DIRECT CALCULATION OF k-generalized FIBONACCI NUiBERS

Size: px
Start display at page:

Download "DIRECT CALCULATION OF k-generalized FIBONACCI NUiBERS"

Transcription

1 DIRECT CALCULATION OF -GENERALIZED FIBONACCI NUiBERS IVAN FLORES Broolyn, New Yor SUMMARY A formula i s developed for direct calculation of any -generakzed F i b - onacci number u., s K without iteration. DEFINITIONS The ordinary Fibonacci number u. * is defined by () V ; u. = u. + u. (i > ) * ]-l, J- U ~ 7 with the additional conditions usually imposed () u. = ; u U =. The -generalized Fibonacci number u., i s defined a s the sum of i t s p r e d e c e s s o r s ( ' u j, U j~i s U j- # U j- s i=j- together with the initial conditions () u j j = ( L j L - ); V l j = A table of u.,» K from = to 7 and j = to is found in Table. 9

2 6 DIRECT CALCULATION OF -GENERALIZED [Oct i 6 7 P Table Fibonacci Numbers u., for Various Values of i and ] TERM RATIO The ey to direct calculation is the existence of a fixed ratio r, between successive u.,! s so that in the limit we have () lim ]+i ; n >oo u., If such a ratio can be founds an approximate calculation is simple. Vorob'ev [s] has shown that for =, this requires the solution of (6) q^ = q^" + q^~ which for q f reduces to (7) q - q - = for which the roots are.() r i = Lz^l * -.6 and r = ^ y ^ - *.6, where s& means "approximately equal to* " If f is any Fibonacci sequence obeying the difference equation f f n " f n-i = t h e n f n h a s t h e f o r m < s e e E ]* (9) f n = b i r i + b r

3 967] FIBONACCI NUMBERS 6 Since ( r ^ <.7, jr^j < \ 9 so that r p < l / n e Hence there exists an such that for all n > N s u n is the greatest integer to b rf, and we write N () u js * V > N) To evaluate the constants h t and b, we use the initial conditions (ID b l + b = u j = h T + b r = u l s =, which yield K - () U bi = V :, b = V An exact expression for u. is hence the familiar Binet form () u = hl V H-(^)] GENERALIZATION To find an expression for the -generalized Fibonacci n u m b e r s, let us first see solutions to () which form a geometric p r o g r e s s i o n say aq. Then () leads to a general form of (6), () Thus () J J- j ~, j - aq J = aq J + aq J + + aq J j -, -i aq (q - q q - ) =. Since we a r e looing for solutions which a r e not identically zero,, a s s u m e a ^ and q f o Therefore we see we can (6) -i q - q - q - =

4 6 DIRECT CALCULATION OF -GENERALIZED [Oct.,th This degree equation has complex roots, say r t ^, r ^, r,,. Now Miles [j has shown that these roots are distinct, that all but one of them lie within the unit circle in the complex plane, and that the remaining root is real and lies between and. Hence with a suitable choice of subscripts we may write (7) Kl-< x (^ ^ - x ) > () * r, * Since the roots are distinct, the Vandermond determinant (9) r i, i, r, r, -i r l, -i r, f, r.,. rf,. -i r, and Jese fj has shown that the general solution can be written () u. *-* I I, i = i j, E b - r - To evaluate the constants b., we use the initial conditions i () % Vii = (m = ' ',, ' - ) > = -i, i=l? V?-- = This system has a unique solution by (9) which can be found using Cramer's rule. This yields

5 967] FIBONACCI NUMBERS < ) b i - n < r i, ' V r l QF= so that () becomes () v = M (r i^ - W W i Recalling (7) and (), we remar that as j becomes large ri, becomes the dominant term in (), so that as before there exists an N such that for all j > N, u.. is the nearest integer to b, rj",. We may therefore write () u j ; * b (j > N). It follows from () that u. () lim - C M = r. u.,, J-> J, and more generally (6) lim! & = r m APPROXIMATIONS We first note that as >oo the sequence u.,, approaches the geo- J-K,K metric progression of powers of two,,,,, 6,, 6, as can be seen from Table. It follows that

6 6 DIRECT CALCULATION OF -GENERALIZED [Oct. (7) lim r =. ^oo ' See Table for calculated values of the principal root r., for = to 9, which gives striing verification of (7). Table Fibc onacci Roots r F r o m () we get then () lim lim - > o o j-9>oo u, *' K =, U j j which was stated in an equivalent form by P. F. Byrd [ l l. We shall now show - that b, is approximately r,, in the sense that

7 967 (9) FIBONACCI NUMBERS lim b. / r ". =., ^ /, 6 To prove (9), first recall that ( r, ~ ^ ^ " ( r, - r - i, ) Since -i x - x x - = (x - r l j ) (x - r ),' ' and f(x) = ( x - l ) ( x - x " x - ) = x + - x + l = ( x - l ) ( x - r i ) -. - ( x - r.. ),,' we find., f ' ( r ) ) = ( + l ) r ^ - r = ( r ^ - ihr^ - r > ) -. ( r ^ - r _ > ) Hence, " ( + i ) r ) - r ; from which (9) follows, since r, + - r fe = -. Then for sufficiently large j and we may write () u j j * r. Call the approximation for u.. in () u!,. Then using (), the e r r o r committed by this approximation is () w., =.. - ul, j, j, j s - i i = i By (7) Ir., < for L i -, so the triangle inequality shows

8 66 () DIRECT CALCULATION OF -GENERALIZED FIBONACCI NUMBERS -i. -i w., ^ E M l r - i I < E b- j ~ j I i i,.tj I i Oct. Note that the first inequality in () shows that () lim w.. =, J->oo J so that for fixed the e r r o r tends to zero as j becomes large, giving formal justification to (). EXTENSION In the near future tables of b, will be p r e p a r e d by computers. These, together with r,, will provide an excellent approximation for u., using an analytic procedure. The author e x p r e s s e s his appreciation to D a A. Lind and V Eo Hoggatt, J r., for helping in p r e p a r i n g this paper. REFERENCES. P. F. Byrd, Problem H-6, Fibonacci Quarterly, (96),. Solution, (967).. Mar Feinberg, "New Slants, " Fibonacci Quarterly, (96), -7.. Mar Feinberg, "Fibonacci-Tribonacci, n Fibonacci Quarterly, (96), No., 7-7,. J a m e s A. Jese, "Linear R e c u r r e n c e Relations, P a r t I, " Fibonacci Quarterly, (96), No., E. P. Miles, J r., "Generalized Fibonacci Numbers and Associated M a t r i c e s, " American Math. Monthly, 67(96), N. N. Vorob'ev, Fibonacci Numbers, Blaisdell, New Yor, 96. * * *

COMPOSITIONS AND FIBONACCI NUMBERS

COMPOSITIONS AND FIBONACCI NUMBERS COMPOSITIONS AND FIBONACCI NUMBERS V. E. HOGGATT, JR., and D. A. LIND San Jose State College, San Jose, California and University of Cambridge, England 1, INTRODUCTION A composition of n is an ordered

More information

GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS. V.E.Hoggatt^Jro. San Jose State College, San Jose, Calif e 1. INTRODUCTION

GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS. V.E.Hoggatt^Jro. San Jose State College, San Jose, Calif e 1. INTRODUCTION GENERALIZED RABBITS FOR GENERALIZED FIBONACCI NUMBERS V.E.Hoggatt^ro San ose State College, San ose, Calif e 1. INTRODUCTION The original Fibonacci number sequence arose from an academic rabbit production

More information

f = 0 (n < 0), fj = 1, f = J2 f. (n > 1).

f = 0 (n < 0), fj = 1, f = J2 f. (n > 1). GENERALIZED FIBONACCI KSEQUENCES HYMAM GABAI York College (CUNY) and University of Illinois (UICSM) 1* INTRODUCTION For k > 2, the Fibonacci ksequence F(k) maybe defined recursively by n l f = 0 (n < 0),

More information

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon

DYNAMICS OF THE ZEROS OF FIBONACCI POLYNOMIALS M. X. He Nova Southeastern University, Fort Lauderdale, FL. D, Simon M. X. He Nova Southeastern University, Fort Lauderdale, FL D, Simon Nova Southeastern University, Fort Lauderdale, FL P. E. Ricci Universita degli Studi di Roma "La Sapienza," Rome, Italy (Submitted December

More information

GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORFS THEOREM 1. INTRODUCTION

GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORFS THEOREM 1. INTRODUCTION GENERALIZED FIBONACCI POLYNOMIALS AND ZECKENDORFS THEOREM VERIER E. HOGGATT, Jr., and MARJORSE BtCKNELL San Jose State University, San Jose, California 1. INTRODUCTION The Zeckendorf Theorem states that

More information

Winter 2014 Practice Final 3/21/14 Student ID

Winter 2014 Practice Final 3/21/14 Student ID Math 4C Winter 2014 Practice Final 3/21/14 Name (Print): Student ID This exam contains 5 pages (including this cover page) and 20 problems. Check to see if any pages are missing. Enter all requested information

More information

Infinite arctangent sums involving Fibonacci and Lucas numbers

Infinite arctangent sums involving Fibonacci and Lucas numbers Notes on Number Theory and Discrete Mathematics ISSN 30 3 Vol., 0, No., 6 66 Infinite arctangent sums involving Fibonacci and Lucas numbers Kunle Adegoke Department of Physics, Obafemi Awolowo University

More information

Infinite arctangent sums involving Fibonacci and Lucas numbers

Infinite arctangent sums involving Fibonacci and Lucas numbers Infinite arctangent sums involving Fibonacci and Lucas numbers Kunle Adegoke Department of Physics and Engineering Physics, Obafemi Awolowo University, Ile-Ife, 0005 Nigeria Saturday 3 rd July, 06, 6:43

More information

F. T. HOWARD AND CURTIS COOPER

F. T. HOWARD AND CURTIS COOPER SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 0, if 0 n < r 1; G n = 1, if n = r 1; G

More information

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS

A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS Applicable Analysis and Discrete Mathematics, 1 (27, 371 385. Available electronically at http://pefmath.etf.bg.ac.yu A LINEAR BINOMIAL RECURRENCE AND THE BELL NUMBERS AND POLYNOMIALS H. W. Gould, Jocelyn

More information

RUSSELL JAY HENDEL. F i+1.

RUSSELL JAY HENDEL. F i+1. RUSSELL JAY HENDEL Abstract. Kimberling defines the function κ(n) = n 2 α n nα, and presents conjectures and open problems. We present three main theorems. The theorems provide quick, effectively computable,

More information

(1.1) A j y ( t + j) = 9

(1.1) A j y ( t + j) = 9 LIEAR HOOGEEOUS DIFFERECE EQUATIOS ROBERT.GIULI San Jose State College, San Jose, California 1. LIEAE HOOGEEOUS DIFFERECE EQUATIOS Since Its founding, this quarterly has essentially devoted its effort

More information

MACMAHON S PARTITION ANALYSIS IX: k-gon PARTITIONS

MACMAHON S PARTITION ANALYSIS IX: k-gon PARTITIONS MACMAHON S PARTITION ANALYSIS IX: -GON PARTITIONS GEORGE E. ANDREWS, PETER PAULE, AND AXEL RIESE Dedicated to George Szeeres on the occasion of his 90th birthday Abstract. MacMahon devoted a significant

More information

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible.

Math 320: Real Analysis MWF 1pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Math 320: Real Analysis MWF pm, Campion Hall 302 Homework 8 Solutions Please write neatly, and in complete sentences when possible. Do the following problems from the book: 4.3.5, 4.3.7, 4.3.8, 4.3.9,

More information

Summation of certain infinite Fibonacci related series

Summation of certain infinite Fibonacci related series arxiv:52.09033v (30 Dec 205) Summation of certain infinite Fibonacci related series Bakir Farhi Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes Université de Bejaia 06000 Bejaia Algeria

More information

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA

GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA GOLDEN SEQUENCES OF MATRICES WITH APPLICATIONS TO FIBONACCI ALGEBRA JOSEPH ERCOLANO Baruch College, CUNY, New York, New York 10010 1. INTRODUCTION As is well known, the problem of finding a sequence of

More information

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers.

MATH 324 Summer 2011 Elementary Number Theory. Notes on Mathematical Induction. Recall the following axiom for the set of integers. MATH 4 Summer 011 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

1 Examples of Weak Induction

1 Examples of Weak Induction More About Mathematical Induction Mathematical induction is designed for proving that a statement holds for all nonnegative integers (or integers beyond an initial one). Here are some extra examples of

More information

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS JENNY WANG Abstract. In this paper, we study field extensions obtained by polynomial rings and maximal ideals in order to determine whether solutions

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

EVERY POSITIVE K-BONACCI-LIKE SEQUENCE EVENTUALLY AGREES WITH A ROW OF THE K-ZECKENDORF ARRAY

EVERY POSITIVE K-BONACCI-LIKE SEQUENCE EVENTUALLY AGREES WITH A ROW OF THE K-ZECKENDORF ARRAY EVERY POSITIVE K-BONACCI-LIKE SEQUENCE EVENTUALLY AGREES WITH A ROW OF THE K-ZECKENDORF ARRAY PETER G. ANDERSON AND CURTIS COOPER Abstract. For k 2, a fixed integer, we work with the k-bonacci sequence,

More information

Properties of the stress tensor

Properties of the stress tensor Appendix C Properties of the stress tensor Some of the basic properties of the stress tensor and traction vector are reviewed in the following. C.1 The traction vector Let us assume that the state of stress

More information

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002)

Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian , China (Submitted June 2002) SELF-INVERSE SEQUENCES RELATED TO A BINOMIAL INVERSE PAIR Yi Wang Department of Applied Mathematics, Dalian University of Technology, Dalian 116024, China (Submitted June 2002) 1 INTRODUCTION Pairs of

More information

Math 1050 Exam 2 Name. D) no vertical asymptotes

Math 1050 Exam 2 Name. D) no vertical asymptotes Math 050 Exam 2 Name Give the equation of the specified asymptote(s). 3x - 7 ) Vertical asymptote(s): f(x) = x2-5x - 4 A) x = -7, x = 2 B) x = 7, x = 7, x = -2 3 C)x = 7, x = -2 D) no vertical asymptotes

More information

From Calculus II: An infinite series is an expression of the form

From Calculus II: An infinite series is an expression of the form MATH 3333 INTERMEDIATE ANALYSIS BLECHER NOTES 75 8. Infinite series of numbers From Calculus II: An infinite series is an expression of the form = a m + a m+ + a m+2 + ( ) Let us call this expression (*).

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

DIFFERENCE EQUATIONS Renato M. Capocelli* Dipartimento di Informatica e Sistemtica Universita' di Roma "La Sapienza", Roma, Italy 00198

DIFFERENCE EQUATIONS Renato M. Capocelli* Dipartimento di Informatica e Sistemtica Universita' di Roma La Sapienza, Roma, Italy 00198 R O U N D I N G T H E S O L U T I O N S O F F I B O N A C C I - L I K E DIFFERENCE EQUATIONS Renato M. Capocelli* Dipartimento di Informatica e Sistemtica Universita' di Roma "La Sapienza", Roma, Italy

More information

THE ZECKENDORF ARRAY EQUALS THE WYTHOFF ARRAY

THE ZECKENDORF ARRAY EQUALS THE WYTHOFF ARRAY Clark Kimberllng University of Evansville, Evansville, IN 47722 (Submitted February 1993) 1. INTRODUCTION It is well known that every n in the set N of positive integers is uniquely a sum of nonconsecutive

More information

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION

EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION EQUATIONS WHOSE ROOTS ARE T I E nth POWERS OF T I E ROOTS OF A GIVEN CUBIC EQUATION N. A, DRAiMand MARJORIE BICKNELL Ventura, Calif, and Wilcox High School, Santa Clara, Calif. Given the cubic equation

More information

UNIT DETERMINANTS IN GENERALIZED PASCAL TRIANGLES

UNIT DETERMINANTS IN GENERALIZED PASCAL TRIANGLES UNI DEERMINANS IN GENERALIZED PASCAL RIANGLES MARJORf E BtCKNELL and V. E. HOGGA, JR. San Jose State University, San Jose, California here are many ways in which one can select a square array from Pascal's

More information

{~}) n -'R 1 {n, 3, X)RU, k, A) = {J (" J. j =0

{~}) n -'R 1 {n, 3, X)RU, k, A) = {J ( J. j =0 2l WEIGHTED STIRLING NUMBERS OF THE FIRST AND SECOND KIND II [Oct. 6. CONCLUSION We have proven a number-theoretical problem about a sequence, which is a computer-oriented type, but cannot be solved by

More information

1 Solving Algebraic Equations

1 Solving Algebraic Equations Arkansas Tech University MATH 1203: Trigonometry Dr. Marcel B. Finan 1 Solving Algebraic Equations This section illustrates the processes of solving linear and quadratic equations. The Geometry of Real

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Generalized Fibonacci Numbers and Blackwell s Renewal Theorem

Generalized Fibonacci Numbers and Blackwell s Renewal Theorem Generalized Fibonacci Numbers and Blackwell s Renewal Theorem arxiv:1012.5006v1 [math.pr] 22 Dec 2010 Sören Christensen Christian-Albrechts-Universität, Mathematisches Seminar, Kiel, Germany Abstract:

More information

1. INTRODUCTION. Figure 1: An ellipse with b < 0. are the image of the n th roots of unity under the mapping. n,j ) + (a n + b n ) (2) j=0

1. INTRODUCTION. Figure 1: An ellipse with b < 0. are the image of the n th roots of unity under the mapping. n,j ) + (a n + b n ) (2) j=0 PRODUCTS OF ELLIPTICAL CHORD LENGTHS AND THE FIBONACCI NUMBERS Thomas E. Price Department of Theoretical and Applied Mathematics, The University of Akron, Akron, OH 44325 e-mail: teprice@uakron.edu (Submitted

More information

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES*

CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES* CHOLESKY ALGORITHM MATRICES OF FIBONACCI TYPE AND PROPERTIES OF GENERALIZED SEQUENCES* Alwyn F. Horadam University of New England, Armidale, Australia Piero FilipponI Fondazione Ugo Bordoni, Rome, Italy

More information

2. Introduction to commutative rings (continued)

2. Introduction to commutative rings (continued) 2. Introduction to commutative rings (continued) 2.1. New examples of commutative rings. Recall that in the first lecture we defined the notions of commutative rings and field and gave some examples of

More information

SOME FORMULAE FOR THE FIBONACCI NUMBERS

SOME FORMULAE FOR THE FIBONACCI NUMBERS SOME FORMULAE FOR THE FIBONACCI NUMBERS Brian Curtin Department of Mathematics, University of South Florida, 4202 E Fowler Ave PHY4, Tampa, FL 33620 e-mail: bcurtin@mathusfedu Ena Salter Department of

More information

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations.

Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. 1. Give a geometric description of the set of points in space whose coordinates satisfy the given pair of equations. x + y = 5, z = 4 Choose the correct description. A. The circle with center (0,0, 4)

More information

On the possible quantities of Fibonacci numbers that occur in some type of intervals

On the possible quantities of Fibonacci numbers that occur in some type of intervals On the possible quantities of Fibonacci numbers that occur in some type of intervals arxiv:1508.02625v1 [math.nt] 11 Aug 2015 Bakir FARHI Laboratoire de Mathématiques appliquées Faculté des Sciences Exactes

More information

ATHS FC Math Department Al Ain Revision worksheet

ATHS FC Math Department Al Ain Revision worksheet ATHS FC Math Department Al Ain Revision worksheet Section Name ID Date Lesson Marks 3.3, 13.1 to 13.6, 5.1, 5.2, 5.3 Lesson 3.3 (Solving Systems of Inequalities by Graphing) Question: 1 Solve each system

More information

Area Formulas. Linear

Area Formulas. Linear Math Vocabulary and Formulas Approximate Area Arithmetic Sequences Average Rate of Change Axis of Symmetry Base Behavior of the Graph Bell Curve Bi-annually(with Compound Interest) Binomials Boundary Lines

More information

Section 11.1 Sequences

Section 11.1 Sequences Math 152 c Lynch 1 of 8 Section 11.1 Sequences A sequence is a list of numbers written in a definite order: a 1, a 2, a 3,..., a n,... Notation. The sequence {a 1, a 2, a 3,...} can also be written {a

More information

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as

1. Introduction Definition 1.1. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n } is defined as SOME IDENTITIES FOR r-fibonacci NUMBERS F. T. HOWARD AND CURTIS COOPER Abstract. Let r 1 be an integer. The r-generalized Fibonacci sequence {G n} is defined as 8 >< 0, if 0 n < r 1; G n = 1, if n = r

More information

arxiv: v1 [math.nt] 20 Sep 2018

arxiv: v1 [math.nt] 20 Sep 2018 Matrix Sequences of Tribonacci Tribonacci-Lucas Numbers arxiv:1809.07809v1 [math.nt] 20 Sep 2018 Zonguldak Bülent Ecevit University, Department of Mathematics, Art Science Faculty, 67100, Zonguldak, Turkey

More information

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES

REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES REPRESENTING POSITIVE INTEGERS AS A SUM OF LINEAR RECURRENCE SEQUENCES NATHAN HAMLIN AND WILLIAM A. WEBB Abstract. The Zeckendorf representation, using sums of Fibonacci numbers, is widely known. Fraenkel

More information

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS

ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS Acta Math. Univ. Comenianae Vol. LXXXVII, 2 (2018), pp. 291 299 291 ON THE POSSIBLE QUANTITIES OF FIBONACCI NUMBERS THAT OCCUR IN SOME TYPES OF INTERVALS B. FARHI Abstract. In this paper, we show that

More information

ON A KIND OF GENERALIZED ARITHMETIC-GEOMETRIC PROGRESSION

ON A KIND OF GENERALIZED ARITHMETIC-GEOMETRIC PROGRESSION ON A KIND OF GENERALIZED ARITHMETIC-GEOMETRIC PROGRESSION Leetsch C. Hsu* Dalian University of Technology, Dalian 116024, China (Submitted August 1995) 1. INTRODUCTION Let (t\h) p denote the generalized

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS Edited by Florian Luca Please send all communications concerning ADVANCED PROBLEMS AND SOLU- TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 61-3 (XANGARI),CP 58 089, MORELIA, MICHOACAN, MEXICO, or by e-mail

More information

In 1854, Karl Weierstrauss gave an example of a continuous function which was nowhere di erentiable: cos(3 n x) 2 n. sin(3 n x), 2

In 1854, Karl Weierstrauss gave an example of a continuous function which was nowhere di erentiable: cos(3 n x) 2 n. sin(3 n x), 2 Why non-pictured analysis? CHAPTER 1 Preliminaries f is continuous at x if lim f(x + h) = f(x) h!0 and f(x + h) f(x) f is di erentiable at x if lim h!0 h Then but Di erentiability =) continuity, continuity

More information

F A M I L I E S OF IDENTITIES INVOLVING SUMS OF POWERS OF THE FIBONACCI AND LUCAS NUMBERS

F A M I L I E S OF IDENTITIES INVOLVING SUMS OF POWERS OF THE FIBONACCI AND LUCAS NUMBERS F A M I L I E S OF IDENTITIES INVOLVING SUMS OF POWERS OF THE FIBONACCI AND LUCAS NUMBERS R. S. Melham School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia

More information

The Distribution of Generalized Sum-of-Digits Functions in Residue Classes

The Distribution of Generalized Sum-of-Digits Functions in Residue Classes Journal of umber Theory 79, 9426 (999) Article ID jnth.999.2424, available online at httpwww.idealibrary.com on The Distribution of Generalized Sum-of-Digits Functions in Residue Classes Abigail Hoit Department

More information

Introduction to Proofs

Introduction to Proofs Real Analysis Preview May 2014 Properties of R n Recall Oftentimes in multivariable calculus, we looked at properties of vectors in R n. If we were given vectors x =< x 1, x 2,, x n > and y =< y1, y 2,,

More information

The generalized order-k Fibonacci Pell sequence by matrix methods

The generalized order-k Fibonacci Pell sequence by matrix methods Journal of Computational and Applied Mathematics 09 (007) 33 45 wwwelseviercom/locate/cam The generalized order- Fibonacci Pell sequence by matrix methods Emrah Kilic Mathematics Department, TOBB University

More information

PAijpam.eu A NOTE ON BICOMPLEX FIBONACCI AND LUCAS NUMBERS Semra Kaya Nurkan 1, İlkay Arslan Güven2

PAijpam.eu A NOTE ON BICOMPLEX FIBONACCI AND LUCAS NUMBERS Semra Kaya Nurkan 1, İlkay Arslan Güven2 International Journal of Pure Applied Mathematics Volume 120 No. 3 2018, 365-377 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 10.12732/ijpam.v120i3.7

More information

G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S

G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S G E N E R A L I Z E D C O N V O L U T I O N A R R A Y S V. E. HOGGATT,JR. San Jose State University, San Jose, California 00192 G. E. BERGUM South Dakota State University, Brookings, Sooth Dakota 57006

More information

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method

CSC Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method CSC2411 - Linear Programming and Combinatorial Optimization Lecture 12: The Lift and Project Method Notes taken by Stefan Mathe April 28, 2007 Summary: Throughout the course, we have seen the importance

More information

On Some Identities and Generating Functions

On Some Identities and Generating Functions Int. Journal of Math. Analysis, Vol. 7, 2013, no. 38, 1877-1884 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2013.35131 On Some Identities and Generating Functions for k- Pell Numbers Paula

More information

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular

DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix to upper-triangular form) Given: matrix C = (c i,j ) n,m i,j=1 ODE and num math: Linear algebra (N) [lectures] c phabala 2016 DEN: Linear algebra numerical view (GEM: Gauss elimination method for reducing a full rank matrix

More information

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix

On Generalized k-fibonacci Sequence by Two-Cross-Two Matrix Global Journal of Mathematical Analysis, 5 () (07) -5 Global Journal of Mathematical Analysis Website: www.sciencepubco.com/index.php/gjma doi: 0.449/gjma.v5i.6949 Research paper On Generalized k-fibonacci

More information

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 1. INTRODUCTION

DEDICATED TO THE MEMORY OF R.J. WEINSHENK 1. INTRODUCTION CONVOLUTION TRIANGLES FOR GENERALIZED FIBONACCI NUMBERS VERNER E. HOGGATT, JR. San Jse State Cllege, San Jse, Califrnia DEDICATED TO THE MEMORY OF R.J. WEINSHENK. INTRODUCTION The sequence f integers Fj

More information

Z J7 TT I?2 17 n r n+l''' r n+4m+l (1 A \

Z J7 TT I?2 17 n r n+l''' r n+4m+l (1 A \ SUMS O F CERTAIN PRODUCTS O F F I B O N A C C I AND LUCAS N U M B E R S - P A R T II R. S* Melham School of Mathematical Sciences, University of Technology, Sydney PO Box 123, Broadway, NSW 2007 Australia

More information

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1)

IB Mathematics HL Year 2 Unit 11: Completion of Algebra (Core Topic 1) IB Mathematics HL Year Unit : Completion of Algebra (Core Topic ) Homewor for Unit Ex C:, 3, 4, 7; Ex D: 5, 8, 4; Ex E.: 4, 5, 9, 0, Ex E.3: (a), (b), 3, 7. Now consider these: Lesson 73 Sequences and

More information

GOLDEN PROPORTIONS IN HIGHER DIMENSIONS BASSEM GHALAYINI AND JOSEPH MALKOUN

GOLDEN PROPORTIONS IN HIGHER DIMENSIONS BASSEM GHALAYINI AND JOSEPH MALKOUN GOLDEN PROPORTIONS IN HIGHER DIMENSIONS BASSEM GHALAYINI AND JOSEPH MALKOUN Abstract The golden ratio φ = (+ 5)/2 appears in numerous contexts in the literature A study is made to generalize φ to dimension

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

2. Use your graphing calculator to graph each of the functions below over the interval 2, 2

2. Use your graphing calculator to graph each of the functions below over the interval 2, 2 MSLC Math 0 Final Eam Review Disclaimer: This should NOT be used as your only guide for what to study. if 0. Use the piece-wise defined function f( ) to answer the following: if a. Compute f(0), f(), f(-),

More information

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples

s-generalized Fibonacci Numbers: Some Identities, a Generating Function and Pythagorean Triples International Journal of Mathematical Analysis Vol. 8, 2014, no. 36, 1757-1766 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.47203 s-generalized Fibonacci Numbers: Some Identities,

More information

2017 VCE Mathematical Methods 2 examination report

2017 VCE Mathematical Methods 2 examination report 7 VCE Mathematical Methods examination report General comments There were some excellent responses to the 7 Mathematical Methods examination and most students were able to attempt the four questions in

More information

MATH98 Intermediate Algebra Practice Test Form A

MATH98 Intermediate Algebra Practice Test Form A MATH98 Intermediate Algebra Practice Test Form A MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the equation. 1) (y - 4) - (y + ) = 3y 1) A)

More information

Week 2: Sequences and Series

Week 2: Sequences and Series QF0: Quantitative Finance August 29, 207 Week 2: Sequences and Series Facilitator: Christopher Ting AY 207/208 Mathematicians have tried in vain to this day to discover some order in the sequence of prime

More information

RECREATIONAL MATHEMATICS

RECREATIONAL MATHEMATICS RECREATIONAL MATHEMATICS Joseph S. Madachy 4761 Bigger Rd., Kettering, O h i o Before I go on with new business, readers of this column should make the following corrections in the February 1968 issue

More information

2011 Olympiad Solutions

2011 Olympiad Solutions 011 Olympiad Problem 1 Let A 0, A 1, A,..., A n be nonnegative numbers such that Prove that A 0 A 1 A A n. A i 1 n A n. Note: x means the greatest integer that is less than or equal to x.) Solution: We

More information

Power series and Taylor series

Power series and Taylor series Power series and Taylor series D. DeTurck University of Pennsylvania March 29, 2018 D. DeTurck Math 104 002 2018A: Series 1 / 42 Series First... a review of what we have done so far: 1 We examined series

More information

Power Series and Analytic Function

Power Series and Analytic Function Dr Mansoor Alshehri King Saud University MATH204-Differential Equations Center of Excellence in Learning and Teaching 1 / 21 Some Reviews of Power Series Differentiation and Integration of a Power Series

More information

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES

INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES INTRODUCTION TO REAL ANALYSIS II MATH 4332 BLECHER NOTES You will be expected to reread and digest these typed notes after class, line by line, trying to follow why the line is true, for example how it

More information

Compositions, Bijections, and Enumerations

Compositions, Bijections, and Enumerations Georgia Southern University Digital Commons@Georgia Southern Electronic Theses & Dissertations COGS- Jack N. Averitt College of Graduate Studies Fall 2012 Compositions, Bijections, and Enumerations Charles

More information

5-7 Solving Quadratic Inequalities. Holt Algebra 2

5-7 Solving Quadratic Inequalities. Holt Algebra 2 Example 1: Graphing Quadratic Inequalities in Two Variables Graph f(x) x 2 7x + 10. Step 1 Graph the parabola f(x) = x 2 7x + 10 with a solid curve. x f(x) 0 10 1 3 2 0 3-2 3.5-2.25 4-2 5 0 6 4 7 10 Example

More information

The Greatest Common Divisor of k Positive Integers

The Greatest Common Divisor of k Positive Integers International Mathematical Forum, Vol. 3, 208, no. 5, 25-223 HIKARI Ltd, www.m-hiari.com https://doi.org/0.2988/imf.208.822 The Greatest Common Divisor of Positive Integers Rafael Jaimczu División Matemática,

More information

S \ - Z) *! for j = 1.2,---,k + l. i=i i=i

S \ - Z) *! for j = 1.2,---,k + l. i=i i=i RESTRICTED COMPOSITIONS S. G. MOHANTY McMaster University, Hamilton, Ontario, Canada As a continuation of [6] and [7], this paper deals with a restricted set of compositions of an integer (to be defined

More information

PROPERTIES OF THE ROOTS OF TRIBONACCI-TYPE POLYNOMIALS

PROPERTIES OF THE ROOTS OF TRIBONACCI-TYPE POLYNOMIALS PROPERTIES OF THE ROOTS OF TRIBONACCI-TYPE POLYNOMIALS ALEX DURBIN AND HUEI SEARS Abstract. Consider Tribonacci-type polynomials defined by the following recurrence relation T n(x) = α(x) T n 1 (x)+β(x)

More information

2nd 9 Weeks Test 2. Rankin County Assessment CCSS Math 8th Grade ID: Sample Item Not Available

2nd 9 Weeks Test 2. Rankin County Assessment CCSS Math 8th Grade ID: Sample Item Not Available Rankin County Assessment CCSS Math 8th Grade ID: 201585 2nd 9 Weeks Test 2 Directions: Read the question. Fill in the bubble next to the corresponding question number on your answer sheet. Sample Question

More information

Math 46 Final Exam Review Packet

Math 46 Final Exam Review Packet Math 46 Final Exam Review Packet Question 1. Perform the indicated operation. Simplify if possible. 7 x x 2 2x + 3 2 x Question 2. The sum of a number and its square is 72. Find the number. Question 3.

More information

1) (JUNIOR 1 and SENIOR 1) Prove that if n is an even integer then. n(n + 1)(n + 2) 24

1) (JUNIOR 1 and SENIOR 1) Prove that if n is an even integer then. n(n + 1)(n + 2) 24 All Problems on Prize Exam Spring 2003 Version Date: Sat Mar :47:20 EST 2003 The secondary source of most of the problems on the prize exams is the Web site http://problems.math.umr.edu/index.htm (A web

More information

Discrete Mathematics. Kishore Kothapalli

Discrete Mathematics. Kishore Kothapalli Discrete Mathematics Kishore Kothapalli 2 Chapter 4 Advanced Counting Techniques In the previous chapter we studied various techniques for counting and enumeration. However, there are several interesting

More information

Doubly Indexed Infinite Series

Doubly Indexed Infinite Series The Islamic University of Gaza Deanery of Higher studies Faculty of Science Department of Mathematics Doubly Indexed Infinite Series Presented By Ahed Khaleel Abu ALees Supervisor Professor Eissa D. Habil

More information

LINEARLY RECURSIVE SEQUENCES OF INTEGERS

LINEARLY RECURSIVE SEQUENCES OF INTEGERS LINEARLY RECURSIVE SEQUENCES OF INTEGERS BROTHER L RAPHAEL, FSC St Mary's College,, Moraga, California 94575 PART 1. INTRODUCTION As harmless as it may appear, the Fibonacci sequence has provoed a remarable

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Math 2412 Final Exam Review

Math 2412 Final Exam Review Math 41 Final Exam Review MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Factor and simplify the algebraic expression. 1) (x + 4) /5 - (x + 4) 1/5

More information

Sequences of Real Numbers

Sequences of Real Numbers Chapter 8 Sequences of Real Numbers In this chapter, we assume the existence of the ordered field of real numbers, though we do not yet discuss or use the completeness of the real numbers. In the next

More information

Section 4.1: Sequences and Series

Section 4.1: Sequences and Series Section 4.1: Sequences and Series In this section, we shall introduce the idea of sequences and series as a necessary tool to develop the proof technique called mathematical induction. Most of the material

More information

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k

DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k DISTRIBUTION OF FIBONACCI AND LUCAS NUMBERS MODULO 3 k RALF BUNDSCHUH AND PETER BUNDSCHUH Dedicated to Peter Shiue on the occasion of his 70th birthday Abstract. Let F 0 = 0,F 1 = 1, and F n = F n 1 +F

More information

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES

EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES EXPANSION OF ANALYTIC FUNCTIONS IN TERMS INVOLVING LUCAS NUMBERS OR SIMILAR NUMBER SEQUENCES PAUL F. BYRD San Jose State College, San Jose, California 1. INTRODUCTION In a previous article [_ 1J, certain

More information

NTI Work Day #1 Math. 4. What is the slope of the line that passes through the origin and (-3, -2)? a. 3 2 b. 2 3 c. 0 d. 2 3 e.

NTI Work Day #1 Math. 4. What is the slope of the line that passes through the origin and (-3, -2)? a. 3 2 b. 2 3 c. 0 d. 2 3 e. NTI Work Day #1 Math 1. 2 0 + 2 3 2 2 =? a. 4 b. 6 1 4 c. 7 d. 8 3 4 e. 9 3 4 2. The figure below is a graph of which of the following equations? a. y = -3x + 5 b. y = -2x + 2 c. y = 3 2 x 2 d. y = 2 3

More information

The plastic number and its generalized polynomial

The plastic number and its generalized polynomial PURE MATHEMATICS RESEARCH ARTICLE The plastic number and its generalized polynomial Vasileios Iliopoulos 1 * Received: 18 December 2014 Accepted: 19 February 201 Published: 20 March 201 *Corresponding

More information

Algebra II Final Examination Mr. Pleacher Name (A) - 4 (B) 2 (C) 3 (D) What is the product of the polynomials (4c 1) and (3c + 5)?

Algebra II Final Examination Mr. Pleacher Name (A) - 4 (B) 2 (C) 3 (D) What is the product of the polynomials (4c 1) and (3c + 5)? Algebra II Final Examination Mr. Pleacher Name I. Multiple Choice 1. If f( x) = x 1, then f ( 3) = (A) - 4 (B) (C) 3 (D) 4. What is the product of the polynomials (4c 1) and (3c + 5)? A) 7c 4 B) 1c + 17c

More information

Introduction to the Numerical Solution of IVP for ODE

Introduction to the Numerical Solution of IVP for ODE Introduction to the Numerical Solution of IVP for ODE 45 Introduction to the Numerical Solution of IVP for ODE Consider the IVP: DE x = f(t, x), IC x(a) = x a. For simplicity, we will assume here that

More information

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers.

MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3. (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. MAT 771 FUNCTIONAL ANALYSIS HOMEWORK 3 (1) Let V be the vector space of all bounded or unbounded sequences of complex numbers. (a) Define d : V V + {0} by d(x, y) = 1 ξ j η j 2 j 1 + ξ j η j. Show that

More information

Geometry Voic Mr. R. and Mr. K

Geometry Voic Mr. R. and Mr. K 2.1 Using Inductive Reasoning to Make Conjectures Learning Goal: Use inductive reasoning to identify patterns, make conjectures and find counterexamples to disprove conjectures. Video: http://player.discoveryeducation.com/index.cfm?guidassetid=b1b5f95d-f72e-4d18-b220-ff73204e9a74

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Discrete Math, Spring Solutions to Problems V

Discrete Math, Spring Solutions to Problems V Discrete Math, Spring 202 - Solutions to Problems V Suppose we have statements P, P 2, P 3,, one for each natural number In other words, we have the collection or set of statements {P n n N} a Suppose

More information