THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION

Size: px
Start display at page:

Download "THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION"

Transcription

1 International Journal of Computer Mathematics Vol. 00, No. 0, Month 004, pp. 1 6 THE ADOMIAN DECOMPOSITION METHOD FOR SOLVING DELAY DIFFERENTIAL EQUATION D. J. EVANS a and K. R. RASLAN b, a Faculty of Engineering and Computing, Nottingham Trent University, UK; b Department of Mathematics, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt (Revised 14 March 004; In final form 8 April 004 A numerical method based on the Adomian decomposition method which has been developed by Adomian [Adomian, G. (1994. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston, MA] is introduced in this paper for the approximate solution of delay differential equation (DDE. The algorithm is illustrated by studying an initial value problem. The results obtained are presented and show that only few terms are required to obtain an approximate solution which is found to be accurate and efficient. Keywords: Delay differential equation; Adomian decomposition method C.R. Categories: G.1.7; G.1. 1 INTRODUCTION The decomposition method has been shown [1 4] to solve effectively, easily, and accurately a large class of linear and nonlinear, ordinary, partial, deterministic or stochastic differential equations with approximate solutions which converge rapidly to accurate solutions. In recent years, many papers were devoted to the problem of approximate solution of delay differential equations (DDEs [5 9]. The basic motivation of this work is to apply the Adomian decomposition method to the DDE. It is well known now in the literature that this algorithm provides the solution in a rapidly convergent series [3]. The implementation of the Adomian method in Ref. [1] amongst others has shown reliable results in that few terms only are needed to obtain accurate solutions. ANALYSIS OF THE METHOD Consider the DDE written in the form Ly(x = f (x, y(x, y(g(x, 0 x 1 Corresponding author. Community College in Riyadh, King Saud University, 438 Salah El-Deen El-Auoby, Malaz, P.O. Box 8095, Riyadh, Saudi Arabia; kamel raslan@yahoo.com ISSN print; ISSN online c 004 Taylor & Francis Ltd DOI: / Techset Composition Ltd, Salisbury GCOM TeX Page#: 6 pages Printed: 17/7/004

2 D. J. EVANS AND K. R. RASLAN where the differential operator L is given by y (i (0 = y0 i, i = 0, 1,...,N 1, (1 y(x = (x, x 0, L( = dn ( N, ( the inverse operator L 1 is therefore considered a N-fold integral operator defined by Q1 L 1 (# = x operating with L 1 on Eq. (1, it then follows y(x = N 1 0 (# Ntimes, (3 α j j! xj + L 1 (f (x, y(x, y(g(x, (4 where the α j are constants that describe the boundary conditions. The Adomian decomposition method assumes that the unknown function y(x can be expressed by an infinite series of the form y(x = y n (x, (5 so that the components y n (x will be determined recursively. Moreover, the method defines the nonlinear term f (x, y(x, y(g(x by the Adomian polynomials f (x, y(x, g(y(x = A n, (6 where A n are Adomian polynomials that can be generated for all forms of nonlinearity [3] as A n = 1 d n f x, λ j y n! dλ n j (x, λ j y j (g(x. λ=0 Substituting Eqs. (5 and (6 into Eq. (4 gives y n (x = N 1 α j j! xj + L 1 ( A n, (7 to determine the components y n (x, n 0. First, we identify the zero component y 0 (x by all terms that arise from the boundary conditions at x = 0 and from integrating the source term if it exists. Second, the remaining components of y(x can be determined in a way such that each component is determined by using the preceding components. In other words, the method introduces the recursive relation: y 0 (x = N 1 α j j! xj, y n+1 (x = L 1 (A n, n 0, (8

3 DELAY DIFFERENTIAL EQUATION 3 for the determination of the components y n (x, n 0ofy(x, the series solution of y(x follows immediately with the constants α j,j = 0, 1,...,N 1 are as yet undetermined. The above analysis yields the following theorem. THEOREM 1 The solution of the DDE in the form (1 can be determined by the series (5 with the iterations (8. 3 APPLICATION In this section, we discuss the linear DDE (LDDE and the nonlinear DDE (NDDE by using the Theorem 1 as given in Section. Example 3.1 [5,6] dy(x Consider the LDDE of first-order = 1 ex/ y + 1 y(x, 0 x 1, y(0 = 1, (9 which has the exact solution y(x = e x. Theorem 1 gives x ( 1 y 0 (x = 1, y n+1 (x = ex/ y n + 1 y n(x, n 0. (10 0 When 13 terms of the solution of this DDE are compared with other methods [5, 6], we found that the present method is best as shown Table I. The differences between the exact and numerical solutions are given in Table I. Example 3. [7] Consider the LDDE of second-order d y(x = 3 4 y(x + y x +, 0 x 1, y(0 = 0, dy(0 = 0. (11 By applying the present method, we get x x ( y 0 (x = x x4 3 1, y n+1(x = y n(x + y n, n 0, (1 then we get y 0 (x = x x 4, y 1 (x = x x 6,...If we take eight terms of the series, we get the difference between the exact and numerical solution given in Table II. TABLE I X h = [6] h = [5] Present method E E E E 15.E E E 14.E E 11.13E E E E E 15

4 4 D. J. EVANS AND K. R. RASLAN TABLE II X Present solution Exact solution Example 3.3 Consider the LDDE of third-order d 3 y(x 3 = y(x y(x e x+0.3, 0 x 1, y(0 = 1, dy(0 = 1, d y(0 = 1, y(x = e x, x 0, (13 Theorem 1 gives the scheme y 0 (x = α 0 + α 1 x + α x e x+0.3, y n+1 (x = x x x ( y n (x y n (x 0.3, n 0, (14 where α 0 = , α 1 = , α = In Table III, we make a comparison between the present scheme and the exact. When we take only six terms from the Adomian series, we obtain the results given in Table III. In the following examples, we apply the method to NDDE. Example 3.4 [8, 9] Consider the NDDE of first-order dy(x as in Section, we get the recurrence relations ( = 1 y x, 0 x 1, y(0 = 0, (15 x y 0 (x = x, y n+1 (x = A n, n 0, (16 0 TABLE III X Present method Exact Difference E E E E E E 14

5 DELAY DIFFERENTIAL EQUATION 5 where A n,n 0 are Adomian polynomials that represent the nonlinear term. We list the set of Adomian polynomial as A 0 (x = y 0 A (x = y 1 A 3 (x = y 1,A 1 (x = y 0 y 1, + 4y 0 y, y + y 0 y 3,... (17 The solution in a series form is given by y(x = x x3 6 + x5 10 x x x x x x 17 ( and using Taylor series, the exact solution y(x = sin x is readily obtained. Example 3.5 Consider the NDDE of third-order d 3 y(x 3 ( = 1 + y x, 0 x 1, y(0 = 0, we get the recurrence relations dy(0 = 1, d y(0 = 0, (19 x x x y 0 (x = x x3 6, y n+1(x = A n, n 0, ( then the solution in series form is given by y(x = y 0 (x + y 1 (x + y (x + y 3 (x + (1 for few terms only the comparison between the exact solution and approximate solution is shown in Table IV and it shows that the errors are very small. From our examples, we can say that Adomian decomposition method gives approximate solutions in very good agreement with the exact solutions for only a few terms when solving DDEs. The programs for each case are written in the programming language Mathematica. TABLE IV X Our scheme Exact solution

6 6 D. J. EVANS AND K. R. RASLAN 4 CONCLUSION A new technique, using Adomian decomposition method, to numerically solve the DDEs is presented. All the numerical results obtained by using the Adomian decomposition method described earlier show very good agreement with the exact solutions for only a few terms. Comparing the decomposition method with several other methods that have been advanced for solving DDEs shows that the new technique is reliable, powerful and promising. We believe that the efficiency of the decomposition method gives it much wider applicability which been to be explored further. References Q3 [1] Adomian, G. (1994. Solving Frontier Problems of Physics: The Decomposition Method. Kluwer Academic Publishers, Boston, MA. [] Adomian, G. and Rach, R. (1993. Analytic solution of nonlinear boundary-value problems in several dimensions by decomposition. J. Math. Anal. Appl., 174, [3] Wazwaz, A.-M. (000. Approximate solutions to boundary value problems of higher order by the modified decomposition method. Comput. Math. Appl., 40, [4] Ismail, H. N., Raslan, K. R. and Salem, G. S. (003. Solitary wave solutions for the general KdV equation by Adomian decomposition method. Appl. Math. Comput., in press. [5] El-Safty, A., Salim, M. S. and El-Khatib, M. A. (003. Convergent of the spline functions for delay dynamic system. Int. J. Comput. Math., 80(4, [6] Shadia, M. (199. Numerical solution of delay differential and neutral differential equations using spline methods. Ph. D Thesis, Assuit University. [7] El-Safty, A. (1993. Approximate solution of the delay differential equation y = f (x, y(x, y(α(x with cubic spline functions. Bull. Fac. Sci., Assuit Univ., (-c, [8] Ibrahim, M. A.-K., EI-Safty, A. and Abo-Hasha, S. M. (1995. h-step spline method for the solution of delay differential equations. Comput. Math. Appl., 9(8, 1 6. [9] EI-Safty, A. and Abo-Hasha, S. M. (1990. On the application of spline functions to initial value problem with retarded argument. Int. J. Comput. Math., 3,

7 Journal International Journal of Computer Mathematics Article ID GCOM TO: CORRESPONDING AUTHOR AUTHOR QUERIES - TO BE ANSWERED BY THE AUTHOR The following queries have arisen during the typesetting of your manuscript. Please answer the queries. Q1 Please check Eq. (3. Please supply captions for Tables I IV. Q3 Please update Ref. [4]. Production Editorial Department, Taylor & Francis Ltd. 4 Park Square, Milton Park, Abingdon OX14 4RN Telephone: +44 ( Facsimile: +44 (

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations

Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations Applied Mathematical Sciences, Vol. 6, 2012, no. 10, 487-497 Improving the Accuracy of the Adomian Decomposition Method for Solving Nonlinear Equations A. R. Vahidi a and B. Jalalvand b (a) Department

More information

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method

Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Journal of mathematics and computer Science 7 (23) 38-43 Solving Singular BVPs Ordinary Differential Equations by Modified Homotopy Perturbation Method Article history: Received March 23 Accepted Apri

More information

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations

The Modified Adomian Decomposition Method for. Solving Nonlinear Coupled Burger s Equations Nonlinear Analysis and Differential Equations, Vol. 3, 015, no. 3, 111-1 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/nade.015.416 The Modified Adomian Decomposition Method for Solving Nonlinear

More information

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations

Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations Applied Mathematical Sciences, Vol. 6, 212, no. 3, 1463-1469 Modified Adomian Decomposition Method for Solving Particular Third-Order Ordinary Differential Equations P. Pue-on 1 and N. Viriyapong 2 Department

More information

Research Article Approximation Algorithm for a System of Pantograph Equations

Research Article Approximation Algorithm for a System of Pantograph Equations Applied Mathematics Volume 01 Article ID 714681 9 pages doi:101155/01/714681 Research Article Approximation Algorithm for a System of Pantograph Equations Sabir Widatalla 1 and Mohammed Abdulai Koroma

More information

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method

Improvements in Newton-Rapshon Method for Nonlinear Equations Using Modified Adomian Decomposition Method International Journal of Mathematical Analysis Vol. 9, 2015, no. 39, 1919-1928 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2015.54124 Improvements in Newton-Rapshon Method for Nonlinear

More information

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD

SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD SOLUTION OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS BY ADOMIAN DECOMPOSITION METHOD R. C. Mittal 1 and Ruchi Nigam 2 1 Department of Mathematics, I.I.T. Roorkee, Roorkee, India-247667. Email: rcmmmfma@iitr.ernet.in

More information

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n )

Attractivity of the Recursive Sequence x n+1 = (α βx n 1 )F (x n ) ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(2009) No.2,pp.201-206 Attractivity of the Recursive Sequence (α βx n 1 )F (x n ) A. M. Ahmed 1,, Alaa E. Hamza

More information

RELIABLE TREATMENT FOR SOLVING BOUNDARY VALUE PROBLEMS OF PANTOGRAPH DELAY DIFFERENTIAL EQUATION

RELIABLE TREATMENT FOR SOLVING BOUNDARY VALUE PROBLEMS OF PANTOGRAPH DELAY DIFFERENTIAL EQUATION (c) 216 217 Rom. Rep. Phys. (for accepted papers only) RELIABLE TREATMENT FOR SOLVING BOUNDARY VALUE PROBLEMS OF PANTOGRAPH DELAY DIFFERENTIAL EQUATION ABDUL-MAJID WAZWAZ 1,a, MUHAMMAD ASIF ZAHOOR RAJA

More information

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient

Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient Applied Mathematical Sciences, Vol. 4, 1, no. 49, 431-444 Adomian Decomposition Method (ADM) for Nonlinear Wave-like Equations with Variable Coefficient Mohammad Ghoreishi School of Mathematical Sciences,

More information

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation

Adomian Decomposition Method with Laguerre Polynomials for Solving Ordinary Differential Equation J. Basic. Appl. Sci. Res., 2(12)12236-12241, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Adomian Decomposition Method with Laguerre

More information

New Class of Boundary Value Problems

New Class of Boundary Value Problems Inf. Sci. Lett. 1 No. 2, 67-76 (2012) Information Science Letters An International Journal 67 @ 2012 NSP Natural Sciences Publishing Cor. New Class of Boundary Value Problems Abdon Atangana Institute for

More information

New Solutions for Some Important Partial Differential Equations

New Solutions for Some Important Partial Differential Equations ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.2,pp.109-117 New Solutions for Some Important Partial Differential Equations Ahmed Hassan Ahmed Ali

More information

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems

A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems A Modified Adomian Decomposition Method for Solving Higher-Order Singular Boundary Value Problems Weonbae Kim a and Changbum Chun b a Department of Mathematics, Daejin University, Pocheon, Gyeonggi-do

More information

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind

On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind Applied Mathematical Sciences, Vol. 5, 211, no. 16, 799-84 On the Homotopy Perturbation Method and the Adomian Decomposition Method for Solving Abel Integral Equations of the Second Kind A. R. Vahidi Department

More information

Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations

Application of Adomian Decomposition Method in Solving Second Order Nonlinear Ordinary Differential Equations International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 4 Issue 11 November 2015 PP.60-65 Application of Adomian Decomposition Method in Solving

More information

A Maple program for computing Adomian polynomials

A Maple program for computing Adomian polynomials International Mathematical Forum, 1, 2006, no. 39, 1919-1924 A Maple program for computing Adomian polynomials Jafar Biazar 1 and Masumeh Pourabd Department of Mathematics, Faculty of Science Guilan University

More information

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method

A New Technique of Initial Boundary Value Problems. Using Adomian Decomposition Method International Mathematical Forum, Vol. 7, 2012, no. 17, 799 814 A New Technique of Initial Boundary Value Problems Using Adomian Decomposition Method Elaf Jaafar Ali Department of Mathematics, College

More information

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method

Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.4(2007) No.3,pp.227-234 Solution of the Coupled Klein-Gordon Schrödinger Equation Using the Modified Decomposition

More information

ON THE EXPONENTIAL CHEBYSHEV APPROXIMATION IN UNBOUNDED DOMAINS: A COMPARISON STUDY FOR SOLVING HIGH-ORDER ORDINARY DIFFERENTIAL EQUATIONS

ON THE EXPONENTIAL CHEBYSHEV APPROXIMATION IN UNBOUNDED DOMAINS: A COMPARISON STUDY FOR SOLVING HIGH-ORDER ORDINARY DIFFERENTIAL EQUATIONS International Journal of Pure and Applied Mathematics Volume 105 No. 3 2015, 399-413 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v105i3.8

More information

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae)

Benha University Faculty of Science Department of Mathematics. (Curriculum Vitae) Benha University Faculty of Science Department of Mathematics (Curriculum Vitae) (1) General *Name : Mohamed Meabed Bayuomi Khader *Date of Birth : 24 May 1973 *Marital Status: Married *Nationality : Egyptian

More information

Application of Taylor-Padé technique for obtaining approximate solution for system of linear Fredholm integro-differential equations

Application of Taylor-Padé technique for obtaining approximate solution for system of linear Fredholm integro-differential equations Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 1932-9466 Vol. 12, Issue 1 (June 2017), pp. 392 404 Applications and Applied Mathematics: An International Journal (AAM) Application of Taylor-Padé

More information

Extended Adomian s polynomials for solving. non-linear fractional differential equations

Extended Adomian s polynomials for solving. non-linear fractional differential equations Theoretical Mathematics & Applications, vol.5, no.2, 25, 89-4 ISSN: 792-9687 (print), 792-979 (online) Scienpress Ltd, 25 Extended Adomian s polynomials for solving non-linear fractional differential equations

More information

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems

On a New Aftertreatment Technique for Differential Transformation Method and its Application to Non-linear Oscillatory Systems ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.488-497 On a New Aftertreatment Technique for Differential Transformation Method and its Application

More information

EXACT SOLUTIONS OF WAVE-TYPE EQUATIONS BY THE ABOODH DECOMPOSITION METHOD

EXACT SOLUTIONS OF WAVE-TYPE EQUATIONS BY THE ABOODH DECOMPOSITION METHOD Stochastic Modeling and Applications Vol.21 No. 1(June 2017) 23-30 EXACT SOLUTIONS OF WAVE-TYPE EQUATIONS BY THE ABOODH DECOMPOSITION METHOD RAHMATULLAH IBRAHIM NURUDDEEN AND AMINU M. NASS* Abstract. This

More information

Solution of Quadratic Integral Equations by the Adomian Decomposition Method

Solution of Quadratic Integral Equations by the Adomian Decomposition Method Copyright 213 Tech Science Press CMES, vol.92, no.4, pp.369-385, 213 Solution of Quadratic Integral Equations by the Adomian Decomposition Method Shou-Zhong Fu 1, Zhong Wang 1 and Jun-Sheng Duan 1,2,3

More information

Exact Solutions for a Class of Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method

Exact Solutions for a Class of Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method Applied Mathematical Sciences, Vol 6, 212, no 122, 697-618 Exact Solutions for a Class of Singular Two-Point Boundary Value Problems Using Adomian Decomposition Method Abdelhalim Ebaid 1 and Mona D Aljoufi

More information

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation

B-splines Collocation Algorithms for Solving Numerically the MRLW Equation ISSN 1749-889 (print), 1749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.2,pp.11-140 B-splines Collocation Algorithms for Solving Numerically the MRLW Equation Saleh M. Hassan,

More information

THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS

THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS THE USE OF ADOMIAN DECOMPOSITION METHOD FOR SOLVING PROBLEMS IN CALCULUS OF VARIATIONS MEHDI DEHGHAN AND MEHDI TATARI Received 16 March 25; Revised 9 August 25; Accepted 12 September 25 Dedication to Professor

More information

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc

ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD. Mustafa Inc 153 Kragujevac J. Math. 26 (2004) 153 164. ON NUMERICAL SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS BY THE DECOMPOSITION METHOD Mustafa Inc Department of Mathematics, Firat University, 23119 Elazig Turkiye

More information

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation

Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn:2319-765x. Volume 1, Issue 1Ver. I. (Jan. 214), PP 8-12 Adomian Decomposition Method for Solving the Kuramoto Sivashinsky Equation Saad A.

More information

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized

Homotopy Perturbation Method for the Fisher s Equation and Its Generalized ISSN 749-889 (print), 749-897 (online) International Journal of Nonlinear Science Vol.8(2009) No.4,pp.448-455 Homotopy Perturbation Method for the Fisher s Equation and Its Generalized M. Matinfar,M. Ghanbari

More information

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD

ON THE NUMERICAL SOLUTION FOR THE FRACTIONAL WAVE EQUATION USING LEGENDRE PSEUDOSPECTRAL METHOD International Journal of Pure and Applied Mathematics Volume 84 No. 4 2013, 307-319 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijpam.v84i4.1

More information

Application of the Differential Transform Method for the Nonlinear Differential Equations

Application of the Differential Transform Method for the Nonlinear Differential Equations American Journal of Applied Mathematics 27; 5(): 4- http://www.sciencepublishinggroup.com//aam doi:.64/.aam.275.2 ISSN: 233-43 (Print); ISSN: 233-6X (Online) Application of the Differential Transform Method

More information

Numerical solution for chemical kinetics system by using efficient iterative method

Numerical solution for chemical kinetics system by using efficient iterative method International Journal of Advanced Scientific and Technical Research Issue 6 volume 1, Jan Feb 2016 Available online on http://wwwrspublicationcom/ijst/indexhtml ISSN 2249-9954 Numerical solution for chemical

More information

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems

Variation of Parameters Method for Solving Fifth-Order. Boundary Value Problems Applied Mathematics & Information Sciences 2(2) (28), 135 141 An International Journal c 28 Dixie W Publishing Corporation, U. S. A. Variation of Parameters Method for Solving Fifth-Order Boundary Value

More information

College, Nashik-Road, Dist. - Nashik (MS), India,

College, Nashik-Road, Dist. - Nashik (MS), India, Approximate Solution of Space Fractional Partial Differential Equations and Its Applications [1] Kalyanrao Takale, [2] Manisha Datar, [3] Sharvari Kulkarni [1] Department of Mathematics, Gokhale Education

More information

The variational homotopy perturbation method for solving the K(2,2)equations

The variational homotopy perturbation method for solving the K(2,2)equations International Journal of Applied Mathematical Research, 2 2) 213) 338-344 c Science Publishing Corporation wwwsciencepubcocom/indexphp/ijamr The variational homotopy perturbation method for solving the

More information

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System

A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Australian Journal of Basic Applied Sciences, 3(4): 4397-4407, 2009 ISSN 1991-8178 A Multistage Adomian Decomposition Method for Solving The Autonomous Van Der Pol System Dr. Abbas Y. AL_ Bayati Dr. Ann

More information

Restrictive Taylor Approximation for Gardner and KdV Equations

Restrictive Taylor Approximation for Gardner and KdV Equations Int. J. Adv. Appl. Math. and Mech. 1() (014) 1-10 ISSN: 47-59 Available online at www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Restrictive Taylor Approximation

More information

Applications of Differential Transform Method To Initial Value Problems

Applications of Differential Transform Method To Initial Value Problems American Journal of Engineering Research (AJER) 207 American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-6, Issue-2, pp-365-37 www.ajer.org Research Paper Open Access

More information

Numerical studies of non-local hyperbolic partial differential equations using collocation methods

Numerical studies of non-local hyperbolic partial differential equations using collocation methods Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 6, No. 3, 2018, pp. 326-338 Numerical studies of non-local hyperbolic partial differential equations using collocation methods

More information

Approximate Method for Solving the Linear Fuzzy Delay Differential Equations

Approximate Method for Solving the Linear Fuzzy Delay Differential Equations Bharathiar University From the SelectedWorks of Yookesh Lakshmanasamy Winter September, 2015 Approximate Method for Solving the Linear Fuzzy Delay Differential Equations Yookesh Lakshmanasamy, Bharathiar

More information

Exact Solutions of Fractional-Order Biological Population Model

Exact Solutions of Fractional-Order Biological Population Model Commun. Theor. Phys. (Beijing China) 5 (009) pp. 99 996 c Chinese Physical Society and IOP Publishing Ltd Vol. 5 No. 6 December 15 009 Exact Solutions of Fractional-Order Biological Population Model A.M.A.

More information

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method

Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy Analysis Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(21) No.4,pp.414-421 Analytical Solution of BVPs for Fourth-order Integro-differential Equations by Using Homotopy

More information

Applications Of Differential Transform Method To Integral Equations

Applications Of Differential Transform Method To Integral Equations American Journal of Engineering Research (AJER) 28 American Journal of Engineering Research (AJER) e-issn: 232-847 p-issn : 232-936 Volume-7, Issue-, pp-27-276 www.ajer.org Research Paper Open Access Applications

More information

Conformable variational iteration method

Conformable variational iteration method NTMSCI 5, No. 1, 172-178 (217) 172 New Trends in Mathematical Sciences http://dx.doi.org/1.2852/ntmsci.217.135 Conformable variational iteration method Omer Acan 1,2 Omer Firat 3 Yildiray Keskin 1 Galip

More information

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method

The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method Mathematics and Statistics 1(3): 113-118, 213 DOI: 1.13189/ms.213.133 hp://www.hrpub.org The Existence of Noise Terms for Systems of Partial Differential and Integral Equations with ( HPM ) Method Parivash

More information

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition

Solving Fuzzy Duffing s Equation by the Laplace. Transform Decomposition Applied Mathematical Sciences, Vol 6, 202, no 59, 2935-2944 Solving Fuzzy Duffing s Equation by the Laplace Transform Decomposition, Mustafa, J and Nor,3,4 Department of Science and Mathematics, Faculty

More information

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations

Application of Laplace Adomian Decomposition Method for the soliton solutions of Boussinesq-Burger equations Int. J. Adv. Appl. Math. and Mech. 3( (05 50 58 (ISSN: 347-59 IJAAMM Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics Application of Laplace Adomian

More information

RECURSIVE DIFFERENTIATION METHOD FOR BOUNDARY VALUE PROBLEMS: APPLICATION TO ANALYSIS OF A BEAM-COLUMN ON AN ELASTIC FOUNDATION

RECURSIVE DIFFERENTIATION METHOD FOR BOUNDARY VALUE PROBLEMS: APPLICATION TO ANALYSIS OF A BEAM-COLUMN ON AN ELASTIC FOUNDATION Journal of Theoretical and Applied Mechanics, Sofia, 2014, vol. 44, No. 2, pp. 57 70 RECURSIVE DIFFERENTIATION METHOD FOR BOUNDARY VALUE PROBLEMS: APPLICATION TO ANALYSIS OF A BEAM-COLUMN ON AN ELASTIC

More information

Elzaki Decomposition Method and its Applications in Solving Linear and Nonlinear Schrodinger Equations

Elzaki Decomposition Method and its Applications in Solving Linear and Nonlinear Schrodinger Equations Sohag J. Math. 4 No. 2 31-35 (2017 31 Sohag Journal of Mathematics An International Journal http://dx.doi.org/10.18576/sjm/040201 Elzaki Decomposition Method and its Applications in Solving Linear and

More information

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation

The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation The Chebyshev Collection Method for Solving Fractional Order Klein-Gordon Equation M. M. KHADER Faculty of Science, Benha University Department of Mathematics Benha EGYPT mohamedmbd@yahoo.com N. H. SWETLAM

More information

New approaches for Taylor and Padé approximations

New approaches for Taylor and Padé approximations Int J Adv Appl Math and Mech 2(3) (2015) 78-86 (ISSN: 2347-2529) Journal homepage: wwwijaammcom International Journal of Advances in Applied Mathematics and Mechanics New approaches for Taylor and Padé

More information

FURTHER SOLUTIONS OF THE FALKNER-SKAN EQUATION

FURTHER SOLUTIONS OF THE FALKNER-SKAN EQUATION FURTHER SOLUTIONS OF THE FALKNER-SKAN EQUATION LAZHAR BOUGOFFA a, RUBAYYI T. ALQAHTANI b Department of Mathematics and Statistics, College of Science, Al-Imam Mohammad Ibn Saud Islamic University (IMSIU),

More information

Picard,Adomian and Predictor-Corrector methods for integral equations of fractional order

Picard,Adomian and Predictor-Corrector methods for integral equations of fractional order Picard,Adomian and Predictor-Corrector methods for integral equations of fractional order WKZahra 1, MAShehata 2 1 Faculty of Engineering, Tanta University, Tanta, Egypt 2 Faculty of Engineering, Delta

More information

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS

EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS Bulletin of the Institute of Mathematics Academia Sinica (New Series) Vol. 4 (2009), No. 2, pp. 219-234 EXP-FUNCTION METHOD FOR SOLVING HIGHER-ORDER BOUNDARY VALUE PROBLEMS BY SYED TAUSEEF MOHYUD-DIN,

More information

Variational iteration method for solving multispecies Lotka Volterra equations

Variational iteration method for solving multispecies Lotka Volterra equations Computers and Mathematics with Applications 54 27 93 99 www.elsevier.com/locate/camwa Variational iteration method for solving multispecies Lotka Volterra equations B. Batiha, M.S.M. Noorani, I. Hashim

More information

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method

Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational Iteration Method ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.7(29) No.1,pp.67-74 Numerical Simulation of the Generalized Hirota-Satsuma Coupled KdV Equations by Variational

More information

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model

A Study of the Variational Iteration Method for Solving. Three Species Food Web Model Int. Journal of Math. Analysis, Vol. 6, 2012, no. 16, 753-759 A Study of the Variational Iteration Method for Solving Three Species Food Web Model D. Venu Gopala Rao Home: Plot No.159, Sector-12, M.V.P.Colony,

More information

3. Solving wave and wave-like equations by TAM

3. Solving wave and wave-like equations by TAM A Semi-Analytical Iterative Method for Solving Linear and Nonlinear Partial Differential Equations M.A.AL-Jawary 1, Areej Salah Mohammed 2 1,2 Department of mathematics, Baghdad University, College of

More information

Application of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation

Application of linear combination between cubic B-spline collocation methods with different basis for solving the KdV equation Computational Methods for Differential Equations http://cmde.tabrizu.ac.ir Vol. 4, No. 3, 016, pp. 191-04 Application of linear combination between cubic B-spline collocation methods with different basis

More information

Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian Decomposition Method

Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian Decomposition Method World Applied Sciences Journal 19 (1): 171-17, 1 ISSN 1818? 95 IDOSI Publications, 1 DOI: 1.589/idosi.was.1.19.1.581 Free Vibration Analysis of Uniform Beams with Arbitrary Number of Cracks by using Adomian

More information

COMPARISON BETWEEN ADOMIAN METHOD AND LAST SQUARE METHOD FOR SOLVING HIV/AIDS NON-LINEAR SYSTEM

COMPARISON BETWEEN ADOMIAN METHOD AND LAST SQUARE METHOD FOR SOLVING HIV/AIDS NON-LINEAR SYSTEM www.arpapress.com/volumes/vol15issue2/ijrras_15_2_17.pdf COMPARISON BETWEEN ADOMIAN METHOD AND LAST SQUARE METHOD FOR SOLVING HIV/AIDS NON-LINEAR SYSTEM Meraihi Mouna & Rahmani Fouad Lazhar Department

More information

Adomian s Decomposition Method for Solving Singular System of Transistor Circuits

Adomian s Decomposition Method for Solving Singular System of Transistor Circuits Applied Mathematical Sciences, Vol. 6, 2012, no. 37, 1819-1826 Adomian s Decomposition Method for Solving Singular System of Transistor Circuits K. Krishnaveni veni.fairy@gmail.com S. Raja Balachandar

More information

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation

An Efficient Numerical Method for Solving. the Fractional Diffusion Equation Journal of Applied Mathematics & Bioinformatics, vol.1, no.2, 2011, 1-12 ISSN: 1792-6602 (print), 1792-6939 (online) International Scientific Press, 2011 An Efficient Numerical Method for Solving the Fractional

More information

Exact Analytic Solutions for Nonlinear Diffusion Equations via Generalized Residual Power Series Method

Exact Analytic Solutions for Nonlinear Diffusion Equations via Generalized Residual Power Series Method International Journal of Mathematics and Computer Science, 14019), no. 1, 69 78 M CS Exact Analytic Solutions for Nonlinear Diffusion Equations via Generalized Residual Power Series Method Emad Az-Zo bi

More information

Application of the Decomposition Method of Adomian for Solving

Application of the Decomposition Method of Adomian for Solving Application of the Decomposition Method of Adomian for Solving the Pantograph Equation of Order m Fatemeh Shakeri and Mehdi Dehghan Department of Applied Mathematics, Faculty of Mathematics and Computer

More information

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations

A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations Applied Mathematical Sciences, Vol. 4, 21, no. 39, 1931-194 A Variational Iterative Method for Solving the Linear and Nonlinear Klein-Gordon Equations M. Hussain and Majid Khan Department of Sciences and

More information

SOLVING NONLINEAR EQUATIONS USING A NEW TENTH-AND SEVENTH-ORDER METHODS FREE FROM SECOND DERIVATIVE M.A. Hafiz 1, Salwa M.H.

SOLVING NONLINEAR EQUATIONS USING A NEW TENTH-AND SEVENTH-ORDER METHODS FREE FROM SECOND DERIVATIVE M.A. Hafiz 1, Salwa M.H. International Journal of Differential Equations and Applications Volume 12 No. 4 2013, 169-183 ISSN: 1311-2872 url: http://www.ijpam.eu doi: http://dx.doi.org/10.12732/ijdea.v12i4.1344 PA acadpubl.eu SOLVING

More information

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method

Approximate Solution of an Integro-Differential Equation Arising in Oscillating Magnetic Fields Using the Differential Transformation Method IOSR Journal of Mathematics (IOSR-JM) e-issn: 2278-5728, p-issn: 2319-765X. Volume 13, Issue 5 Ver. I1 (Sep. - Oct. 2017), PP 90-97 www.iosrjournals.org Approximate Solution of an Integro-Differential

More information

Differential Transform Method for Solving. Linear and Nonlinear Systems of. Ordinary Differential Equations

Differential Transform Method for Solving. Linear and Nonlinear Systems of. Ordinary Differential Equations Applied Mathematical Sciences, Vol 5, 2011, no 70, 3465-3472 Differential Transform Method for Solving Linear and Nonlinear Systems of Ordinary Differential Equations Farshid Mirzaee Department of Mathematics

More information

Research Article Solution of (3 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method

Research Article Solution of (3 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform Method Mathematical Problems in Engineering Volume 212, Article ID 5182, 14 pages doi:1.1155/212/5182 Research Article Solution of ( 1)-Dimensional Nonlinear Cubic Schrodinger Equation by Differential Transform

More information

A note on the Adomian decomposition method for generalized Burgers-Fisher equation

A note on the Adomian decomposition method for generalized Burgers-Fisher equation INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTERS IN SIMULATION Volume 11, 017 A note on the Adomian decomposition method for generalized Burgers-Fisher equation M. Meštrović, E. Ocvirk and D. Kunštek

More information

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method

Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method International Differential Equations Volume 2012, Article ID 975829, 12 pages doi:10.1155/2012/975829 Research Article Solving Fractional-Order Logistic Equation Using a New Iterative Method Sachin Bhalekar

More information

Chapter 2 Analytical Approximation Methods

Chapter 2 Analytical Approximation Methods Chapter 2 Analytical Approximation Methods 2.1 Introduction As we mentioned in the previous chapter, most of the nonlinear ODEs have no explicit solutions, i.e., solutions, which are expressible in finite

More information

Solving Delay Differential Equations By Elzaki Transform Method

Solving Delay Differential Equations By Elzaki Transform Method SCITECH Volume 3, Issue 1 RESEARCH ORGANISATION February 22, 2017 Boson Journal of Modern Physics www.scitecresearch.com Solving Delay Differential Equations By Elzaki Transform Method Ebimene, J. Mamadu

More information

ADOMIAN DECOMPOSITION METHOD APPLIED TO LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS

ADOMIAN DECOMPOSITION METHOD APPLIED TO LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS International Journal of Pure and Applied Mathematics Volume 118 No. 3 218, 51-51 ISSN: 1311-88 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu doi: 1.12732/ijpam.v118i3.1

More information

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç

THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION. Haldun Alpaslan Peker, Onur Karaoğlu and Galip Oturanç Mathematical and Computational Applications, Vol. 16, No., pp. 507-513, 011. Association for Scientific Research THE DIFFERENTIAL TRANSFORMATION METHOD AND PADE APPROXIMANT FOR A FORM OF BLASIUS EQUATION

More information

Adomian Polynomial and Elzaki Transform Method of Solving Third Order Korteweg-De Vries Equations

Adomian Polynomial and Elzaki Transform Method of Solving Third Order Korteweg-De Vries Equations Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 15, Number 3 (2019), pp 261 277 c Research India Publications http://www.ripublication.com Adomian Polynomial and Elzaki Transform

More information

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS

VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS Commun. Korean Math. Soc. 24 (29), No. 4, pp. 65 615 DOI 1.4134/CKMS.29.24.4.65 VARIATION OF PARAMETERS METHOD FOR SOLVING SIXTH-ORDER BOUNDARY VALUE PROBLEMS Syed Tauseef Mohyud-Din, Muhammad Aslam Noor,

More information

Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev collocation method

Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev collocation method NTMSCI 1, No 1, 33-46 2016) 33 Journal of Abstract and Computational Mathematics http://wwwntmscicom/jacm Solving systems of ordinary differential equations in unbounded domains by exponential Chebyshev

More information

Some notes on a second-order random boundary value problem

Some notes on a second-order random boundary value problem ISSN 1392-5113 Nonlinear Analysis: Modelling and Control, 217, Vol. 22, No. 6, 88 82 https://doi.org/1.15388/na.217.6.6 Some notes on a second-order random boundary value problem Fairouz Tchier a, Calogero

More information

Method of Successive Approximations for Solving the Multi-Pantograph Delay Equations

Method of Successive Approximations for Solving the Multi-Pantograph Delay Equations Gen. Math. Notes, Vol. 8, No., January, pp.3-8 ISSN 9-784; Copyright c ICSRS Publication, www.i-csrs.org Available free online at http://www.geman.in Method of Successive Approximations for Solving the

More information

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method

Solutions of the coupled system of Burgers equations and coupled Klein-Gordon equation by RDT Method International Journal of Advances in Applied Mathematics and Mechanics Volume 1, Issue 2 : (2013) pp. 133-145 IJAAMM Available online at www.ijaamm.com ISSN: 2347-2529 Solutions of the coupled system of

More information

Approximate Solution of BVPs for 4th-Order IDEs by Using RKHS Method

Approximate Solution of BVPs for 4th-Order IDEs by Using RKHS Method Applied Mathematical Sciences, Vol. 6, 01, no. 50, 453-464 Approximate Solution of BVPs for 4th-Order IDEs by Using RKHS Method Mohammed Al-Smadi Mathematics Department, Al-Qassim University, Saudi Arabia

More information

A curvature-unified equation for a non-newtonian power-law fluid flow

A curvature-unified equation for a non-newtonian power-law fluid flow Int. J. Adv. Appl. Math. and Mech. 2(3) (215) 72-77 (ISSN: 2347-2529) Journal homepage: www.ijaamm.com International Journal of Advances in Applied Mathematics and Mechanics A curvature-unified equation

More information

Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems

Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems Abstract Comparison of Optimal Homotopy Asymptotic Method with Homotopy Perturbation Method of Twelfth Order Boundary Value Problems MukeshGrover grover.mukesh@yahoo.com Department of Mathematics G.Z.S.C.E.T

More information

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method

Solution of Differential Equations of Lane-Emden Type by Combining Integral Transform and Variational Iteration Method Nonlinear Analysis and Differential Equations, Vol. 4, 2016, no. 3, 143-150 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/nade.2016.613 Solution of Differential Equations of Lane-Emden Type by

More information

DIfferential equations of fractional order have been the

DIfferential equations of fractional order have been the Multistage Telescoping Decomposition Method for Solving Fractional Differential Equations Abdelkader Bouhassoun Abstract The application of telescoping decomposition method, developed for ordinary differential

More information

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation

An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation Adv. Theor. Appl. Mech., Vol. 3, 21, no. 11, 513-52 An Analytic Study of the (2 + 1)-Dimensional Potential Kadomtsev-Petviashvili Equation B. Batiha and K. Batiha Department of Mathematics, Faculty of

More information

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD

SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD Journal of Science and Arts Year 15, No. 1(30), pp. 33-38, 2015 ORIGINAL PAPER SOLVING THE KLEIN-GORDON EQUATIONS VIA DIFFERENTIAL TRANSFORM METHOD JAMSHAD AHMAD 1, SANA BAJWA 2, IFFAT SIDDIQUE 3 Manuscript

More information

A Numerical Method to Compute the Complex Solution of Nonlinear Equations

A Numerical Method to Compute the Complex Solution of Nonlinear Equations Journal of Mathematical Extension Vol. 11, No. 2, (2017), 1-17 ISSN: 1735-8299 Journal of Mathematical Extension URL: http://www.ijmex.com Vol. 11, No. 2, (2017), 1-17 ISSN: 1735-8299 URL: http://www.ijmex.com

More information

On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings

On the effect of α-admissibility and θ-contractivity to the existence of fixed points of multivalued mappings Nonlinear Analysis: Modelling and Control, Vol. 21, No. 5, 673 686 ISSN 1392-5113 http://dx.doi.org/10.15388/na.2016.5.7 On the effect of α-admissibility and θ-contractivity to the existence of fixed points

More information

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems

Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value Problems Proceedings of the World Congress on Engineering 7 Vol I WCE 7, July 5-7, 7, London, U.K. Application of Homotopy Perturbation and Modified Adomian Decomposition Methods for Higher Order Boundary Value

More information

Numerical Analysis of Riccati equation using Differential Transform Method, He Laplace Maethod and Adomain Decomposition Method

Numerical Analysis of Riccati equation using Differential Transform Method, He Laplace Maethod and Adomain Decomposition Method Global Journal of Mathematical Sciences: Theory and Practical ISSN 0974-3200 Volume 9, Number 1 (2017), pp 31-50 International Research Publication House http://wwwirphousecom Numerical Analysis of Riccati

More information

Commun Nonlinear Sci Numer Simulat

Commun Nonlinear Sci Numer Simulat Commun Nonlinear Sci Numer Simulat xxx ) xxx xxx Contents lists available at ScienceDirect Commun Nonlinear Sci Numer Simulat journal homepage: wwwelseviercom/locate/cnsns A note on the use of Adomian

More information

Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method

Numerical Investigation of the Time Invariant Optimal Control of Singular Systems Using Adomian Decomposition Method Applied Mathematical Sciences, Vol. 8, 24, no. 2, 6-68 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ams.24.4863 Numerical Investigation of the Time Invariant Optimal Control of Singular Systems

More information

Homotopy Analysis Transform Method for Integro-Differential Equations

Homotopy Analysis Transform Method for Integro-Differential Equations Gen. Math. Notes, Vol. 32, No. 1, January 2016, pp. 32-48 ISSN 2219-7184; Copyright ICSRS Publication, 2016 www.i-csrs.org Available free online at http://www.geman.in Homotopy Analysis Transform Method

More information

A Numerical Scheme for Generalized Fractional Optimal Control Problems

A Numerical Scheme for Generalized Fractional Optimal Control Problems Available at http://pvamuedu/aam Appl Appl Math ISSN: 1932-9466 Vol 11, Issue 2 (December 216), pp 798 814 Applications and Applied Mathematics: An International Journal (AAM) A Numerical Scheme for Generalized

More information