Multiple Objective Linear Programming in Supporting Forest Management

Size: px
Start display at page:

Download "Multiple Objective Linear Programming in Supporting Forest Management"

Transcription

1 Multiple Objective Linear Programming in Supporting Forest Management Pekka Korhonen (December1998) International Institute for Applied Systems Analysis A-2361 Laxenburg, AUSTRIA and Helsinki School of Economics and Business Administration Runeberginkatu 14-16, Helsinki, FINLAND Tel Fax The research was supported, in part, by grants from the Foundation of the Helsinki School of Economics. All rights reserved. This study may not be reproduced in whole or in part without the author s permission. (Forthcoming in Proceedings of 2 nd Berkeley-Kvl Conference on Natural Resource Management and Workshop, August 6-12, 1998, Copenhagen.) D:\Projects\Kvl\kvl41.doc

2 Multiple Objective Linear Programming in Supporting Forest Management Pekka Korhonen, Helsinki School of Economics, Runeberginkatu 14-16, Helsinki, FINLAND, Tel: , Fax: , Home-page: Abstract. This paper gives a brief introduction into multiple objective linear programming and discusses its possibilities in the area of forest management. We overview basic concepts, formulations, and principles of solving multiple objective linear programming problems. As such problems s always require the intervention of a decision-maker behavioral aspectsare also considered. We use an application by Chang and Buongiorno [1981] to illustrate how a reference direction approach developed for multiple objective linear programming can be used to deal with a forest management problem. Keywords: Multiple Criteria, Multiple Objective Linear Programming, Interactive Approach, Forest Management. 1. Introduction Before taking a closer look at Multiple Objective Linear Programming (MOLP), it may be useful to first define the general concept Multiple Criteria Decision Making (MCDM). Many different definitions exist about what MCDM actually is, but most researchers working in the field might accept the following generalone: Multiple Criteria Decision Making (MCDM) refers to the solving of decision and planning problems involving multiple (generally conflicting) criteria. "Solving" means that a decision-maker (DM) will choose one "reasonable" alternative from among a set of available ones. It is also meaningful to define that the choice is irrevocable. For an MCDM-problem it is typical that no unique solution for the problem exists. Therefore to find a solution for MCDM-problems requires the intervention of a DM. In MCDM, the word "reasonable" is replaced by the words "efficient/nondominated". They will be defined later on. Actually the above definition is a strongly simplified description of the whole (multiple criteria) decision making process. In practice, MCDM-problems are not often so wellstructured that they can be considered just as a choice problem. Before a decision problem is ready to be "solved", the following questions require a lot of preliminary work: How to structure the problem? How to find essential criteria? How to handle uncertainty? These questions are by no means outside the interest area of MCDMresearchers. The Outranking Method by Roy [1973] and the AHP (the Analytic Hierarchy Process) developed by Saaty [1980] are examples of MCDM-methods, in which a lot of effort is devoted to problem structuring. Both methods are well known and widely used in practice. In both methods, the presence of multiple criteria is an essential feature, but the structuring of a problem is an even more important part of the solution process.

3 When the term "support" is used in connection with MCDM, we may adopt a broad perspective and refer with the term to all research associated with the relationship between the problem and the DM. In this paper we take a narrower perspective and focus on a very essential supporting problem in Multiple Criteria Decision Making: How to assist a DM to find the best solution from among a set of available "reasonable" alternatives, when the alternatives are evaluated by using several criteria? Available alternatives are assumed to be defined implicitly by means of a mathematical model. This kind of problem is referred to as a Multiple Criteria Design Problem or a Continuous Multiple Criteria Problem and the term Multiple Objective Programming (MOP) is used to refer to a corresponding mathematical model. In addition, when all constraints and objective functions are linear, the model is a Multiple Objective Linear Programming (MOLP) model. The paper consists of 7 sections. In Section 2, we give a brief introduction to some foundations of multiple objective linear programming. How to generate potential "reasonable" solutions for a DM's evaluation is considered in Section 3, and in Section 4, we review general principles to solve a multiple objective programming problem. In Section 5, a reference direction approach and its dynamic version Pareto Race is introduced. A public forest management problem is solved in Section 6. Concluding remarks are given in Section Multiple Objective Linear Programming The MOLP problem can be written in the general form as follows: max q = Cx s.t. (2.1) x X = {x Ax b, x 0} where x R n, b R m, the constraint matrix A R m n is of full rank m, and the objective function matrix C R k n. Set X R n is a feasible set and the space R n is called a variable space. The functions q i, i = 1, 2,, k are objective functions. The set Q = {q q = f(x), x X} R k is called a feasible region, and it is of special interest in MOLP. The space R k is called a criterion space. The MOLP-problem seldom has a unique solution, i.e. an optimal solution that simultaneously maximizes all objectives. Conceptually the multiple objective linear programming problem may be regarded as a value (utility) function maximization program: max v(q) s.t. q Q, (2.2) where v is a real-valued function, which is strictly increasing in the criterion space and defined at least in the feasible region Q. It maps the feasible region into a onedimensional value space R. Function v specifies the DM s preference structure over the

4 feasible region. However, the key assumption in multiple objective linear programming is that v is unknown. Solutions for MOLP-problems are all those alternatives which can be the solutions of some value function v: Q R. Those solutions are called efficient or nondominated depending on the space where the alternatives are considered. The term nondominated is used in the criterion space and efficient in the variable space. Any choice from among the set of efficient (nondominated) solutions is an acceptable and reasonable solution, unless we have no additional information about the DM's preference structure. Definition 1. In (2.1), x* X is efficient iff there does not exist another x X such that Cx Cx* and Cx Cx*. Definition 2. In (2.1), x* X is weakly efficient iff there does not exist another x X such that Cx > Cx*. Vectors q Q corresponding to efficient solutions are called nondominated criterion vectors and vectors q Q corresponding to weakly efficient solutions are called weakly nondominated criterion vectors. The set of all efficient solutions is called the efficient set, and the set of all nondominated criterion vectors is called the nondominated set. Figure 1 can be used to illustrate the definitions. A shaded area denotes a feasible region in the two-dimensional criterion space. A nondominated set is line [B,C]. All other points are dominated, but a set of weakly nondominated points also consists of lines [A, B) and (C, D] - in addition to line [B,C]. For other points we can always find a better point on both criteria. For instance, for g 1 point q 1 is clearly a dominating point. The final ( best ) solution q Q of the problem (2.1) is called the Most Preferred Solution. It is a solution preferred by the DM to all other solutions. At the conceptual level, we may think it is the solution maximizing an (unknown) value function (2.2). How to find this solution is a key problem in MCDM, in general. Unfortunately, the above characterization of the most preferred solution is not very operational, because no system allows the DM to simultaneously compare the final solution to all other solutions with an aim to check if it is really the most preferred or not. It is also just as difficult to maximize a function we do not know. For example, some properties for a good system arethat it convinces the DM that the final solution is the most preferred one, does not require too much time from the DM to find the final solutionin order to give reliable enough information about alternatives, etc. Even if it is impossible to say which system provides the best support for a DM for his multiple objective linear programming problem, all proper systems have to be able to recognize, generate and operate with nondominated solutions.

5 3. Generating Nondominated Solutions Despite many variations among different methods of generating nondominated solutions, the ultimate principle is the same in all methods: a single objective optimization problem is solved to generate a new solution or solutions. The objective function of this single objective problem may be called a scalarizing function according to Wierzbicki [1980]. It typically has the original objectives and a set of parameters as its arguments. The form of the scalarizing function, as well as what parameters are used, depends on the assumptions made concerning the DM s preference structure and behavior. Two classes of parameters are widely used in multiple objective optimization: 1) weighting coefficients for objective functions and 2) reference/ aspiration/ reservation levels for objective function values. Based on those parameters, several ways exist to specify a scalarizing function. An important requirement is that this function completely characterizes the set of nondominated solutions: "for each parameter value, all solution vectors are nondominated, and for each nondominated criterion vector, there is at least one parameter value, which produces that specific criterion vector as a solution" (see, for theoretical considerations, e.g. Wierzbicki [1986]) A Linear Scalarizing Function A classic method to generate nondominated solutions is to use the weighted-sums of objective functions, i.e. to use the following linear scalarizing function: max {λ Cx x X}. (3.1) Using the parameter set Λ = {λ λ > 0} in the weighted-sums linear program we can completely characterize the efficient set. However, Λ is an open set, which causes difficulties in a mathematical optimization problem. If we use cl(λ) = {λ λ 0} instead, the efficiency of solution x cannot be guaranteed anymore. It is surely weaklyefficient, but not necessarily efficient. (See, e.g. Steuer [1986, p. 215 and 221].) When the weighted-sums are used to specify a scalarizing function in multiple objective linear programming (MOLP) problems, the optimal solution corresponding to nonextreme points of X is never unique. The set of optimal solutions always consists of at least one extreme point, or the solution is unbounded. In early methods, a common feature was to use λ Cx as a scalarizing function, limiting considerations to efficient extreme points (see, e.g., Zionts and Wallenius [1976]) A Chebyshev-type Scalarizing Function Currently, most solution methods are based on the use of a so-called Chebyshev-type scalarizing function first proposed by Wierzbicki [1980]. The same function was also used by Steuer and Choo [1983], but in a somewhat different form. We will refer to this function by the term achievement (scalarizing) function. The achievement (scalarizing) function projects any given (feasible or infeasible) point g R k onto the set of nondominated solutions. Point g is called a reference point, and its components

6 represent the desired values of the objective functions. These values are aspiration levels. called The simplest form of achievement function is: s(g, q, w) = max [ g k - q k w k, k K] (3.2) where w > 0 R k is a (given) vector of weights, g R k, and q Q. The vector w is used to scale the objective functions (roughly) onto the same scale and/or to control the direction of projection. By minimizing s(g, q, w) subject to q Q, we find a weakly nondominated solution vector q* (see, e.g. Wierzbicki [1980], [1986]). However, if the solution is unique for the problem, then q* is nondominated. If g Q is feasible, then q* g. To guarantee that only nondominated (instead of weakly nondominated) solutions are generated, more complicated forms for the achievement function have to be used, for example: s(g, q, w,ρ) = max k K [ g k - q k w k k ] + ρ (g i - q i ), (3.3) i=1 where ρ > 0 is small. In practice, we cannot operate with a definition "any positive value". We have to use a pre-specified value for ρ or to use a lexicographic formulation (see, e.g. Steuer [1986] or Korhonen and Halme [1996]. To apply the scalarizing function (3.3) is easy, because given g R k, the minimum of s(g, v, w, ρ) is found by solving the following LP-problem: k min ε + ρ (g i - q i ) i=1 s.t. (3.4) q Q ε (g i - q i ) / w i, i =1, 2,..., k, The problem (3.4) can be further written as: k min ε + ρ (g i - q i ) i=1 s.t. (3.5) q Q q + εw - z = g z 0.

7 To illustrate the use of the achievement scalarizing function, consider a two-criteria problem with a feasible region having five extreme points {(0,0), (0,3), (2,3), (7,0.5), (7,0)}, as shown in Figure 1. q 2 4 A B 2 g 1 q 1 2 q C g Figure 1. Illustrating the projection of a feasible and an infeasible aspiration level point onto the nondominated surface. In Fig.1, the thick solid lines describe the indifference curves when ρ = 0 in the achievement scalarizing function. The thin dotted lines stand for the case ρ > 0. Note that the line from (2,3) to (8,0) is nondominated and the lines from (0,3) to (2,3) (except point (2,3)) and (7,0.5) to (7,0) (except point (7,0.5)) are only weaklynondominated, but dominated. Let us assume that the DM first specifies a feasible aspiration level point g 1 = (2,1). Using a weight vector w = (2,1), the minimum value of the achievement scalarizing function (-1) is reached at a point v 1 = (4,2) (cf. Figure 2). Correspondingly, if an aspiration level point is infeasible, say g 2 = (8,2), then the minimum of the achievement scalarizing function (+1) is reached at point v 2 = (6,1). When a feasible point dominates an aspiration level point, then the value of the achievement scalarizing function is always negative; otherwise it is nonnegative. It is zero, if an aspiration level point is weakly-nondominated. D 8 q 1 4. Solving Multiple Objective Problems Currently, the systems developed for solving multiple objective (linear) programming problems are interactive. The specifics of these procedures vary, but they have several common characteristics. For example, at each iteration a solution, or a set of solutions are generated for a DM s examination. As a result of the examination, the DM inputs information in the form of tradeoffs, pairwise comparisons, aspiration levels, etc. The responses are used to generate a presumably improved solution. The ultimate goal is to find the most preferred solution of the DM. Which search technique and termination rule is used heavilydepends on the underlying assumptions postulated about the behavior

8 of the DM and the way in which these assumptions are implemented. In MCDMresearch there is a growing interest in the behavioral realism of such assumptions. Based on the role that the value function (2.3) is supposed to play in the analysis, we can classify the assumptions into three categories: 1. Assume the existence of a value function v, and assess it explicitly. (Actually, this approach is not usually classified under the MCDM-category.) 2. Assume the existence of a stable value function v, but do not attempt to assess it explicitly. Make assumptions of the general functional form of the value function. (see, e.g. Geoffrion, Dyer, and Feinberg [1972]; Zionts and Wallenius [1976]). 3. Do not assume the existence of a stable value function v, either explicit, or implicit (see, e.g. (Wierzbicki [1980]; Steuer and Choo [1983]). For an excellent review of several interactive multiple criteria procedures, see Steuer [1986]. See also for surveys Hwang and Masud [1979], Shin and Ravindran [1991], and White [1990]). Other well-known books which provide a deeper background and additional references especially in the field of Multiple Objective Optimization include Cohon [1978], Haimes et al. [1990], Ignizio [1976], Sawaragi et al. [1985], Yu [1985], and Zeleny [1982]. 5. A Reference Direction Approach Our purpose is to describe an interactive method called a Reference Direction Approach developed by Korhonen and Laakso [1986]. The Achievement Scalarizing Function is the main theoretical basis on which the method lies. By parametrizing the function, it is possible to project the whole vector onto the nondominated frontier as originally proposed by Korhonen and Laakso [1986]. The vector to be projected is called a Reference Direction Vector and the method is called Reference Direction Approach, correspondingly. When a direction is projected onto the nondominated frontier, a curve traversing across the nondominated frontier is obtained. Then an interactive line search is performed along this curve. The idea enables the DM to make a continuous search on the nondominated frontier. The corresponding mathematical model is a simple modification from the original model (3.5) developed for projecting a single point: k min ε + ρ (g i - q i ) i=1 s.t. (5.1) x X q + εw - z = g + tr z 0, where t : 0 and r R k is a reference direction. In the original approach, a reference direction was specified as a vector starting from the current solution and

9 passing through the aspiration levels. The DM was asked to give aspiration levels for the criteria. The basic idea of the original method is illustrated in Figure 2. A Reference Direction g i Projection of the Reference Direction q i+1 Nondominated Set q i Feasible Region Figure 2. Illustration of the Reference Direction Approach Korhonen and Wallenius [1988] improved upon the original procedure by making the specification of a reference direction dynamic. The dynamic version was called Pareto Race. In Pareto Race, the DM can freely move in any direction on the nondominated frontier he/she likes, and no restrictive assumptions concerning the DM s behavior are made. Furthermore, the objectives and constraints are presented in a uniform manner. Thus, their role can also be changed during the search process. The method and its implementation is called Pareto Race. The whole software package consisting of Pareto Race is called VIG (Korhonen [1987]). In Pareto Race, a reference direction r is determined by the system on the basis of preference information received from the DM. By pressing number keys corresponding to the ordinal numbers of the objectives, the DM expresses which objectives he/she would like to improve and how strongly. In this way he/she implicitly specifies a reference direction. Figure 3 shows the Pareto Race interface for the search. Thus Pareto Race is a visual, dynamic, search procedure for exploring the nondominated frontier of a multiple objective linear programming problem. The user sees the objective function values on a display in numeric form and as bar graphs, as he/she travels along the nondominated frontier. The keyboard controls include an accelerator, gears, brakes, and a steering mechanism. The search on the nondominated frontier is like driving a car. The DM can, e.g., increase/decrease the speed, make a turn at any moment he/she likes. To implement those features, Pareto Race uses certain control mechanisms, which are controlled by the following keys:

10 (SPACE) BAR: An Accelerator Proceed in the current direction at constant speed. F1: Gears (Backward) Increase speed in the backward direction. F2: Gears (Forward) Increase speed in the forward direction. F3: Fix Use the current value of objective i as the worst acceptable value. F4: Relax Relax the bound determined with key F3. F5: Brakes Reduce speed. F10: Exit num: Turn Change the direction of motion by increasing the component of the reference direction corresponding to the goal's ordinal number i [1, k] pressed by DM. Pareto Race does not specify restrictive behavioral assumptions for a DM. He/she is free to make a search on the nondominated surface, until he/she believes that the solution found is his/her most preferred one. 6. A Case: Model for Multiple Use Forestry Chang and Buongiorno [1981] studied a resource allocation problem with the aim of developing a methodology for the problem of multiple use planning in public forests. They developed a mathematical model for this problem by combining goal programming and input-output analysis. 1 A public forest provides society with several products and services. The management problem is to decide how much of each product and service should be provided. Since many management activities use the output of other management activities as their input, input-output tables are a convenient way to describe the relationships between various activities. First, the authors introduced an optimization model based on inputoutput tables, where the weighted sum of the final demand vector was maximized. The prices for outputs were proposed to be used as weights. Because there is not realistic to assume the availability of such prices, the authors proposed the use of the goal programming model, in which a desired goal was set to each component of the final demand vector. The authors were not fully satisfied with their model because of 1 Description of a public forest management problem is adopted from Chang and Buongiorno [1981]

11 the lack of generality. To set goals, priorities, and weights is tentative in the beginning. That s why to use the model requires several trial and error iterations. Chang and Buongiorno [1981] did not report their original model in their paper, but only a small hypothetical example. In the following, we use their example to illustrate how an interactive multiple objective linear programming method (a reference direction approach) provides a flexible tool to deal with this problem. The problem consists of eight management activities (G1 G8) which are listed in Table 1 together with their management goals. Table 1. Management Activities and Goals for Hypothetical Multiple Use Problem # Activity Management Goal G1 Timber Harvest Supervise 5350 acres of timber harvest G2 Timber Sale Preparation Prepare 6200 acres of timber sale G3 Merchantable Stand Management Maintain acres of merchantable growing stock at the end of the year G4 Non- Merchantable Stand Management Maintain acres of non-merchantable stand G5 Camping Management Provide visitor days of camping opportunities G6 Snowmobiling Management Provide visitor days of snowmobiling opportunities G7 Road Maintenance Maintain 24 miles of roads for general uses G8 Road Construction Construct 1.5 miles of roads for general uses To produce outputs also requires resources. Seven resources are assumed to be available to achieve the various goals are listed in Table 2. Table 2. Available Resources for Hypothetical Multiple Use Forest Management Problem # Type Amount R1 Merchantable Growing Stock acres R2 Non-Merchantable Growing Stock acres R3 Camp Ground 582 tent pads R4 Snowmobile Trails 580 miles R5 Roads 340 miles R6 Manpower 7225 man-days R7 Budget $ The structure of the model is given in Table 3. The coefficients on each column indicate the inputs required to produce one unit of output for that particular management activity. For instance, column 5 (x 5 ) in Table 3 shows that to produce one camping day requires 0.93 acres of merchantable stands (G3), 12.17/1000 miles of road maintenance (G7), 1.74 tent pads (R3), 7.54 man-days (R6), and $440 (R7). All goals (G1 G8) are formulated as the objective functions to be maximized. In the original model, the right-hand column corresponding to those rows consisted of

12 goal values (Table 1), and to each row a positive and negative deviation variable was attached. Negative deviations were minimized. Table 3. The Multiple Objective Linear Programming Model for the Hypothetical Multiple Use Management Problem x 1 x 2 x 3 x 4 x 5 x 6 x 7 ** x 8 ** RHS G1 1 max G2 1 max G max G max G5 1 max G6 1 max G7* max G8* max R R R R R R R * ) The row values are multiplied by 1000 ** ) The coefficients are given for 1/1000 miles To solve the problem we use Pareto Race as illustrated in Figure 3. Goal 1 (max ): Timber Har ==> Goal 2 (max ): Timber Sal ==> Goal 3 (max ): MerchSMan <== Goal 4 (max ): NonMerchSM <== Goal 5 (max ): Camping ==> Goal 6 (max ): Snowmobil ==> Goal 7 (max ): Road Maint <== Goal 8 (max ): Road Const <== Bar: Accelerator F1: Gears (B) F3: Fix Pareto Race num: Turn F5: Brakes F2: Gears (F) F4: Relax F10: Exit Figure 3. An Screen Demonstrating the Use of Pareto Race

13 Pareto Race provides the possibility to freely search the efficient frontier. It does not require the user to give any priorities or weights. Using function keys, the user may walk around the frontier. There is no need to apriori specify any fixed goal values. The user can also immediately observe the dependencies between different goals. The solution displayed in Figure 3 corresponds to the solution reported in the paper as the first one. However, by using Pareto Race we may search any part of the efficient frontier. We can also study which constraints are critical or which objectives are critical for trying to improve the values of the other objectives. 7. Conclusion In this article, we have given a brief introduction to the main principles for solving multiple objective linear programming problems. We have also demonstrated with a case study picked from forest literature how a multiple objective linear programming approach can be used to support forest planning. The problem was solved by using Pareto Race (Korhonen and Wallenius [1988]) that is a dynamic version of a Reference Direction Approach originally developed by Korhonen and Laakso [1986]. References Chang, S. and Buongiorno, J. (1981), A Programming Model for Multiple Use Forestry, Journal of Environmental Management, 13, Cohon, J. (1978), Multiobjective Programming and Planning, Academic Press, New York. Geoffrion, A., Dyer, J., and Feinberg, A. (1972). "An Interactive Approach for Multi- Criterion Optimization, with an Application to the Operation of an Academic Department", Management Science 19, pp Haimes, Y., Tarvainen, K., Shima, T., and Thadathil, J. (1990), Hierarchical Multiobjective Analysis of Large-Scale Systems, New York, Hemisphere Publishing Company. Hwang, C. and Masud, A. (1979), Multiple Objective Decision Making - Methods and Applications: A State-of-the-Art Survey, Springer, Berlin. Ignizio, J. (1976), Goal Programming and Extensions, D. C. Heath, Lexington, Mass. Korhonen, P. (1987), "VIG - A Visual Interactive Support System for Multiple Criteria Decision Making", Belgian J. of OR, Statistics and Computer Science 27, Korhonen, P. and Halme, M. (1996): "Using Lexicographic Parametric Programming for Searching a Nondominated Set in Multiple Objective Linear Programming", Journal of Multi-Criteria Decision Analysis, Vol. 5, N:o 4, pp

14 Korhonen, P., and Laakso, J. (1986). "A Visual Interactive Method for Solving the Multiple Criteria Problem", European Journal of Operational Research 24, pp Korhonen, P. and Wallenius, J. (1988), "A Pareto Race", Naval Research Logistics 35, Roy, B. (1973), "How outranking relation helps multiple criteria decision making", in: J. Cochrane and M. Zeleny (eds.), Multiple Criteria Decision Making, University of South Carolina Press, Columbia, SC, Saaty, T. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York. Sawaragi, Y., Nakayama, H. and Tanino, T. (1985), Theory of Multiobjective Optimization, Academic Press, New York. Shin, W. and Ravindran, A. (1991), "Interactive Multiple Objective Optimization: Survey I - Continuous Case", Computers Ops Res. 18, Steuer, R.E. (1986), Multiple Criteria Optimization: Theory, Computation, and Application, Wiley, New York. Steuer, R. and Choo, E.-U. (1983), "An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming", Mathematical Programming 26, White, D. (1990), "A Bibliography on the Applications of Mathematical Programming Multiple-Objective Methods", J. Opl Res. Soc. 41, Wierzbicki, A. (1980), The Use of Reference Objectives in Multiobjective Optimization, in G. Fandel and T. Gal (Eds.), Multiple Objective Decision Making, Theory and Application, Springer-Verlag, New York. Wierzbicki, A. (1986), On the Completeness and Constructiveness of Parametric Characterizations to Vector Optimization Problems, OR Spektrum 8, Yu, P.-L. (1985), Multiple Criteria Decision Making: Concepts, Techniques, and Extensions, Plenum, New York. Zeleny, M. (1982), Multiple Criteria Decision Making, McGraw-Hill, New York. Zionts, S. and Wallenius, J. (1976). An Interactive Programming Method for Solving the Multiple Criteria Problem, Management Science 22,

Searching the Efficient Frontier in Data Envelopment Analysis INTERIM REPORT. IR-97-79/October. Pekka Korhonen

Searching the Efficient Frontier in Data Envelopment Analysis INTERIM REPORT. IR-97-79/October. Pekka Korhonen IIASA International Institute for Applied Systems Analysis A-2361 Laxenburg Austria Tel: +43 2236 807 Fax: +43 2236 71313 E-mail: info@iiasa.ac.at Web: www.iiasa.ac.at INTERIM REPORT IR-97-79/October Searching

More information

TIES598 Nonlinear Multiobjective Optimization A priori and a posteriori methods spring 2017

TIES598 Nonlinear Multiobjective Optimization A priori and a posteriori methods spring 2017 TIES598 Nonlinear Multiobjective Optimization A priori and a posteriori methods spring 2017 Jussi Hakanen jussi.hakanen@jyu.fi Contents A priori methods A posteriori methods Some example methods Learning

More information

Multiobjective optimization methods

Multiobjective optimization methods Multiobjective optimization methods Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi spring 2014 TIES483 Nonlinear optimization No-preference methods DM not available (e.g. online optimization)

More information

USING LEXICOGRAPHIC PARAMETRIC PROGRAMMING FOR IDENTIFYING EFFICIENT UNITS IN DEA

USING LEXICOGRAPHIC PARAMETRIC PROGRAMMING FOR IDENTIFYING EFFICIENT UNITS IN DEA Pekka J. Korhonen Pyry-Antti Siitari USING LEXICOGRAPHIC PARAMETRIC PROGRAMMING FOR IDENTIFYING EFFICIENT UNITS IN DEA HELSINKI SCHOOL OF ECONOMICS WORKING PAPERS W-381 Pekka J. Korhonen Pyry-Antti Siitari

More information

Multiple Criteria Optimization: Some Introductory Topics

Multiple Criteria Optimization: Some Introductory Topics Multiple Criteria Optimization: Some Introductory Topics Ralph E. Steuer Department of Banking & Finance University of Georgia Athens, Georgia 30602-6253 USA Finland 2010 1 rsteuer@uga.edu Finland 2010

More information

Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted Interval Approximation

Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted Interval Approximation Advances in Operations Research Volume 202, Article ID 57470, 7 pages doi:0.55/202/57470 Research Article Deriving Weights of Criteria from Inconsistent Fuzzy Comparison Matrices by Using the Nearest Weighted

More information

International Journal of Information Technology & Decision Making c World Scientific Publishing Company

International Journal of Information Technology & Decision Making c World Scientific Publishing Company International Journal of Information Technology & Decision Making c World Scientific Publishing Company A MIN-MAX GOAL PROGRAMMING APPROACH TO PRIORITY DERIVATION IN AHP WITH INTERVAL JUDGEMENTS DIMITRIS

More information

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization

Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization Computing Efficient Solutions of Nonconvex Multi-Objective Problems via Scalarization REFAIL KASIMBEYLI Izmir University of Economics Department of Industrial Systems Engineering Sakarya Caddesi 156, 35330

More information

A DIMENSIONAL DECOMPOSITION APPROACH TO IDENTIFYING EFFICIENT UNITS IN LARGE-SCALE DEA MODELS

A DIMENSIONAL DECOMPOSITION APPROACH TO IDENTIFYING EFFICIENT UNITS IN LARGE-SCALE DEA MODELS Pekka J. Korhonen Pyry-Antti Siitari A DIMENSIONAL DECOMPOSITION APPROACH TO IDENTIFYING EFFICIENT UNITS IN LARGE-SCALE DEA MODELS HELSINKI SCHOOL OF ECONOMICS WORKING PAPERS W-421 Pekka J. Korhonen Pyry-Antti

More information

Conjoint measurement

Conjoint measurement Conjoint measurement A brief introduction Denis Bouyssou CNRS LAMSADE Paris, France MCDM Summer School École Centrale 2010 Typical problem Motivation Comparing holiday packages cost # of days travel time

More information

REMOVING INCONSISTENCY IN PAIRWISE COMPARISON MATRIX IN THE AHP

REMOVING INCONSISTENCY IN PAIRWISE COMPARISON MATRIX IN THE AHP MULTIPLE CRITERIA DECISION MAKING Vol. 11 2016 Sławomir Jarek * REMOVING INCONSISTENCY IN PAIRWISE COMPARISON MATRIX IN THE AHP DOI: 10.22367/mcdm.2016.11.05 Abstract The Analytic Hierarchy Process (AHP)

More information

Mathematical foundations of the methods for multicriterial decision making

Mathematical foundations of the methods for multicriterial decision making Mathematical Communications 2(1997), 161 169 161 Mathematical foundations of the methods for multicriterial decision making Tihomir Hunjak Abstract In this paper the mathematical foundations of the methods

More information

Integer Programming Duality in Multiple Objective Programming

Integer Programming Duality in Multiple Objective Programming Integer Programming Duality in Multiple Objective Programming Kathrin Klamroth 1 Jørgen Tind 1 Sibylle Zust 2 03.07.2003 Abstract The weighted sums approach for linear and convex multiple criteria optimization

More information

Synchronous Usage of Parameterized Achievement Scalarizing Functions in Interactive Compromise Programming

Synchronous Usage of Parameterized Achievement Scalarizing Functions in Interactive Compromise Programming Synchronous Usage of Parameterized Achievement Scalarizing Functions in Interactive Compromise Programming Yury Nikulin and Volha Karelkina University of Turku, Department of Mathematics and Statistics

More information

New Reference-Neighbourhood Scalarization Problem for Multiobjective Integer Programming

New Reference-Neighbourhood Scalarization Problem for Multiobjective Integer Programming BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 3 No Sofia 3 Print ISSN: 3-97; Online ISSN: 34-48 DOI:.478/cait-3- New Reference-Neighbourhood Scalariation Problem for Multiobjective

More information

Tolerance and critical regions of reference points: a study of bi-objective linear programming models

Tolerance and critical regions of reference points: a study of bi-objective linear programming models Tolerance and critical regions of reference points: a study of biobjective linear programg models Ana Rosa Borges ISEC, Coimbra Polytechnic Institute, Rua Pedro Nunes, Quinta de Nora, 3399 and INESC Rua

More information

Multicriteria Decision Making Achievements and Directions for Future Research at IIT-BAS

Multicriteria Decision Making Achievements and Directions for Future Research at IIT-BAS BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 9, No 4 Sofia 2009 Multicriteria Decision Maing Achievements and Directions for Future Research at IIT-BAS Krasimira Genova,

More information

Interactive Evolutionary Multi-Objective Optimization and Decision-Making using Reference Direction Method

Interactive Evolutionary Multi-Objective Optimization and Decision-Making using Reference Direction Method Interactive Evolutionary Multi-Objective Optimization and Decision-Making using Reference Direction Method Kalyanmoy Deb Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur,

More information

Notes on the Analytic Hierarchy Process * Jonathan Barzilai

Notes on the Analytic Hierarchy Process * Jonathan Barzilai Notes on the Analytic Hierarchy Process * by Jonathan Barzilai Proceedings of the NSF Design and Manufacturing Research Conference pp. 1 6, Tampa, Florida, January 2001 * Research supported in part by

More information

Decision analysis, lecture 2 MAA-C Statistical and Stochastic Methods in Engineering,

Decision analysis, lecture 2 MAA-C Statistical and Stochastic Methods in Engineering, Decision analysis, lecture 2 MAA-C3001 - Statistical and Stochastic Methods in Engineering, Antti Punkka, Systems Analysis Laboratory, Dept. of Mathematics and Systems Analysis Today From 1 to several

More information

A Group Analytic Network Process (ANP) for Incomplete Information

A Group Analytic Network Process (ANP) for Incomplete Information A Group Analytic Network Process (ANP) for Incomplete Information Kouichi TAJI Yousuke Sagayama August 5, 2004 Abstract In this paper, we propose an ANP framework for group decision-making problem with

More information

Chapter 2 An Overview of Multiple Criteria Decision Aid

Chapter 2 An Overview of Multiple Criteria Decision Aid Chapter 2 An Overview of Multiple Criteria Decision Aid Abstract This chapter provides an overview of the multicriteria decision aid paradigm. The discussion covers the main features and concepts in the

More information

Włodzimierz Ogryczak. Warsaw University of Technology, ICCE ON ROBUST SOLUTIONS TO MULTI-OBJECTIVE LINEAR PROGRAMS. Introduction. Abstract.

Włodzimierz Ogryczak. Warsaw University of Technology, ICCE ON ROBUST SOLUTIONS TO MULTI-OBJECTIVE LINEAR PROGRAMS. Introduction. Abstract. Włodzimierz Ogryczak Warsaw University of Technology, ICCE ON ROBUST SOLUTIONS TO MULTI-OBJECTIVE LINEAR PROGRAMS Abstract In multiple criteria linear programming (MOLP) any efficient solution can be found

More information

Decisions with multiple attributes

Decisions with multiple attributes Decisions with multiple attributes A brief introduction Denis Bouyssou CNRS LAMSADE Paris, France JFRO December 2006 Introduction Aims mainly pedagogical present elements of the classical theory position

More information

Multicriteria Framework for Robust-Stochastic Formulations of Optimization under Uncertainty

Multicriteria Framework for Robust-Stochastic Formulations of Optimization under Uncertainty Multicriteria Framework for Robust-Stochastic Formulations of Optimization under Uncertainty Alexander Engau alexander.engau@ucdenver.edu Mathematical and Statistical Sciences University of Colorado Denver

More information

A DEA- COMPROMISE PROGRAMMING MODEL FOR COMPREHENSIVE RANKING

A DEA- COMPROMISE PROGRAMMING MODEL FOR COMPREHENSIVE RANKING Journal of the Operations Research Society of Japan 2004, Vol. 47, No. 2, 73-81 2004 The Operations Research Society of Japan A DEA- COMPROMISE PROGRAMMING MODEL FOR COMPREHENSIVE RANKING Akihiro Hashimoto

More information

3E4: Modelling Choice

3E4: Modelling Choice 3E4: Modelling Choice Lecture 6 Goal Programming Multiple Objective Optimisation Portfolio Optimisation Announcements Supervision 2 To be held by the end of next week Present your solutions to all Lecture

More information

Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach

Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach Comparison of Judgment Scales of the Analytical Hierarchy Process - A New Approach Klaus D. Goepel a a BPMSG Business Performance Management Singapore 2 Bedok Reservoir View #17-02, Singapore 479232 E-mail

More information

An Interactive Reference Direction Algorithm of the Convex Nonlinear Integer Multiobjective Programming

An Interactive Reference Direction Algorithm of the Convex Nonlinear Integer Multiobjective Programming БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ. BULGARIAN ACADEMY OF SCIENCES ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 48 PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 48 София. 1999. Sofia An Interactive

More information

Advances in the Use of MCDA Methods in Decision-Making

Advances in the Use of MCDA Methods in Decision-Making Advances in the Use of MCDA Methods in Decision-Making JOSÉ RUI FIGUEIRA CEG-IST, Center for Management Studies, Instituto Superior Técnico, Lisbon LAMSADE, Université Paris-Dauphine (E-mail : figueira@ist.utl.pt)

More information

Identifying Efficient Units in Large-Scale Dea Models

Identifying Efficient Units in Large-Scale Dea Models Pyry-Antti Siitari Identifying Efficient Units in Large-Scale Dea Models Using Efficient Frontier Approximation W-463 Pyry-Antti Siitari Identifying Efficient Units in Large-Scale Dea Models Using Efficient

More information

Towards Morphological Design of GSM Network

Towards Morphological Design of GSM Network !"$#%#'&(&)*+,.-0/%1(2(3/(45&(- #&5&)87:9;= @:

More information

Solving Multi-objective Generalized Solid Transportation Problem by IFGP approach

Solving Multi-objective Generalized Solid Transportation Problem by IFGP approach 778 Solving Multi-objective Generalized Solid Transportation Problem by IFGP approach Debi Prasad Acharya a,1, S.M.Kamaruzzaman b,2, Atanu Das c,3 a Department of Mathematics, Nabadwip Vidyasagar College,

More information

A Parametric Simplex Algorithm for Linear Vector Optimization Problems

A Parametric Simplex Algorithm for Linear Vector Optimization Problems A Parametric Simplex Algorithm for Linear Vector Optimization Problems Birgit Rudloff Firdevs Ulus Robert Vanderbei July 9, 2015 Abstract In this paper, a parametric simplex algorithm for solving linear

More information

Intro to Economic analysis

Intro to Economic analysis Intro to Economic analysis Alberto Bisin - NYU 1 Rational Choice The central gure of economics theory is the individual decision-maker (DM). The typical example of a DM is the consumer. We shall assume

More information

Research Article A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients

Research Article A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy Cost Coefficients Mathematical Problems in Engineering Volume 2011, Article ID 103437, 19 pages doi:10.1155/2011/103437 Research Article A Compensatory Approach to Multiobjective Linear Transportation Problem with Fuzzy

More information

Physics of Everyday Phenomena. Chapter 2

Physics of Everyday Phenomena. Chapter 2 Physics of Everyday Phenomena W. Thomas Griffith Juliet W. Brosing Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Question 2.1 Ben leaves his home

More information

Mixed-Integer Multiobjective Process Planning under Uncertainty

Mixed-Integer Multiobjective Process Planning under Uncertainty Ind. Eng. Chem. Res. 2002, 41, 4075-4084 4075 Mixed-Integer Multiobjective Process Planning under Uncertainty Hernán Rodera, Miguel J. Bagajewicz,* and Theodore B. Trafalis University of Oklahoma, 100

More information

Interactive Decision Making for Hierarchical Multiobjective Linear Programming Problems with Random Variable Coefficients

Interactive Decision Making for Hierarchical Multiobjective Linear Programming Problems with Random Variable Coefficients SCIS & ISIS 200, Dec. 8-2, 200, Okayama Convention Center, Okayama, Japan Interactive Decision Making for Hierarchical Multiobjective Linear Programg Problems with Random Variable Coefficients Hitoshi

More information

New Weighted Sum Model

New Weighted Sum Model Filomat 31:10 (2017), 2991 2998 https://doi.org/10.2298/fil1710991m Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat New Weighted

More information

Optimisation. 3/10/2010 Tibor Illés Optimisation

Optimisation. 3/10/2010 Tibor Illés Optimisation Optimisation Lectures 3 & 4: Linear Programming Problem Formulation Different forms of problems, elements of the simplex algorithm and sensitivity analysis Lecturer: Tibor Illés tibor.illes@strath.ac.uk

More information

Linear programming I João Carlos Lourenço

Linear programming I João Carlos Lourenço Decision Support Models Linear programming I João Carlos Lourenço joao.lourenco@ist.utl.pt Academic year 2012/2013 Readings: Hillier, F.S., Lieberman, G.J., 2010. Introduction to Operations Research, 9th

More information

Lecture 04 Decision Making under Certainty: The Tradeoff Problem

Lecture 04 Decision Making under Certainty: The Tradeoff Problem Lecture 04 Decision Making under Certainty: The Tradeoff Problem Jitesh H. Panchal ME 597: Decision Making for Engineering Systems Design Design Engineering Lab @ Purdue (DELP) School of Mechanical Engineering

More information

THE REFERENCE POINT METHOD WITH LEXICOGRAPHIC MIN-ORDERING OF INDIVIDUAL ACHIEVEMENTS

THE REFERENCE POINT METHOD WITH LEXICOGRAPHIC MIN-ORDERING OF INDIVIDUAL ACHIEVEMENTS Włodzimierz Ogryczak THE REFERENCE POINT METHOD WITH LEXICOGRAPHIC MIN-ORDERING OF INDIVIDUAL ACHIEVEMENTS INTRODUCTION Typical multiple criteria optimization methods aggregate the individual outcomes

More information

September Math Course: First Order Derivative

September Math Course: First Order Derivative September Math Course: First Order Derivative Arina Nikandrova Functions Function y = f (x), where x is either be a scalar or a vector of several variables (x,..., x n ), can be thought of as a rule which

More information

Local Approximation of the Efficient Frontier in Robust Design

Local Approximation of the Efficient Frontier in Robust Design Local Approximation of the Efficient Frontier in Robust Design Jinhuan Zhang, Graduate Assistant Department of Mechanical Engineering Clemson University Margaret M. Wiecek, Associate Professor Department

More information

An Interactive Reference Direction Algorithm of Nonlinear Integer Multiobjective Programming*

An Interactive Reference Direction Algorithm of Nonlinear Integer Multiobjective Programming* БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ. BULGARIAN ACADEMY OF SCIENCES ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА, 47 PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS, 47 София. 1998. Sofia An Interactive

More information

A Straightforward Explanation of the Mathematical Foundation of the Analytic Hierarchy Process (AHP)

A Straightforward Explanation of the Mathematical Foundation of the Analytic Hierarchy Process (AHP) A Straightforward Explanation of the Mathematical Foundation of the Analytic Hierarchy Process (AHP) This is a full methodological briefing with all of the math and background from the founders of AHP

More information

Linear Programming Redux

Linear Programming Redux Linear Programming Redux Jim Bremer May 12, 2008 The purpose of these notes is to review the basics of linear programming and the simplex method in a clear, concise, and comprehensive way. The book contains

More information

A Note on Robustness of the Min-Max Solution to Multiobjective Linear Programs

A Note on Robustness of the Min-Max Solution to Multiobjective Linear Programs A Note on Robustness of the Min-Max Solution to Multiobjective Linear Programs Erin K. Doolittle, Karyn Muir, and Margaret M. Wiecek Department of Mathematical Sciences Clemson University Clemson, SC January

More information

Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm

Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm Zhixiang Chen (chen@cs.panam.edu) Department of Computer Science, University of Texas-Pan American, 1201 West University

More information

Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations

Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations Group Decision-Making with Incomplete Fuzzy Linguistic Preference Relations S. Alonso Department of Software Engineering University of Granada, 18071, Granada, Spain; salonso@decsai.ugr.es, F.J. Cabrerizo

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Formulation of the Dual Problem Primal-Dual Relationship Economic Interpretation

More information

DESIGN OF OPTIMAL LINEAR SYSTEMS BY MULTIPLE OBJECTIVES

DESIGN OF OPTIMAL LINEAR SYSTEMS BY MULTIPLE OBJECTIVES etr Fiala ESIGN OF OTIMAL LINEAR SYSTEMS Y MULTILE OJECTIVES Abstract Traditional concepts of optimality focus on valuation of already given systems. A new concept of designing optimal systems is proposed.

More information

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations

1. Algebraic and geometric treatments Consider an LP problem in the standard form. x 0. Solutions to the system of linear equations The Simplex Method Most textbooks in mathematical optimization, especially linear programming, deal with the simplex method. In this note we study the simplex method. It requires basically elementary linear

More information

Vol. 5, No. 5 May 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

Vol. 5, No. 5 May 2014 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Application of ANP in Evaluating Accounting Softwares based on Accounting Information Systems Characteristics Morteza Ramazani, 2 Reza Askari, 3 Ebrahim Fazli Management and Accounting Department, Zanjan

More information

A GA Mechanism for Optimizing the Design of attribute-double-sampling-plan

A GA Mechanism for Optimizing the Design of attribute-double-sampling-plan A GA Mechanism for Optimizing the Design of attribute-double-sampling-plan Tao-ming Cheng *, Yen-liang Chen Department of Construction Engineering, Chaoyang University of Technology, Taiwan, R.O.C. Abstract

More information

Introduction to Vectors

Introduction to Vectors Introduction to Vectors K. Behrend January 31, 008 Abstract An introduction to vectors in R and R 3. Lines and planes in R 3. Linear dependence. 1 Contents Introduction 3 1 Vectors 4 1.1 Plane vectors...............................

More information

A SIMULATION AIDED SOLUTION TO AN MCDM PROBLEM. Ferenc Szidarovszky Abdollah Eskandari

A SIMULATION AIDED SOLUTION TO AN MCDM PROBLEM. Ferenc Szidarovszky Abdollah Eskandari Proceedings of the 1999 Winter Simulation Conference P. A. Farrington, H. B. Nembhard, D. T. Sturrock, and G. W. Evans, eds. A SIMULATION AIDED SOLUTION TO AN MCDM PROBLEM Ferenc Szidarovszky Abdollah

More information

Scalarizing Problems of Multiobjective Linear Integer Programming

Scalarizing Problems of Multiobjective Linear Integer Programming БЪЛГАРСКА АКАДЕМИЯ НА НАУКИТЕ BULGARIAN ACADEMY OF SCIENCES ПРОБЛЕМИ НА ТЕХНИЧЕСКАТА КИБЕРНЕТИКА И РОБОТИКАТА 50 PROBLEMS OF ENGINEERING CYBERNETICS AND ROBOTICS 50 София 2000 Sofia Scalarizing Problems

More information

Critical Reading of Optimization Methods for Logical Inference [1]

Critical Reading of Optimization Methods for Logical Inference [1] Critical Reading of Optimization Methods for Logical Inference [1] Undergraduate Research Internship Department of Management Sciences Fall 2007 Supervisor: Dr. Miguel Anjos UNIVERSITY OF WATERLOO Rajesh

More information

CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming

CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming Integer Programming, Goal Programming, and Nonlinear Programming CHAPTER 11 253 CHAPTER 11 Integer Programming, Goal Programming, and Nonlinear Programming TRUE/FALSE 11.1 If conditions require that all

More information

Chapter 1. Gaining Knowledge with Design of Experiments

Chapter 1. Gaining Knowledge with Design of Experiments Chapter 1 Gaining Knowledge with Design of Experiments 1.1 Introduction 2 1.2 The Process of Knowledge Acquisition 2 1.2.1 Choosing the Experimental Method 5 1.2.2 Analyzing the Results 5 1.2.3 Progressively

More information

Multifunctional theory in agricultural land use planning case study

Multifunctional theory in agricultural land use planning case study Multifunctional theory in agricultural land use planning case study Introduction István Ferencsik (PhD) VÁTI Research Department, iferencsik@vati.hu By the end of 20 th century demands and expectations

More information

Behavior of EMO Algorithms on Many-Objective Optimization Problems with Correlated Objectives

Behavior of EMO Algorithms on Many-Objective Optimization Problems with Correlated Objectives H. Ishibuchi N. Akedo H. Ohyanagi and Y. Nojima Behavior of EMO algorithms on many-objective optimization problems with correlated objectives Proc. of 211 IEEE Congress on Evolutionary Computation pp.

More information

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs

Introduction to Mathematical Programming IE406. Lecture 10. Dr. Ted Ralphs Introduction to Mathematical Programming IE406 Lecture 10 Dr. Ted Ralphs IE406 Lecture 10 1 Reading for This Lecture Bertsimas 4.1-4.3 IE406 Lecture 10 2 Duality Theory: Motivation Consider the following

More information

The Simplex Method: An Example

The Simplex Method: An Example The Simplex Method: An Example Our first step is to introduce one more new variable, which we denote by z. The variable z is define to be equal to 4x 1 +3x 2. Doing this will allow us to have a unified

More information

Multi-Objective Scheduling Using Rule Based Approach

Multi-Objective Scheduling Using Rule Based Approach Multi-Objective Scheduling Using Rule Based Approach Mohammad Komaki, Shaya Sheikh, Behnam Malakooti Case Western Reserve University Systems Engineering Email: komakighorban@gmail.com Abstract Scheduling

More information

An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound 1

An interactive reference point approach for multiobjective mixed-integer programming using branch-and-bound 1 European Journal of Operational Research 14 (000) 478±494 www.elsevier.com/locate/dsw Theory and Methodology An interactive reference point approach for multiobective mixed-integer programming using branch-and-bound

More information

Constructing efficient solutions structure of multiobjective linear programming

Constructing efficient solutions structure of multiobjective linear programming J. Math. Anal. Appl. 307 (2005) 504 523 www.elsevier.com/locate/jmaa Constructing efficient solutions structure of multiobjective linear programming Hong Yan a,, Quanling Wei b, Jun Wang b a Department

More information

The Edgeworth-Pareto Principle in Decision Making

The Edgeworth-Pareto Principle in Decision Making The Edgeworth-Pareto Principle in Decision Making Vladimir D. Noghin Saint-Petersburg State University Russia URL: www.apmath.spbu.ru/staff/noghin dgmo-2006 Introduction Since the 19 century, the Edgeworth-Pareto

More information

Liang Li, PhD. MD Anderson

Liang Li, PhD. MD Anderson Liang Li, PhD Biostatistics @ MD Anderson Genetic Epidemiology Work Group Meeting, December 5, 2013 The Multiphase Optimization Strategy (MOST) An increasingly popular study design strategy in behavioral

More information

Trade Of Analysis For Helical Gear Reduction Units

Trade Of Analysis For Helical Gear Reduction Units Trade Of Analysis For Helical Gear Reduction Units V.Vara Prasad1, G.Satish2, K.Ashok Kumar3 Assistant Professor, Mechanical Engineering Department, Shri Vishnu Engineering College For Women, Andhra Pradesh,

More information

USING STRATIFICATION DATA ENVELOPMENT ANALYSIS FOR THE MULTI- OBJECTIVE FACILITY LOCATION-ALLOCATION PROBLEMS

USING STRATIFICATION DATA ENVELOPMENT ANALYSIS FOR THE MULTI- OBJECTIVE FACILITY LOCATION-ALLOCATION PROBLEMS USING STRATIFICATION DATA ENVELOPMENT ANALYSIS FOR THE MULTI- OBJECTIVE FACILITY LOCATION-ALLOCATION PROBLEMS Jae-Dong Hong, Industrial Engineering, South Carolina State University, Orangeburg, SC 29117,

More information

EFFICIENCY ANALYSIS UNDER CONSIDERATION OF SATISFICING LEVELS

EFFICIENCY ANALYSIS UNDER CONSIDERATION OF SATISFICING LEVELS EFFICIENCY ANALYSIS UNDER CONSIDERATION OF SATISFICING LEVELS FOR OUTPUT QUANTITIES [004-0236] Malte L. Peters, University of Duisburg-Essen, Campus Essen Stephan Zelewski, University of Duisburg-Essen,

More information

University of California at Berkeley TRUNbTAM THONG TIN.THirVlEN

University of California at Berkeley TRUNbTAM THONG TIN.THirVlEN DECISION MAKING AND FORECASTING With Emphasis on Model Building and Policy Analysis Kneale T. Marshall U.S. Naval Postgraduate School Robert M. Oliver )A1 HOC OUOC GIA HA NO! University of California at

More information

Individual decision-making under certainty

Individual decision-making under certainty Individual decision-making under certainty Objects of inquiry Our study begins with individual decision-making under certainty Items of interest include: Feasible set Objective function (Feasible set R)

More information

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered:

LINEAR PROGRAMMING 2. In many business and policy making situations the following type of problem is encountered: LINEAR PROGRAMMING 2 In many business and policy making situations the following type of problem is encountered: Maximise an objective subject to (in)equality constraints. Mathematical programming provides

More information

TEACHER NOTES MATH NSPIRED

TEACHER NOTES MATH NSPIRED Math Objectives Students will solve linear equations in one variable graphically and algebraically. Students will explore what it means for an equation to be balanced both graphically and algebraically.

More information

Econ 2148, spring 2019 Statistical decision theory

Econ 2148, spring 2019 Statistical decision theory Econ 2148, spring 2019 Statistical decision theory Maximilian Kasy Department of Economics, Harvard University 1 / 53 Takeaways for this part of class 1. A general framework to think about what makes a

More information

Contents. 4.5 The(Primal)SimplexMethod NumericalExamplesoftheSimplexMethod

Contents. 4.5 The(Primal)SimplexMethod NumericalExamplesoftheSimplexMethod Contents 4 The Simplex Method for Solving LPs 149 4.1 Transformations to be Carried Out On an LP Model Before Applying the Simplex Method On It... 151 4.2 Definitions of Various Types of Basic Vectors

More information

Additive Consistency of Fuzzy Preference Relations: Characterization and Construction. Extended Abstract

Additive Consistency of Fuzzy Preference Relations: Characterization and Construction. Extended Abstract Additive Consistency of Fuzzy Preference Relations: Characterization and Construction F. Herrera a, E. Herrera-Viedma a, F. Chiclana b Dept. of Computer Science and Artificial Intelligence a University

More information

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Sara Lumbreras & Andrés Ramos July 2013 Agenda Motivation improvement

More information

Interactive Evolutionary Multi-Objective Optimization and Decision-Making using Reference Direction Method

Interactive Evolutionary Multi-Objective Optimization and Decision-Making using Reference Direction Method Interactive Evolutionary Multi-Objective Optimization and Decision-Making using Reference Direction Method ABSTRACT Kalyanmoy Deb Department of Mechanical Engineering Indian Institute of Technology Kanpur

More information

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object.

MAINIDEA Write the Main Idea for this section. Explain why the slope of a velocity-time graph is the average acceleration of the object. Accelerated Motion 2 Motion with Constant Acceleration 4(A), 4(B) MAINIDEA Write the Main Idea for this section. REVIEW VOCABULARY displacement Recall and write the definition of the Review Vocabulary

More information

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS

DESIGN AND ANALYSIS OF ALGORITHMS. Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS http://milanvachhani.blogspot.in COMPLEXITY FOR THE IMPATIENT You are a senior software engineer in a large software

More information

Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS

Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS DESIGN AND ANALYSIS OF ALGORITHMS Unit 6 Chapter 17 TRACTABLE AND NON-TRACTABLE PROBLEMS http://milanvachhani.blogspot.in COMPLEXITY FOR THE IMPATIENT You are a senior software engineer in a large software

More information

GETTING STARTED INITIALIZATION

GETTING STARTED INITIALIZATION GETTING STARTED INITIALIZATION 1. Introduction Linear programs come in many different forms. Traditionally, one develops the theory for a few special formats. These formats are equivalent to one another

More information

An overview of key ideas

An overview of key ideas An overview of key ideas This is an overview of linear algebra given at the start of a course on the mathematics of engineering. Linear algebra progresses from vectors to matrices to subspaces. Vectors

More information

Part 1. The Review of Linear Programming

Part 1. The Review of Linear Programming In the name of God Part 1. The Review of Linear Programming 1.2. Spring 2010 Instructor: Dr. Masoud Yaghini Outline Introduction Basic Feasible Solutions Key to the Algebra of the The Simplex Algorithm

More information

MULTIPLE CRITERIA DECISION MAKING. Abstract

MULTIPLE CRITERIA DECISION MAKING. Abstract MULTIPLE CRITERIA DECISION MAKING Vol. 9 2014 Maciej Nowak* Tadeusz Trzaskalik** IN T E R A C T IV E A PPR O A C H A PPLIC A TIO N TO ST O C H A STIC M U LTIO BJEC TIV E A LLO C A TIO N PR O B L E M -

More information

transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study explored

transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study explored ABSTRACT: Demand supply system are the three core clusters of transportation research in policy making for addressing mobility problems, infrastructure and functionality issues in urban areas. This study

More information

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE

MULTIPLE CHOICE QUESTIONS DECISION SCIENCE MULTIPLE CHOICE QUESTIONS DECISION SCIENCE 1. Decision Science approach is a. Multi-disciplinary b. Scientific c. Intuitive 2. For analyzing a problem, decision-makers should study a. Its qualitative aspects

More information

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive

Example. 1 Rows 1,..., m of the simplex tableau remain lexicographically positive 3.4 Anticycling Lexicographic order In this section we discuss two pivoting rules that are guaranteed to avoid cycling. These are the lexicographic rule and Bland s rule. Definition A vector u R n is lexicographically

More information

Writing Patent Specifications

Writing Patent Specifications Writing Patent Specifications Japan Patent Office Asia-Pacific Industrial Property Center, JIPII 2013 Collaborator: Shoji HADATE, Patent Attorney, Intellectual Property Office NEXPAT CONTENTS Page 1. Patent

More information

Event-Triggered Interactive Gradient Descent for Real-Time Multi-Objective Optimization

Event-Triggered Interactive Gradient Descent for Real-Time Multi-Objective Optimization Event-Triggered Interactive Gradient Descent for Real-Time Multi-Objective Optimization Pio Ong and Jorge Cortés Abstract This paper proposes an event-triggered interactive gradient descent method for

More information

Towards Decision Making under Interval Uncertainty

Towards Decision Making under Interval Uncertainty Journal of Uncertain Systems Vol.1, No.3, pp.00-07, 018 Online at: www.us.org.uk Towards Decision Making under Interval Uncertainty Andrze Pownuk, Vladik Kreinovich Computational Science Program, University

More information

February 17, Simplex Method Continued

February 17, Simplex Method Continued 15.053 February 17, 2005 Simplex Method Continued 1 Today s Lecture Review of the simplex algorithm. Formalizing the approach Alternative Optimal Solutions Obtaining an initial bfs Is the simplex algorithm

More information

Duality Theory, Optimality Conditions

Duality Theory, Optimality Conditions 5.1 Duality Theory, Optimality Conditions Katta G. Murty, IOE 510, LP, U. Of Michigan, Ann Arbor We only consider single objective LPs here. Concept of duality not defined for multiobjective LPs. Every

More information

Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure

Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure Bi-objective Portfolio Optimization Using a Customized Hybrid NSGA-II Procedure Kalyanmoy Deb 1, Ralph E. Steuer 2, Rajat Tewari 3, and Rahul Tewari 4 1 Department of Mechanical Engineering, Indian Institute

More information