A Mathematical Aspect of Higher Dimensional. Cosmological Models with Varying G and ΛTerm

Size: px
Start display at page:

Download "A Mathematical Aspect of Higher Dimensional. Cosmological Models with Varying G and ΛTerm"

Transcription

1 Int. J. Contemp. Math. Sciences, Vol. 7, 01, no. 1, A Mathematical Aspect of Higher Dimensional Cosmological Models with Varying G and ΛTerm. K. Dubey Department of Mathematics, Govt. Science P.G.College ewa, Madhya Pradesh, India rkdubey004@yahoo.co.in Abhijeet Mitra Department of Mathematics, Govt. P G College Satna, Madhya Pradesh, India abhijeetmitra@rediffmail.com Bijendra Kumar Singh Department of Mathematics, Govt. P G College Satna, Madhya Pradesh, India singh.bijendrakumar@gmail.com Abstract. In this paper we have discussed the mathematical aspect of a non empty higher dimensional cosmological model with variable cosmological constant ( ) and variable gravitational constant (G ) under some suitable assumptions. The α α + ( m+ 1)( 1) gravitational constants found to decrease with time as G t γ + (where α is constant and γ is equation of state parameter), whereas cosmological constant Λ t. We obtain the exact solutions for the field equations and discuss some physical properties of the cosmological model. An expanding universe is found by using a relation between scalar potential and an equation of state. Keywords: Cosmology, higher dimension, variable gravitational coupling (G ) and Cosmological Constant term ( Λ ).

2 1006. K. Dubey, A. Mitra and B. K. Singh 1. INTODUCTION "Einstein Universe" is one of Friedman's solutions of Einstein's field equations for the value of cosmological constant (Λ). This is only stationary solution of all Friedman's solutions, and because it is stationary, it is thought to be non-physical by majority of astronomers. Those astronomers think that universe is expanding because there is observed a phenomenon of Hubble red shift and it is interpreted by those astronomers as a Doppler s shift caused by galaxies moving away from our own Galaxy. Therefore, it is thought that the real solution of Einstein's field equations cannot be stationary. As discussed earlier by many researchers [4] that a constant (Λ) cannot explain the huge difference between the cosmological constant inferred from observations and energy density resulting from quantum field theories. In the year 1930 and onwards eminent cosmologists such as A.S. Eddington and Abbe Lemaitre [10, 5] felt that the Λ -term introduced certain attractive features into cosmology and that model based on it should also be discussed. To solve the above discussed problem, variable Λ was introduced such that Λ was large in the early universe and then decayed with evolution. A number of models with different decay laws for the variation of cosmological term were investigated during last two decades by Chen and Wu (1991) Pavon-1991 [14] Carvalho, Lima and Waga 199- [19], Lima and Maia 1994 [0] Lima and Trodden 1996 [1] Arbab and Abdel- ahaman 1994 [5,6] Vishwakarma 001 [33] Cunha and Santos 004 [4] Carneiro and Lima (005) [34]. It was Bertolami [8, 9] who obtained Cosmological Models with time dependent G and Λ terms and suggested ~ Λ ~ t.in 001, Singh and Kotambkar [17] considered a cosmological model representing a flat viscous universe with variable G and Λ in the context of higher-dimensional space-time. A possible time variable G was suggested by Dirac [30]. Many authors [1-4, 8-9, 16, 18, 3, 6-7, 3] have proposed linking of the variation of G with that of Λ within the rules of general relativity theory. This new thought leaves Einstein's equations nearly unchanged as a variation in Λ is accompanied by the variation ing. Mathematically well-posed gravitation theories were developed in which Einstein s theory of general relativity was generalized to include a varying G by deriving it from a scalar field satisfying a conservation equation. There has been considerable interest in solutions of Einstein s equations in higher dimensions in the context of physics of early universe both from cosmological as well as mathematical point of view [11-13, 16, 18, 31]. In the present paper we have taken G = a α and tried to investigate the mathematical properties which have been discussed up to now and many other challenges which have been left and require attention to solve by peer researchers.

3 Higher dimensional cosmological models The Field equations and their solutions We consider 5-D obertson-walker metric dr ds = dt () t + r ( dθ + sin θdφ ) (1) 1 kr Where, (t), k =0, + 1, D = m + Stand for scale factor, curvature parameter and dimension respectively. The energy-momentum tensor of a perfect fluid is Tij = ( p+ ρ) uu i j pgij Where, ρ is the energy density of the cosmic matter and p its pressure and u i is j the unit flow vector such thatuu i = 1. The Einstein s field equations with time varying cosmological and gravitational constants are given by 1 ik gik = 8 πg[( ρ + p) uiuk ρgik ] +Λ gik () Where the cosmological term Λ is time- dependent and c, the velocity of light in vacuum is assumed to be unity. For the metric (1) yields two independent Friedman equations mm ( + 1) & k + 8πGρ = +Λ (3) m&& m( m 1) & k + + 8π GP = +Λ (4) Here equation (3) & (4) are time and space component of the field equation ().The dot ( ) denotes derivative with respective to t. & k (8 πgρ + Λ) From (3) + =, differentiating w.r.t. t m( m+ 1) 3 3 {8 π G ρ + 8 π G& ρ +Λ& } & k& && & = + + (5) & m ( m + 1) & & Substituting the value of && obtained in (5) to (4) m {8πG & ρ + 8 πg& ρ +Λ& } & k m( m 1) & k π GP = +Λ m( m+ 1) & Using equation (3) in the above equation

4 1008. K. Dubey, A. Mitra and B. K. Singh {8πG & ρ+ 8 πg& ρ+λ & } + 8 πgρ + 8 πgp = 0 ( m+ 1) & Above equation reduces to G Λ & ρ + ρ + + ( P+ ρ)( m+ 1) = 0 G 8π G (6) From equation (6) it can be seen that in this case the energy density of the matter fields is not conserved because of the varying nature of scalars G & Λ. The principle of equivalence requires only g ik (not Λ andg ) which should be involved in the equations of motion of particles and photons. Thus in the present case also the conservation law of energy-momentum (u i T ik ; k=0) holds and its suggests & & ρ+ ( m+ 1)( ρ+ P) = 0 (7) From equation (6) and (7), we have 8πG& ρ+ Λ= & 0 Λ G& = & 8πρ (8) Assuming the equation of state as P = γρ where 0 γ 1, Equation (7) reduces to & ρ ( m 1)( γ 1) ρ = + + & (7.1) Integrating the above relation ( m+ ρ = a 1 (9) ( m+ Where a1= ρ00 and suffix 0 represents the present value of the parameters. Eliminating & 1 & ρ from equation (3) & (7) and using = ( m+ ρ, substituting value of & in (3), we obtain & ρ 16πG Λ k = ( m + 1) ( γ + 1) 3 ρ + mm ( + 1) mm ( + 1) ρ ρ Again differentiating (10) and using equation (8) & (7.1) [( ( m+ ) ] & ρ k 3 = ( m + && ρ Λ ρ ρ ( γ + 1) m & 1 & ρ From (7.1) = ( m+ ρ (10) (11)

5 Higher dimensional cosmological models H& ρρ&& & ρρ& = So, H& && ρ & ρ = + (1) ( m + ρ ( m+ ρ ( m+ ρ From (1) and (11) we obtain ( ( m 1)( 1)) k ( 1) H& + γ + Λ γ + + ( m+ H + = 0 (13) m Where H= & is the Hubble parameter In most of the investigations a power law relation between the scale factor and scalar field is assumed. Cosmological models with the gravitational and cosmological constants generalized as coupling scalars whereg = λ α, Where λ, α are constants have been discussed by S. Weinberg & E.B. Norman [36-40]. Let us consider: G = a α (14), Where a is the proportionality constant andα o, Using the values of ρ and G given by equations (9) & (14) equation (8) reduces to (8 πρ) G= Λ (8 πρ) G& = Λ& (Using 8) ( 1) But G & = aα α + (From 14) ( α+ 1) ( m+ 1)( γ+ 1) So Λ= & 8παa a1 8π α aa 1 (( α+ 1) + ( m+ 1)( γ+ 1)) + 1 Integrating, Λ= (15) (( α + 1) + ( m + ) + 1 Where the integration constant is taken to be zero as in the beginning of the universe a = 0 & Λ = 0 From equations (3), (9), (10) m( m + 1) & k + = 8πGρ + Λ m & (!)( γ + 1) + ( + = 16πa1 a k m m m ( + 1)( α + 1) + ( + + 1) (16) For a general k, it is difficult to integrate equ. (16). Under the assumption k =0 for flat model equ. (16) yields the solution. 16π a1a ( + ( m + ) & = m( m + 1)(( α + 1) + ( m + + 1) 1/ 16πa1a ( + ( m + Let A= m( m + 1)(( α + 1) + ( m + ) + 1) ( ) 1/

6 1010. K. Dubey, A. Mitra and B. K. Singh So, ( α+ ( m+ 1)( γ+ 1) & = A, Integrating = B. t (17) A( α + ( m + Where B= From equation (17) we can say that for expanding model of the universe ( m + + α <.With the help of the result (17) energy density ρ, q and Λ may be obtained from equations (9), (14) and (15) respectively. ρ = a G = a B ( m+!)( γ + 1) 1 Β. α t t α α ( m+ i.e. G t 8π aa 1 ( α+ ( m+ 1)( γ + )) Λ= B t ( α + ( m + (0) i.e. Λ t From above equations it can be easily seen that energy density ( ρ ) and cosmological term ( Λ ) are decreasing while gravitational constant (G ) is also decreasing during the expansion of the universe. In most variable (G ) cosmologies, (G ) is a decreasing function of time. In this case, the deceleration parameter q is given by: && q = & Using (17) we find, ( m + α 1 q = = 1+ [( m + + α ], For ( m + + α < the deceleration parameter q < 0,this is satisfied with observations (Knop et al., iess et al). (18) (19) 4. CONCLUSION In this paper we have tried to present the cosmological models with varying gravitational coupling G and cosmological term Λ in higher dimensions. It is clear from the values obtained of ρ(), t G(), t Λ (), t and q () t that these quantities depend on the dimensionality of space-time. The results obtained

7 Higher dimensional cosmological models 1011 in this paper are in favor of the views of astronomical observations.. If we select α = 0, γ = 1, then from (17),(18),(19) we have, G = constt., Λ t, ρ t. The cosmological term Λ decides the behavior of the universe in the model. In this paper we have obtained a negative value of Λ which will correspond to positive effective mass density. Hence, we can get a universe that expands and then recontract. The observations on magnitude and red shift of type Ia supernova suggest that our universe may be an accelerating one or otherwise with induced cosmological density, through the cosmological Λ -term [15, 35,].Thus our models are consistent with the results of the observations made in recent times. eferences 1. Abbussattar,.G. Vishwakarma, Class. Quantum Grav., 14, 945 (1997).. A. Beesham, Phys. ev., D 48, 3539 (1993). 3. A. Beesham, Gen. el. Grav., 6, 159, (1994). 4. A.D Dolgov: In the very early Universe. G.W. Gibbons, S.W. Hawking, and S.T.C. Siklos,, Cambridge University press Cambridge, p. 449 (1983). 5. A.I Arbab,. And A.M.M Abdel ahaman,.: Phys. ev. D. 50, 775 (1994). 6. A.M.M. Abdel- ahaman, Gen. el. Grav., 665 (1990) 7. A.Pradhan., A.K. Singh, S.Otarod, om. J. Phys., 5, 415 (007). 8. A.Pradhan., P. Pandey, G.P. Singh..V. Deshpandey, Spacetime & Sulstance, 6 (116) (003) 9. A.Pradhan., V.K. Yadav, Int. J. Mod. Phys., D 11, 893 (00). 10. A.S. Eddington, Mon. Not. oy. Astron. Soc. 90, 668. (1930) 11. B. atra, and P.J.E. Peebles, Phys. ev. D 37, 3406 (1988). 1. C.P.Singh, S. Kumar, A.Pradhan, Class. Quantum Grav., 4, 455 (007). 13. D.Kalligas, P. Wesson, C.W.f. Everitt, Gen., el. Grav., 4, 315 (199). 14. D. Pavon: Physics. ev. D43, 375 (1991) 15. E.P. Hubble, and.c. Tolman Ap. J. 8, 30 (1935). 16. G.P Singh, S.Kotambkar, and A.Pradhan, Int. J. Mod. Phys., D 1, 941 (003). 17. G.P Singh and S.Kotambkar, Gen. el. Grav. 33, 61 (001). 18. I.Chakraborty, A.Pradhan, Grav. & Cosmo, 7, 55 (001). 19. J.A.S. Lima, and J.C.Carvalho: Gen. el. Grav. 6, 909 (1994). 0. J.A.S. Lima. And J.M.F Maia,.: Phys. ev. D 49, 5579 (1994) 1. J.A.S. Lima. And M Trodden: Phys. ev. D 53, 480 (1996). J.Narlikar: An Introduction to Cosmology, Cambridge University Press (00). 3. J.P.Singh, A.Pradhan., A.K. Singh, Gr. Qe./ (007) 4. J.V. Cunha, and.c Santos: Int. J. Mod. Phys. D 13, 131 (004).

8 101. K. Dubey, A. Mitra and B. K. Singh 5. Lemaitre, G.Abbe, Mon. Not. oy. Astron. Soc. 91, 483(1931). 6. M.S.Berman, Gen. el. Grav. 3, 465 (1991). 7. M.S.Berman, Phys. ev., D 43, 1075 (1991). 8. O.Bertolami: Fortschr. Phys. 34, 89 (1986) 9. O.Bertolami: Nuovo Cimento 1393 (36 (1986). 30. P.A.M. Dirac, Nature, 61, 33 (1937). 31. P. Astier, et al., Astrono. Astrophys. 447, 31 (006). 3..F.Sistero, Gen. el. Grav., 3, 165 (1991). 33..G. Vishwakarma : Gen. elativ. Gravit. 33, 1973 (001). 34. S.Carneiro, and J.A.S. Lima: Int. J. Mod. Phys. A 0, 465 (005). 35. S.Perlmutter, et al., Astrophys. J. 483, 565 (1997). 36. S.Weinberg, Phys. ev. Lett. 19, 164 (1967). 37. S.Weinberg. Phys. ev. Lett. 43, 1566 (1979). 38. S.Weinberg, Physics in higher dimensions, world scientific, Singapore (1986). 39. S.Weinberg, ev. Mod. Phys, 61, 1 (1989). 40. S.Weinberg, Gravitation and Cosmology, Wiley, New York (1971). eceived: November, 011

BIANCHI TYPE-III COSMOLOGICAL MODEL WITH VARIABLE G AND Λ-TERM IN GENERAL RELATIVITY

BIANCHI TYPE-III COSMOLOGICAL MODEL WITH VARIABLE G AND Λ-TERM IN GENERAL RELATIVITY BIANCHI TYPE-III COSMOLOGICAL MODEL WITH VARIABLE G AND Λ-TERM IN GENERAL RELATIVITY HASSAN AMIRHASHCHI 1, H. ZAINUDDIN 2,a, ANIRUDH PRADHAN 2,3 1 Young Researchers Club, Mahshahr Branch, Islamic Azad

More information

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS)

International Journal of Emerging Technologies in Computational and Applied Sciences (IJETCAS) International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) International Journal of Emerging Technologies in Computational

More information

FRW UNIVERSE WITH VARIABLE G AND Λ TERM IN f(r,t ) GRAVITY

FRW UNIVERSE WITH VARIABLE G AND Λ TERM IN f(r,t ) GRAVITY FRW UNIVERSE WITH VARIABLE G AND Λ TERM IN f(r,t ) GRAVITY G. P. SINGH a, BINAYA K. BISHI b Department of Mathematics, Visvesvaraya National Institute of Technology Nagpur, Nagpur-440010, India E-mail:

More information

DYNAMIC COSMOLOGICAL CONSTANT IN BRANS DICKE THEORY

DYNAMIC COSMOLOGICAL CONSTANT IN BRANS DICKE THEORY DYNAMIC COSMOLOGICAL CONSTANT IN BRANS DICKE THEORY G P SINGH, AY KALE, J TRIPATHI 3 Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur - 44, India Department of Mathematics,

More information

BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV

BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV BIANCHI TYPE I ANISOTROPIC UNIVERSE WITHOUT BIG SMASH DRIVEN BY LAW OF VARIATION OF HUBBLE S PARAMETER ANIL KUMAR YADAV Department of Physics, Anand Engineering College, Keetham, Agra -282 007, India E-mail:

More information

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters

Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters Theoretical Models of the Brans-Dicke Parameter for Time Independent Deceleration Parameters Sudipto Roy 1, Soumyadip Chowdhury 2 1 Assistant Professor, Department of Physics, St. Xavier s College, Kolkata,

More information

Locally-rotationally-symmetric Bianchi type-v cosmology in general relativity

Locally-rotationally-symmetric Bianchi type-v cosmology in general relativity PRAMANA c Indian Academy of Sciences Vol. 72, No. 2 journal of February 2009 physics pp. 429 443 Locally-rotationally-symmetric Bianchi type-v cosmology in general relativity C P SINGH Department of Applied

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

R. K. Tiwari & Rameshwar Singh

R. K. Tiwari & Rameshwar Singh Role of conharmonic flatness in Friedmann cosmology R. K. Tiwari & Rameshwar Singh Astrophysics and Space Science An International Journal of Astronomy, Astrophysics and Space Science ISSN 0004-640X Volume

More information

A Study of the Variable Equation-of-State Parameter in the Framework of Brans-Dicke Theory

A Study of the Variable Equation-of-State Parameter in the Framework of Brans-Dicke Theory International Journal of Pure and Applied Physics. ISSN 0973-1776 Volume 13, Number 3 (2017), pp. 279-288 Research India Publications http://www.ripublication.com A Study of the Variable Equation-of-State

More information

NEW EXACT SOLUTION OF BIANCHI TYPE V COSMOLOGICAL STIFF FLUID MODEL IN LYRA S GEOMETRY

NEW EXACT SOLUTION OF BIANCHI TYPE V COSMOLOGICAL STIFF FLUID MODEL IN LYRA S GEOMETRY ASTROPHYSICS NEW EXACT SOLUTION OF BIANCHI TYPE V COSMOLOGICAL STIFF FLUID MODEL IN LYRA S GEOMETRY VINEET K. YADAV 1,, LALLAN YADAV 2, ANIL KUMAR YADAV 3 1,2 Department of Physics, D. D. U. Gorahpur University,

More information

Anisotropic Lyra cosmology

Anisotropic Lyra cosmology PRAMANA c Indian Academy of Sciences Vol. 62, No. 6 journal of June 2004 physics pp. 87 99 B B BHOWMIK and A RAJPUT 2 Netaji Subhas Vidyaniketan Higher Secondary School, Basugaon 783 372, Dist. Kokrajhar,

More information

BianchiTypeVICosmologicalModelwithQuadraticformofTimeDependentTerminGeneralRelativity

BianchiTypeVICosmologicalModelwithQuadraticformofTimeDependentTerminGeneralRelativity Global Journal of Science Frontier Research: A Physics and Space Science Volume 16 Issue 6 Version 1.0 Year 2016 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

International Journal of Applied and Universal Research E-ISSN No: Volume III, Issue V, Sept-Oct Available online at:

International Journal of Applied and Universal Research E-ISSN No: Volume III, Issue V, Sept-Oct Available online at: COSMOLOGICAL MODELS BIANCHI TYPE II WITH BULK VISCOSITY IN GENERAL THEORY OF RELATIVITY R.K. Dubey 1, Shishir Kumar Srivastava 2, Dhirendra Tripathi 3 1 Department of Mathematics Govt. S.K.N.P.G. College,

More information

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT THE DARK SIDE OF THE COSMOLOGICAL CONSTANT CAMILO POSADA AGUIRRE University of South Carolina Department of Physics and Astronomy 09/23/11 Outline 1 Einstein s Greatest Blunder 2 The FLRW Universe 3 A

More information

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN CC0937 THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) SEMESTER 2, 2014 TIME ALLOWED: 2 HOURS ALL QUESTIONS HAVE THE VALUE SHOWN INSTRUCTIONS:

More information

Bianchi Type VIII Inflationary Universe with Massless Scalar Field in General Relativity

Bianchi Type VIII Inflationary Universe with Massless Scalar Field in General Relativity August 05 Volume 6 Issue 8 pp. 679-68 Bali,. & Swati, Bianchi Type VIII Inflationary Universe with Massless Scalar Field in General elativity Bianchi Type VIII Inflationary Universe with Massless Scalar

More information

Modified generalized Chaplygin gas model in Bianchi type-v space-time geometry with dynamical G and

Modified generalized Chaplygin gas model in Bianchi type-v space-time geometry with dynamical G and Journal of Physics: Conference Series PAPER OPEN ACCESS Modified generalized Chaplygin gas model in Bianchi type-v space-time geometry with dynamical G and To cite this article: S Kotambkar et al 015 J.

More information

A COSMOLOGICAL MODEL WITH VARYING G AND IN GENERAL RELATIVITY

A COSMOLOGICAL MODEL WITH VARYING G AND IN GENERAL RELATIVITY A COSMOLOGICAL MODEL WITH VARYING G AND IN GENERAL RELATIVITY Harpreet 1, R.K. Tiwari and *H.S. Sahota 1, Sant Baba Bhag Singh Institute of Engineering and Technology, Department of Applied Sciences, Khiala,

More information

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant

The Friedmann Equation R = GM R 2. R(t) R R = GM R GM R. d dt. = d dt 1 2 R 2 = GM R + K. Kinetic + potential energy per unit mass = constant The Friedmann Equation R = GM R R R = GM R R R(t) d dt 1 R = d dt GM R M 1 R = GM R + K Kinetic + potential energy per unit mass = constant The Friedmann Equation 1 R = GM R + K M = ρ 4 3 π R3 1 R = 4πGρR

More information

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I

2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 1 2.1 Basics of the Relativistic Cosmology: Global Geometry and the Dynamics of the Universe Part I 2 Special Relativity (1905) A fundamental change in viewing the physical space and time, now unified

More information

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light _ (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

Arvind Borde / MTH 675, Unit 20: Cosmology

Arvind Borde / MTH 675, Unit 20: Cosmology Arvind Borde / MTH 675, Unit 20: Cosmology 1. Review (1) What do we do when we do GR? We try to solve Einstein s equation. (2) What is Einstein s equation? and R ab = e[ 1 2 ged ( a g bd + b g ad d g ab

More information

Friedman Robertson Walker Cosmological models: A study

Friedman Robertson Walker Cosmological models: A study International Journal of Mathematics and Physical Sciences esearch ISSN 348-5736 (Online) Vol., Issue, pp: (7-86), Month: October 14 March 15, Available at: www.researchpublish.com Friedman obertson Walker

More information

STRING COSMOLOGICAL MODELS IN BIANCHI TYPE-III SPACE-TIME WITH BULK VISCOSITY AND Λ TERM

STRING COSMOLOGICAL MODELS IN BIANCHI TYPE-III SPACE-TIME WITH BULK VISCOSITY AND Λ TERM Jan. 05. Vol. 6. No. 0 0-05 ES & F. ll rights reserved ISSN05-869 STIN OSMOLOIL MODELS IN BINHI TYPE-III SPE-TIME WITH BULK VISOSITY ND Λ TEM PEETI SONI SPN SHIMLI search Scholar Department of Mathematics

More information

Gravitational collapse and the vacuum energy

Gravitational collapse and the vacuum energy Journal of Physics: Conference Series OPEN ACCESS Gravitational collapse and the vacuum energy To cite this article: M Campos 2014 J. Phys.: Conf. Ser. 496 012021 View the article online for updates and

More information

Five Dimensional Bianchi Type V I 0 Dark Energy Cosmological Model in General Relativity

Five Dimensional Bianchi Type V I 0 Dark Energy Cosmological Model in General Relativity The African Review of Physics (014) 9:001 77 Five Dimensional Bianchi Type I 0 Dark Energy Cosmological Model in General Relativity B. Mishra 1, and S. K. Biswal Department of Mathematics, Birla Institute

More information

Reconstructed standard model of cosmology in the Earth-related coordinate system

Reconstructed standard model of cosmology in the Earth-related coordinate system Reconstructed standard model of cosmology in the Earth-related coordinate system Jian-Miin Liu Department of Physics, Nanjing University Nanjing, The People s Republic of China On leave. E-mail: liu@phys.uri.edu

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

General Relativity Lecture 20

General Relativity Lecture 20 General Relativity Lecture 20 1 General relativity General relativity is the classical (not quantum mechanical) theory of gravitation. As the gravitational interaction is a result of the structure of space-time,

More information

Canadian Journal of Physics. FLRW Cosmology of Induced Dark Energy Model and Open Universe

Canadian Journal of Physics. FLRW Cosmology of Induced Dark Energy Model and Open Universe Canadian Journal of Physics FLRW Cosmology of Induced Dark Energy Model and Open Universe Journal: Canadian Journal of Physics Manuscript ID cjp-2016-0827.r3 Manuscript Type: Article Date Submitted by

More information

SOME LRS BIANCHI TYPE-I COSMOLOGICAL MODELS WITH ZERO-MASS SCALAR FIELD

SOME LRS BIANCHI TYPE-I COSMOLOGICAL MODELS WITH ZERO-MASS SCALAR FIELD SOME LRS BIANCHI TYPE-I COSMOLOGICAL MODELS WITH ZERO-MASS SCALAR FIELD By Purushottam R.B.S. Yadav Manish Kumar Deptt. of Mathematics P.G. Deptt. of Mathematics P.G. Deptt. of Mathematics Nalanda College

More information

Realistic Decelerating Cosmology and the Return to Contraction

Realistic Decelerating Cosmology and the Return to Contraction Realistic Decelerating Cosmology and the Return to Contraction N.S. Baaklini nsbqft@aol.com http://www.vixra.org/author/n s baaklini Abstract For cosmological theory without the bizarre vacuum-driven acceleration,

More information

LRS Bianchi Type I Cosmological Model with Bulk Viscosity in Lyra Geometry

LRS Bianchi Type I Cosmological Model with Bulk Viscosity in Lyra Geometry Bulg. J. Phys. 4 (5 4 5 LRS Bianchi Type I Cosmological Model with Bulk Viscosity in Lyra Geometry S.P. Kandalkar, S. Samdurkar Department of Mathematics, Govt. Vidarbha Institute of Science & Humanities,

More information

Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez Ballester theory of gravitation

Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez Ballester theory of gravitation Pramana J. Phys. (207) 88: 8 DOI 0.007/s204-06-7-4 c Indian Academy of Sciences Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez Ballester theory of gravitation MVERMA,

More information

GENERAL RELATIVISTIC SINGULARITY-FREE COSMOLOGICAL MODEL

GENERAL RELATIVISTIC SINGULARITY-FREE COSMOLOGICAL MODEL GENERAL RELATIVISTIC SINGULARITY-FREE COSMOLOGICAL MODEL arxiv:0904.3141v2 [physics.gen-ph] 16 Aug 2009 Marcelo Samuel Berman 1 1 Instituto Albert Einstein / Latinamerica - Av. Candido Hartmann, 575 -

More information

International Journal of Applied and Universal Research ISSN No: Volume III, Issue II, Mar-Apr Available online at:

International Journal of Applied and Universal Research ISSN No: Volume III, Issue II, Mar-Apr Available online at: BIANCHI TYPE III ELECTRO MAGNETIZED COSMOLOGICAL MODEL WITH NAMBU STRINGS IN GENERAL THEORY OF RELATIVITY R.K.Dubey 1, Anil Saini 2, Neelam Yadav 3 1 Department of Mathematics, Govt. SKN PG College Mauganj

More information

Geometrical models for spheroidal cosmological voids

Geometrical models for spheroidal cosmological voids Geometrical models for spheroidal cosmological voids talk by: Osvaldo M. Moreschi collaborator: Ezequiel Boero FaMAF, Universidad Nacional de Córdoba, Instituto de Física Enrique Gaviola (IFEG), CONICET,

More information

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases:

A A + B. ra + A + 1. We now want to solve the Einstein equations in the following cases: Lecture 29: Cosmology Cosmology Reading: Weinberg, Ch A metric tensor appropriate to infalling matter In general (see, eg, Weinberg, Ch ) we may write a spherically symmetric, time-dependent metric in

More information

Cosmology (Cont.) Lecture 19

Cosmology (Cont.) Lecture 19 Cosmology (Cont.) Lecture 19 1 General relativity General relativity is the classical theory of gravitation, and as the gravitational interaction is due to the structure of space-time, the mathematical

More information

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth Observational evidence and cosmological constant Kazuya Koyama University of Portsmouth Basic assumptions (1) Isotropy and homogeneity Isotropy CMB fluctuation ESA Planck T 5 10 T Homogeneity galaxy distribution

More information

Bianchi Type-VI0Dark Energy Cosmological Models in General Relativity

Bianchi Type-VI0Dark Energy Cosmological Models in General Relativity Global Journal of Science Frontier Research Mathematics and Decision Sciences Volume 12 Issue 12 Version 1.0 Type : Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

Bianchi Type VI0 Inflationary Universe with Constant Deceleration Parameter and Flat Potential in General Relativity

Bianchi Type VI0 Inflationary Universe with Constant Deceleration Parameter and Flat Potential in General Relativity Advances in Astrophysics, Vol., No., May 7 https://dx.doi.org/.66/adap.7. 67 Bianchi ype VI Inflationary Universe with Constant Deceleration Parameter and Flat Potential in General Relativity Raj Bali

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field Cosmology ASTR 2120 Sarazin Hubble Ultra-Deep Field Cosmology - Da Facts! 1) Big Universe of Galaxies 2) Sky is Dark at Night 3) Isotropy of Universe Cosmological Principle = Universe Homogeneous 4) Hubble

More information

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Decaying Dark Matter, Bulk Viscosity, and Dark Energy Decaying Dark Matter, Bulk Viscosity, and Dark Energy Dallas, SMU; April 5, 2010 Outline Outline Standard Views Dark Matter Standard Views of Dark Energy Alternative Views of Dark Energy/Dark Matter Dark

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology João G. Rosa joao.rosa@ua.pt http://gravitation.web.ua.pt/cosmo LECTURE 2 - Newtonian cosmology I As a first approach to the Hot Big Bang model, in this lecture we will consider

More information

arxiv:gr-qc/ v1 1 Nov 2002

arxiv:gr-qc/ v1 1 Nov 2002 International Journal of Modern Physics D, c World Scientific Publishing Company Vol. 0, No. 0 (2002 000 000 PLANE-SYMMETRIC INHOMOGENEOUS BULK VISCOUS COSMOLOGICAL MODELS WITH VARIABLEΛ arxiv:gr-qc/0211002v1

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

New Blackhole Theorem and its Applications to Cosmology and Astrophysics

New Blackhole Theorem and its Applications to Cosmology and Astrophysics New Blackhole Theorem and its Applications to Cosmology and Astrophysics I. New Blackhole Theorem II. Structure of the Universe III. New Law of Gravity IV. PID-Cosmological Model Tian Ma, Shouhong Wang

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

How Inflation Is Used To Resolve the Flatness Problem. September 9, To Tai-Ping Liu on the occasion of his sixtieth birthday.

How Inflation Is Used To Resolve the Flatness Problem. September 9, To Tai-Ping Liu on the occasion of his sixtieth birthday. How Inflation Is Used To Resolve the Flatness Problem September 9, 005 Joel Smoller Blake T emple To Tai-Ping Liu on the occasion of his sixtieth birthday. Abstract We give a mathematically rigorous exposition

More information

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in modified gravity Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] HORIBA INTERNATIONAL CONFERENCE COSMO/CosPA 2010 Hongo campus (Koshiba Hall), The University

More information

The Unifying Dark Fluid Model

The Unifying Dark Fluid Model The Model Centre de Recherche Astrophysique de Lyon Invisible Universe Paris July 2nd, 2009 s Dark Matter Problem Dark Matter Dark Energy Dark Fluids? Different scales involved Galactic scale Galaxy Rotation

More information

Anisotropic Dark Energy Bianchi Type III Cosmological Models in Brans Dicke Theory of Gravity

Anisotropic Dark Energy Bianchi Type III Cosmological Models in Brans Dicke Theory of Gravity arxiv:106.0391v1 [gr-qc] Jun 01 Anisotropic Dark Energy Bianchi Type III Cosmological Models in Brans Dicke Theory of Gravity M. Farasat Shamir and Akhlaq Ahmad Bhatti Department of Sciences and Humanities,

More information

Hypersurface Homogeneous Space Time with Anisotropic Dark Energy in Brans Dicke Theory of Gravitation

Hypersurface Homogeneous Space Time with Anisotropic Dark Energy in Brans Dicke Theory of Gravitation Commun. Theor. Phys. 62 (204 768 774 Vol. 62, No. 5, November, 204 Hypersurface Homogeneous Space Time with Anisotropic Dark Energy in Brans Dicke Theory of Gravitation S.D. Katore,, M.M. Sancheti, S.P.

More information

Past, Present and Future of the Expanding Universe

Past, Present and Future of the Expanding Universe Past, Present and Future of the Expanding University of Osnabrück, Germany Talk presented at TEDA College on the occasion of its Tenth Anniversary October 17, 2010 Past, Present and Future of the Expanding

More information

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution.

Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating Dyon Solution. IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 10, Issue 1 Ver. III. (Feb. 2014), PP 46-52 Effect of Monopole Field on the Non-Spherical Gravitational Collapse of Radiating

More information

Some Dynamical Effects of the Cosmological Constant

Some Dynamical Effects of the Cosmological Constant Some Dynamical Effects of the Cosmological Constant M. Axenides, E. G. Floratos and L. Perivolaropoulos Institute of Nuclear Physics, National Centre for Scientific Research Demokritos N.C.S.R., Athens,

More information

Astronomy, Astrophysics, and Cosmology

Astronomy, Astrophysics, and Cosmology Astronomy, Astrophysics, and Cosmology Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI March 15, 2016 arxiv:0706.1988 L. A. Anchordoqui (CUNY)

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 12/20/15 (11:00-11:30) Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 12/20/15 (11:00-11:30)

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 7 Oct. 30, 2015 Today Relativistic Cosmology Dark Side of the Universe I: Dark Matter Assignments This week: read Hawley and

More information

arxiv:astro-ph/ v3 22 Jul 2013

arxiv:astro-ph/ v3 22 Jul 2013 On a c(t)-modified Friedman-Lemaitre-Robertson-Walker Universe arxiv:astro-ph/0610610v3 22 Jul 2013 Robert C. Fletcher Bell Telephone Laboratories (ret) Murray Hill, New Jersey. Abstract This paper presents

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity

A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity Bulg. J. Phys. 37 (2010) 144 151 A Magnetized Kantowski-Sachs Inflationary Universe in General Relativity S.D. Katore PG Department of Mathematics, SGB Amravati University, Amravati, India Received 10

More information

Kinetic Theory of Dark Energy within General Relativity

Kinetic Theory of Dark Energy within General Relativity Kinetic Theory of Dark Energy within General Relativity Author: Nikola Perkovic* percestyler@gmail.com University of Novi Sad, Faculty of Sciences, Institute of Physics and Mathematics Abstract: This paper

More information

Steady-State Cosmology in the Yilmaz Theory of Gravitation

Steady-State Cosmology in the Yilmaz Theory of Gravitation Steady-State Cosmology in the Yilmaz Theory of ravitation Abstract H. E. Puthoff Institute for Advanced Studies at Austin 43 W. Braker Ln., Suite 3 Austin, Texas 78759 Yilmaz has proposed a modification

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

COSMOLOGICAL RELATIVITY: A NEW THEORY OF COSMOLOGY. Silvia Behar and Moshe Carmeli

COSMOLOGICAL RELATIVITY: A NEW THEORY OF COSMOLOGY. Silvia Behar and Moshe Carmeli COSMOLOGICAL RELATIVITY: A NEW THEORY OF COSMOLOGY Silvia Behar and Moshe Carmeli Department of Physics, Ben Gurion University, Beer Sheva 84105, Israel (E-mail: carmelim@bgumail.bgu.ac.il silviab@bgumail.bgu.ac.il)

More information

Evolution of holographic dark energy with interaction term Q Hρ de and generalized second law

Evolution of holographic dark energy with interaction term Q Hρ de and generalized second law PRAMANA c Indian Academy of Sciences Vol. 86, No. 3 journal of March 016 physics pp. 701 71 Evolution of holographic dark energy with interaction term Q Hρ de and generalized second law P PRASEETHA and

More information

Lyra black holes. Abstract

Lyra black holes. Abstract Lyra black holes F.Rahaman, A.Ghosh and M.Kalam arxiv:gr-qc/0612042 v1 7 Dec 2006 Abstract Long ago, since 1951, Lyra proposed a modification of Riemannian geometry. Based on the Lyra s modification on

More information

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1)

NEWTONIAN COSMOLOGY. Figure 2.1: All observers see galaxies expanding with the same Hubble law. v A = H 0 r A (2.1) M. Pettini: Introduction to Cosmology Lecture 2 NEWTONIAN COSMOLOGY The equations that describe the time evolution of an expanding universe which is homogeneous and isotropic can be deduced from Newtonian

More information

Non Linear Dynamics in Einstein-Friedman Equations

Non Linear Dynamics in Einstein-Friedman Equations Non Linear Dynamics in Einstein-Friedman Equations Usman Naseer 2012-10-0054 May 15, 2011 Abstract Einstein-Friedman equations for the dynamics of a spatially homogenous and isotropic universe are rederived

More information

Holographic unification of dark matter and dark energy

Holographic unification of dark matter and dark energy Holographic unification of dark matter and dark energy arxiv:1101.5033v4 [hep-th] 2 Feb 2011 L.N. Granda Departamento de Fisica, Universidad del Valle, A.A. 25360 Cali, Colombia Departamento de Fisica,

More information

Quintessence and scalar dark matter in the Universe

Quintessence and scalar dark matter in the Universe Class. Quantum Grav. 17 (2000) L75 L81. Printed in the UK PII: S0264-9381(00)50639-X LETTER TO THE EDITOR Quintessence and scalar dark matter in the Universe Tonatiuh Matos and L Arturo Ureña-López Departamento

More information

with Matter and Radiation By: Michael Solway

with Matter and Radiation By: Michael Solway Interactions of Dark Energy with Matter and Radiation By: Michael Solway Advisor: Professor Mike Berger What is Dark Energy? Dark energy is the energy needed to explain the observed accelerated expansion

More information

arxiv: v1 [gr-qc] 16 Aug 2011

arxiv: v1 [gr-qc] 16 Aug 2011 Massless particle creation in a f(r) accelerating universe S. H. Pereira and J. C. Z. Aguilar Universidade Federal de Itajubá, Campus Itabira Rua São Paulo, 377 35900-373, Itabira, MG, Brazil arxiv:1108.3346v1

More information

Ta-Pei Cheng PCNY 9/16/2011

Ta-Pei Cheng PCNY 9/16/2011 PCNY 9/16/2011 Ta-Pei Cheng For a more quantitative discussion, see Relativity, Gravitation & Cosmology: A Basic Introduction (Oxford Univ Press) 2 nd ed. (2010) dark matter & dark energy Astronomical

More information

Magnetized Anisotropic Bianchi Type-VI Cosmological Model Containing Dark Energy

Magnetized Anisotropic Bianchi Type-VI Cosmological Model Containing Dark Energy IOSR Journal of pplied Physics (IOSR-JP) e-issn: 78-486Volume 0, Issue Ver II (Jan eb 08), PP 3-35 wwwiosrjournalsorg Magnetized nisotropic Bianchi Type-VI Cosmological Model Containing Dark Energy Mukunda

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

Static Hydrodynamic Equation in 4d BSBM Theory

Static Hydrodynamic Equation in 4d BSBM Theory Advanced Studies in Theoretical Physics Vol. 8, 2014, no. 23, 1015-1020 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/astp.2014.49120 Static Hydrodynamic Equation in 4d BSBM Theory Azrul S. K.

More information

Bianchi Type-VI Bulk Viscous Fluid String Cosmological Model in General Relativity

Bianchi Type-VI Bulk Viscous Fluid String Cosmological Model in General Relativity Bulg. J. Phys. 38 2011 14 14 Bianchi Type-VI Bulk Viscous Fluid String Cosmological Model in General Relativity S.P. Kandalkar 1, P.P. Khade 2, S.P. Gawande 1 1 Department of Mathematics, Government Vidarbha

More information

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]]

Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv: [gr-qc]] Thermodynamics in Modified Gravity Theories Reference: Physics Letters B 688, 101 (2010) [e-print arxiv:0909.2159 [gr-qc]] 2nd International Workshop on Dark Matter, Dark Energy and Matter-antimatter Asymmetry

More information

arxiv:gr-qc/ v1 22 May 2006

arxiv:gr-qc/ v1 22 May 2006 1 Can inhomogeneities accelerate the cosmic volume expansion? 1 Tomohiro Kai, 1 Hiroshi Kozaki, 1 Ken-ichi Nakao, 2 Yasusada Nambu and 1 Chul-Moon Yoo arxiv:gr-qc/0605120v1 22 May 2006 1 Department of

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

New exact cosmological solutions to Einstein s gravity minimally coupled to a Quintessence field

New exact cosmological solutions to Einstein s gravity minimally coupled to a Quintessence field New exact cosmological solutions to Einstein s gravity minimally coupled to a Quintessence field Olga Arias, Tame Gonzalez and Israel Quiros Physics Department. Las Villas Central University. Santa Clara

More information

Holographic Ricci dark energy and generalized second law

Holographic Ricci dark energy and generalized second law Holographic Ricci dark energy and generalized second law arxiv:1311.4661v2 [gr-qc] 20 Nov 2013 Titus K Mathew and Praseetha P Department of Physics, Cochin University of Science and Technology, Kochi-682022,

More information

arxiv: v2 [gr-qc] 25 Jan 2010

arxiv: v2 [gr-qc] 25 Jan 2010 Astrophysics and Space Science DOI 10.1007/s - - - de Sitter expansion with anisotropic fluid in Bianchi type-i space-time Özgür Akarsu 1 Can Battal Kılınç arxiv:1001.0550v [gr-qc] 5 Jan 010 c Springer-Verlag

More information

Hideyoshi Arakida, JGRG 22(2012) the cosmological lens equation RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22

Hideyoshi Arakida, JGRG 22(2012) the cosmological lens equation RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 Hideyoshi Arakida, JGRG 22202)328 Effect of the cosmological constant on the bending of light and the cosmological lens equation RESCEU SYMPOSIUM ON GENERAL RELATIVITY AND GRAVITATION JGRG 22 November

More information

Chapter - 3. Analytical solutions of the evolution of mass of black holes and. worm holes immersed in a Generalized Chaplygin Gas model

Chapter - 3. Analytical solutions of the evolution of mass of black holes and. worm holes immersed in a Generalized Chaplygin Gas model Chapter - 3 Analytical solutions of the evolution of mass of black holes and worm holes immersed in a Generalized Chaplygin Gas model (Published in International Journal of Pure and Applied Sciences and

More information

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle

The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle The FLRW cosmological model revisited: relation of the local time with th e local curvature and consequences on the Heisenberg uncertainty principle Nathalie Olivi-Tran, Paul M Gauthier To cite this version:

More information

Amplification of gravitational waves during inflation in Brans-Dicke Theory (Revised Version)

Amplification of gravitational waves during inflation in Brans-Dicke Theory (Revised Version) arxiv:gr-qc/0111100v2 14 Dec 2001 Amplification of gravitational waves during inflation in Brans-Dicke Theory (Revised Version) Marcelo S.Berman (1) and Luis A.Trevisan (2) (1) Tecpar-Grupo de Projetos

More information

arxiv: v2 [gr-qc] 7 May 2013

arxiv: v2 [gr-qc] 7 May 2013 FRW in cosmological self-creation theory Juan M. Ramírez 1 and J. Socorro 1, 1 Departamento de Física, DCeI, Universidad de Guanajuato-Campus León, C.P. 37150, León, Guanajuato, México Departamento de

More information

Some Bianchi Type Cosmological Models in f(r) Gravity

Some Bianchi Type Cosmological Models in f(r) Gravity arxiv:1006.4249v1 [gr-qc] 22 Jun 2010 Some Bianchi Type Cosmological Models in f(r) Gravity M. arasat Shamir Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590, Pakistan.

More information

Quantum gravity and aspects of relativity

Quantum gravity and aspects of relativity Quantum gravity and aspects of relativity Branislav Nikolic Institute for Theoretical Physics, University of Cologne Bonn-Cologne Graduate School in Physics and Astronomy who are we??? Gravitation and

More information

arxiv: v1 [physics.gen-ph] 29 May 2014

arxiv: v1 [physics.gen-ph] 29 May 2014 Noname manuscript No. will be inserted by the editor) Can negative mass be considered in General Relativity? Jean-Pierre Petit Gilles dagostini arxiv:1408.451v1 [physics.gen-ph] 9 May 014 Received: date

More information

Is the Rate of Expansion of Our Universe. Really Accelerating?

Is the Rate of Expansion of Our Universe. Really Accelerating? Adv. Studies Theor. Phys., Vol. 5, 2011, no. 13, 633-638 Is the Rate of Expansion of Our Universe Really Accelerating? Nathalie Olivi-Tran 1,2 1 Laboratoire Charles Coulomb CNRS, UMR 5221, place Eugene

More information

Cosmic Strings in Dilaton Gravity and in Brans-Dicke Theory

Cosmic Strings in Dilaton Gravity and in Brans-Dicke Theory Bulg. J. Phys. 32 (2005) 257 262 Cosmic Strings in Dilaton Gravity and in Brans-Dicke Theory F. Rahaman, K. Gayen and A. Ghosh Dept. of Mathematics, Jadavpur University, Kolkata-700032, India Received

More information

One Hundred Years of the Cosmological Constant The Big Bang: Fact or Fiction? Cormac O Raifeartaigh FRAS

One Hundred Years of the Cosmological Constant The Big Bang: Fact or Fiction? Cormac O Raifeartaigh FRAS One Hundred Years of the Cosmological Constant The Big Bang: Fact or Fiction? Cormac O Raifeartaigh FRAS IHOM Conference Dublin, June 9 th 2017 Overview I Introducing the cosmological constant Einstein

More information

Examining the Viability of Phantom Dark Energy

Examining the Viability of Phantom Dark Energy Examining the Viability of Phantom Dark Energy Kevin J. Ludwick LaGrange College 11/12/16 Kevin J. Ludwick (LaGrange College) Examining the Viability of Phantom Dark Energy 11/12/16 1 / 28 Outline 1 Overview

More information