall 2018 Dantam (Mines CSCI-561) Finite Automata Fall 2018 1 / 43 Outline Languages Review Traffic Light Example Deterministic Finite

More information

3130CIT Theory of Computation

3130CIT Theory of Computation GRIFFITH UNIVERSITY School of Computing and Information Technology 3130CIT Theory of Computation Final Examination, Semester 2, 2006 Details Total marks: 120 (40% of the total marks for this subject) Perusal:

More information

Chapter Five: Nondeterministic Finite Automata

Chapter Five: Nondeterministic Finite Automata Chapter Five: Nondeterministic Finite Automata From DFA to NFA A DFA has exactly one transition from every state on every symbol in the alphabet. By relaxing this requirement we get a related but more

More information

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics

CS256/Spring 2008 Lecture #11 Zohar Manna. Beyond Temporal Logics CS256/Spring 2008 Lecture #11 Zohar Manna Beyond Temporal Logics Temporal logic expresses properties of infinite sequences of states, but there are interesting properties that cannot be expressed, e.g.,

More information

Automata: a short introduction

Automata: a short introduction ILIAS, University of Luxembourg Discrete Mathematics II May 2012 What is a computer? Real computers are complicated; We abstract up to an essential model of computation; We begin with the simplest possible

More information

Advanced Automata Theory 11 Regular Languages and Learning Theory

Advanced Automata Theory 11 Regular Languages and Learning Theory Advanced Automata Theory 11 Regular Languages and Learning Theory Frank Stephan Department of Computer Science Department of Mathematics National University of Singapore fstephan@comp.nus.edu.sg Advanced

More information

CPS 220 Theory of Computation Pushdown Automata (PDA)

CPS 220 Theory of Computation Pushdown Automata (PDA) CPS 220 Theory of Computation Pushdown Automata (PDA) Nondeterministic Finite Automaton with some extra memory Memory is called the stack, accessed in a very restricted way: in a First-In First-Out fashion

More information

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova. Introduction to the Theory of Computation Automata 1VO + 1PS Lecturer: Dr. Ana Sokolova http://cs.uni-salzburg.at/~anas/ Setup and Dates Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30

More information

Prime Languages, Orna Kupferman, Jonathan Mosheiff. School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel

Prime Languages, Orna Kupferman, Jonathan Mosheiff. School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel Prime Languages, Orna Kupferman, Jonathan Mosheiff School of Engineering and Computer Science The Hebrew University, Jerusalem, Israel Abstract We say that a deterministic finite automaton (DFA) A is composite

More information

Lecture 3: Nondeterministic Finite Automata

Lecture 3: Nondeterministic Finite Automata Lecture 3: Nondeterministic Finite Automata September 5, 206 CS 00 Theory of Computation As a recap of last lecture, recall that a deterministic finite automaton (DFA) consists of (Q, Σ, δ, q 0, F ) where

More information

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont )

CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) CSE 135: Introduction to Theory of Computation Nondeterministic Finite Automata (cont ) Sungjin Im University of California, Merced 2-3-214 Example II A ɛ B ɛ D F C E Example II A ɛ B ɛ D F C E NFA accepting

More information

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the

Introduction. Büchi Automata and Model Checking. Outline. Büchi Automata. The simplest computation model for infinite behaviors is the Introduction Büchi Automata and Model Checking Yih-Kuen Tsay Department of Information Management National Taiwan University FLOLAC 2009 The simplest computation model for finite behaviors is the finite

More information

Java II Finite Automata I

Java II Finite Automata I Java II Finite Automata I Bernd Kiefer Bernd.Kiefer@dfki.de Deutsches Forschungszentrum für künstliche Intelligenz November, 23 Processing Regular Expressions We already learned about Java s regular expression

More information

Parikh s Theorem and Descriptional Complexity

Parikh s Theorem and Descriptional Complexity Parikh s Theorem and Descriptional Complexity Giovanna J. Lavado and Giovanni Pighizzini Dipartimento di Informatica e Comunicazione Università degli Studi di Milano SOFSEM 2012 Špindlerův Mlýn, Czech

More information