Unit 7 Introduction to Analysis of Variance

Size: px
Start display at page:

Download "Unit 7 Introduction to Analysis of Variance"

Transcription

1 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag of 8 Unt 7 Introducton to Analyss of Varanc Always graph rsults of an analyss of varanc - Grald van Bll. Analyss of varanc s a spcal cas of rgrsson (s Unt, Rgrsson and Corrlaton). Th dstncton s that, n analyss of varanc, all of th prdctors ar catgorcal and ar calld factors. Rcall that n rgrsson, gnrally, th prdctors can b thr contnuous or dscrt or a mx. Th common fatur of analyss of varanc and normal thory lnar rgrsson s that th outcom varabl s contnuous and assumd dstrbutd normal. * factor wth 3 or mor lvls s a on way analyss of varanc. * factor wth just lvls s a two sampl t-tst. * factors (rgardlss of th numbr of lvls) s a two way analyss of varanc. * 3 factors s a thr-way analyss of varanc. And so on. In a factoral dsgn, thr ar obsrvatons at vry combnaton of lvls of th factors. Th analyss s usd to xplor ntractons (ffct modfcaton) btwn factors. An ntracton btwn factor I and factor II s sad to xst whn th rspons to factor II dpnds on th lvl of factor I and vc vrsa. In a nstd or hrarchcal dsgn, such as a two-lvl nstd dsgn, th analyss s of unts (g-patnts) that ar clustrd by lvl of factor I (g- hosptal) whch ar n turn clustrd by lvl of factor II (g cty). A spcal typ of nstd dsgn s th longtudnal or rpatd masurmnts dsgn. Rpatd masurmnts ar clustrd wthn subjcts and th rpatd masurmnts ar mad ovr a manngful dmnson such as tm (g growth ovr tm n chldrn) or spac. Th analyss of rpatd masurmnts data s dscussd lswhr. Unt 7 s an ntroducton to th bascs of analyss of varanc.

2 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag of 8 Tabl of Contnts Topc Larnng Objctvs. Th Logc of Analyss of Varanc... Introducton to Analyss of Varanc 3. On Way Fxd Effcts Analyss of Varanc Chckng Assumptons of th On Way Analyss of Varanc.... a. Tsts for Homognty of Varanc... b. Graphcal Assssmnts and Tsts of Normalty.. 5. Introducton to Mor Complcatd Dsgns.. a. Balancd vrsus Unbalancd. b. Fxd vrsus Random c. Factoral vrsus Nstd.. 6. Som Othr Analyss of Varanc Dsgns.. a. Randomzd Block Dsgn... b. Two Way Fxd Effcts Analyss of Varanc Equal n... c. Two Way Hrarachcal or Nstd Dsgn Introducton to Varanc Componnts and Expctd Man Squars. 8. Introducton to Varanc Componnts: How to Construct F Tsts Appndx Rvw: Statstcal Comparson of Two Groups.. Appndx - Rfrnc Cll Codng v Dvaton from Mans Codng Appndx 3 Multpl Comparsons Adjustmnt Procdurs

3 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 3 of 8 Larnng Objctvs Whn you hav fnshd ths unt, you should b abl to: Explan how analyss of varanc s a spcal cas of normal thory lnar rgrsson. Prform and ntrprt a on way analyss of varanc. Explan what s mant by a mult-way analyss of varanc. Explan what s mant by a factoral dsgn analyss of varanc. Explan th manng of ntracton of two factors. Explan what s mant by a nstd dsgn analyss of varanc. Prform and ntrprt a two-way factoral analyss of varanc, ncludng an assssmnt of ntracton.

4 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 4 of 8. Th Logc of Analyss of Varanc Analyss of varanc s an analyss of th varablty of mans. Consdr th followng pctur that rprsnts two scnaros. In scnaro (lft), th mans ar dffrnt. In scnaro (rght), th mans ar th sam. Scnaro mans ar dffrnt µ µ S and S ach summarz nos controllng for locaton. Scnaro mans ar th sam µ = µ S and S ach summarz nos controllng for locaton. Th sz of X X s largr than nos X X s wthn th nghborhood of nos. S s largr than S and S bcaus t s mad largr by th xtra varablty among ndvduals du to chang n locaton. S s smlar n sz to S and S bcaus t dos not hav to accommodat an xtra sourc of varablty bcaus of locaton dffrncs btwn th two groups.

5 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 5 of 8 A Spcal Cas That s Convnnt for Illustraton s Balancd (Equal sampl szs n ach group) - Whn th sampl szs ar th sam n ach group, t s asr to s how analyss of varanc s an analyss of th varablty of th mans. Consdr th followng xampl (not th algbra s not so tdy whn th sampl szs ar not qual) Exampl (sourc: Grstman BB. Basc Bostatstcs: Statstcs for Publc Halth Practc, pp59-6. Th data usd by Grstman ar from Alln t al (99) Prsnc of human frnds and pt dogs as modrators of autonomc rsponss to strss n womn. J. Prsonalty and Socal Psychology 6(4); It has bn hypothszd that th companonshp of a pt provds psychologcal rlf to ts ownrs whn thy ar xprncng strss. An xprmnt was conductd to addrss ths quston. Consntng partcpants wr randomzd to on of thr condtons: - Pt Prsnt, -Frnd Prsnt, or 3-Nthr frnd nor pt prsnt. Each partcpant was thn xposd to a strssor (t happnd to b mntal arthmtc). Th outcom masurd was hart rat. Slctd Summary Statstcs, by Group: Group Pt Prsnt Group Frnd Prsnt Group 3 Nthr Pt nor Frnd n n = 5 n = 5 n 3 = 5 X X = X = X = S S = 9.97 S = 8.34 S 3 = 9.4 S S = S = S 3 = 85.4 ( n ) S = ( X X) ( n )S = n j= ( X X ) j =,39.57 ( n )S n j= = ( X X ) = j ( n 3 )S 3 n 3 j= = ( X X ) 3 j 3 =,95.70 Do ths data provdd statstcally sgnfcant vdnc that th mans ar dffrnt, that µ, µ, and µ 3 ar not qual?

6 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 6 of 8 Th Rasonng n an Analyss of Varanc Proof by Contradcton Sgnal-to-Nos W llustrat wth a on way fxd ffcts analyss of varanc.. Bgn wth th null hypothss assumpton that th mans ar th sam W ll assum th null hypothss s tru, thn apply ths modl to th obsrvd data, and look to s f ts applcaton has ld to an unlkly rsult, warrantng rjcton of th null hypothss of qualty of µ, µ, and µ 3.. Stat th assumptons ncssary for computng probablts. X X n ar dstrbutd Normal ( µ, ) X X n ar dstrbutd Normal ( µ, ) X 3 X 3n3 ar dstrbutd Normal ( µ 3, ) Th varancs ar all qual to. Th obsrvatons ar all ndpndnt. 3. Spcfy H O and H A. H O : µ = µ = µ 3 H A : not 4. Rason an approprat tst statstc (Sgnal-to-Nos). Wthn Group Varablty = Nos It s th varablty of ndvduals wthn ach group. Nos: Obtan sparat stmats of th common, on from ach of th 3 sampls: S, S, and S 3 Nos stmats th varablty among ndvduals, controllng for locaton. Obtan an stmat of th common varanc, by combnng th sparat stmats S, S, and S 3 nto a wghtd avrag. Th wghts ar th dgrs of frdom of ach of S, S, and S 3 Estmat of = ˆ wthn 3 = = 3 ( n ) ( n ) = S

7 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 7 of 8 Btwn Group Varablty = Sgnal. It s th varablty among mans. Nxt, consdr a spcal sampl of sz = 3. Th 3 data ponts n ths spcal sampl ar X X X = n X = ( ) = n X = ( ) n X = = = ( ) = = Th sampl man of ths mans s X = W call th xpctd valu of th sampl varanc of X *, X *, and X 3 * th btwn. Whn th null hypothss H O s tru, and only whn H O s tru, th sampl varanc of X *, X *, and X 3 * s an stmat of. E 3 = ( X X ) ( 3 ) = = btwn Whn th altrnatv hypothss H A s tru, th sampl varanc of X *, X *, and X 3 * s an stmat of a quantty ( btwn ) that s largr than. ( X X ) ( 3 ) 3 = E = btwn = + Δ whr Δ = functon ( µ, µ, µ ) > 0 3 ths s th amount largr! Thus, th sgnal s Δ = functon µ, µ, µ ) 0 ( > 3

8 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 8 of 8 Th Sgnal-to-Nos analyss compars th Btwn group mans varablty to th Wthn groups varablty. In th analyss of varanc applcaton, th comparson that s mad s actually Nos + Sgnal = Varablty among a functon of th group mans Nos Varablty of ndvduals wthn groups = Var(X *, X *, X 3 * ) df wghtd sum of S, S, and S 3 = = ˆ btwn ˆ wthn [ ( ) ( )] 3 X X 3 = 3 3 { ( n ) S } ( n ) [ { }] = = 5. Prform th calculatons. Usng th valus n th tabl on pag 5, w hav 3 = ˆ = wthn 3 ( n ) = = ( n ) S = ( ) ( ) ˆ Usng th valus of th 3 ( X X ) ( 3 ) * X on pag 7, w also hav = = =, btwn

9 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 9 of 8 W us th F dstrbuton to compar th two varancs. Luckly, th two varancs ar ndpndnt. Whn th null hypothss H O s tru: Ovrall F ˆ btwn = ˆ wthn s dstrbutd F wth Numrator dgrs of frdom = (k ) = (3-) = Dnomnator dgrs of frdom = (n ) = (3)(5-)= 4 Expctd Valu of F p-valu wthn btwn btwn wthn H O tru Larg H A tru + Δ > > Small For our data, F = / = 4.08 Th accompanyng p-valu s Prob [ F df=,4 > 4.08 ] = Evaluat fndngs and rport. Th assumpton of th null hypothss of qual mans has ld to an xtrmly unlkly rsult! Th null hypothss chancs wr approxmatly, chancs n 00,000 of obtanng 3 mans of groups that ar as dffrnt from ach othr as ar 73.48, 9.33, and 8.5. Th null hypothss s rjctd. 7. Intrprt n th contxt of bologcal rlvanc. Ths analyss provds statstcally sgnfcant vdnc of group dffrncs n hart rat, dpndng on companonshp by pt or by frnd. But w do not know whch, or f both, provds th bnft!!

10 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 0 of 8. Introducton to Analyss of Varanc Prlmnary not - In th pags that follow, I am usng th notaton X to rfr to th outcom varabl n analyss of varanc. Analyss of varanc modls, lk rgrsson modls, hav an dntfabl basc structur. Structur of Analyss of Varanc Modl Obsrvd = man + random rror X = µ + ε Obsrvd Expctd Random rror data valu Ths s modld µ - Ths s th xpctd valu of X whch w wrt as µ = E [X] = lnar modl(stuff) ε - Ths s th da of random rror, rror n masurmnt, nos Subscrpts Subscrpts kp track of group mmbrshp and prsons wthn groups. E.g. - X j = Obsrvd valu for j th prson n th th group. A spcal fatur of analyss of varanc modls ar thr us of subscrpts. Exampl On way fxd ffcts analyss of varanc. Structur of On Way Fxd Effcts Analyss of Varanc Modl Obsrvd = man + random rror Subscrpts: kps track of th group. j kps track of th ndvdual wthn th group. X j = µ + ε j Obsrvd Expctd Random rror data valu valu s th for jth obsrvaton for j th prson man of th of th th group man. n th group group

11 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag of 8 Introducton to Dfnng an ANOVA Modl Th On Way Fxd Effcts Anova In a on way fxd ffcts analyss of varanc (anova) modl, th modl prmts th mans to b dffrnt from on group to th nxt howvr thy may dffr. Thr s no straght ln modl nor any sort of curvy modl assumpton for that mattr. Instad, th man outcom for ach group E( X j ) = µ s compltly gnral. E( X j ) = µ s not rlatd n any way to an assumd functonal form (byond a dpartur from an ntrcpt). Exampl Hart rat and strss, contnud - In ths analyss, th null hypothss was that th mans ar all th sam. Th altrnatv hypothss was th compltly gnral hypothss µ µ µ 3. Mor gnrally, suppos th numbr of groups = K, nstad of 3 n th hart rat xampl. Dfn subscrptng as follows. Th frst subscrpt wll b and wll ndx th groups usng =,, K. Th scond subscrpt wll b j and wll ndx th jth ndvdual n th th group usng j =,, n. Kp track of th group spcfc sampl szs. Lt n rprsnt th sampl sz for th th group. Lt µ = man for prsons n th th group µ = ovrall man, wthout rgard for group mmbrshp Dvaton from mans modl. Ths s a nfty r-wrt that rwrts µ as a nw xprsson that s qual to tslf. Ths s don by addng and subtractng µ to µ. µ = µ + ( µ - µ ) man for ovrall dvaton from group man man spcfc to th group Sam nfty trck to obtan a rwrt of th obsrvd X j. Notc (blow) that w ar addng and subtractng two thngs ths tm: ( X ) + ( j X ) X = X + X X j

12 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag of 8 On mor manpulaton lts us xprss th varablty of ndvduals about th ovrall man as th sum of two contrbutons. Ths s usful for analyss purposs. (X j X) = ( X X) + ( X j X ) Each sourc (btwn or wthn) contrbuts ts own shar to th total varablty va th followng (wondrful) rsult. n K K K ( X ) ( ) ( ) j X = X X + X j X = j= = j= = j= n total varablty varablty varablty btwn groups wthn groups W kp track of all ths n an analyss of varanc tabl. Sourc df a Sum of Squars Man Squar Varanc Rato = F n K n Btwn groups ( K- ) ( ) K n X X ( X X) ( K ) Wthn Groups ( n ) = j= K K n ( ) Xj X = = j= = j= = btwn K ( Xj X ) ( n ) n = j= = K F = btwn wthn = wthn Total N a dgrs of frdom K n ( ) Xj X = j=

13 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 3 of 8 Exampl contnud from pag 6: Strss and Hart Rat (sourc: Grstman BB. Basc Bostatstcs: Statstcs for Publc Halth Practc, pp59-6. Th data usd by Grstman ar from Alln t al (99) Prsnc of human frnds and pt dogs as modrators of autonomc rsponss to strss n womn. J. Prsonalty and Socal Psychology 6(4); Tratmnt Pt Prsnt Frnd Prsnt Nthr Pt, Nor Frnd Stata Illustraton.onway strss tratmnt Sourc df a Sum of Squars Man Squar Varanc Rato = F Among groups btwn Wthn Groups wthn Total a dgrs of frdom = = btwn F = = 4.08 wthn MATCH! My hand calculaton of th on way anova matchs th Stata rsults

14 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 4 of 8 3. Th On Way Fxd Effcts Analyss of Varanc Fxd vrsus Random Effcts ar Introducd n Scton 5b Th xampl usd to ntroduc th logc of analyss of varanc s a on way fxd ffcts analyss of varanc. Thus, w hav a fl for th on way analyss of varanc alrady. A two sampl t-tst s a on way analyss of varanc whr th numbr of groups K=. Th PubHlth 540 Vw Is th sgnal ( X X ) larg rlatv to nos whr nos = SE( X X )? t = (X X ) SE(X X ) = masur of dstanc of (X X ) from 0, xprssd on SE scal. Th ANOVA Vw Is th varablty of (X, X ) larg rlatv to nos whr nos = wghtd avrag of S, S functon of varablty of data X,X F= functon of varablty of "nos" S,S = masur of varablty among X, X ( sgnal ) to varablty of ndvduals wthn groups ( nos ) Sttng. Normalty. Th obsrvd outcoms ar dstrbutd normal. Group : X...X n ar a smpl random sampl from a Normal(µ,) Group : X...X n ar a smpl random sampl from a Normal(µ,) Etc. Group K: X K...X n ar a smpl random sampl from a Normal(µ K, ) K. Constant varanc. Th K sparat varanc paramtrs ar qual 3. Indpndnc Th obsrvatons ar ndpndnt

15 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 5 of 8 Th K sparat populaton mans ar H O :µ =...=µ K H A : At last som ar unqual µ,µ,...,µ K Rcall - kps track of th group. j kps track of th ndvdual wthn th group. Modl for th man n th th group - On Way Fxd Effcts Analyss of Varanc Modl of E[ X j l = µ () E [ X j ] = µ = [ µ + τ ] whr () K = τ = 0 Ky: Th dffrnt-nss of ach man s capturd n th τ,, τ K. Notc th followng: - By dfnton, µ = + µ - µ = µ + τ µ says that [ µ µ ] = τ µ says that [ µ K µ ] = τ K Group: [ ] µ = + µ - µ = µ + τ Group K: k [ K ] K K = τ = 0 - If th mans ar NOT EQUAL, thn at last on τ = [ µ µ ] 0

16 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 6 of 8 On Way Analyss of Varanc Fxd Effcts Modl Sttng: K groups ndxd =,,. K Group spcfc sampl szs: n, n,.., n K X j = Obsrvaton for th jth ndvdual n th th group Th on way analyss of varanc fxd ffcts modl of X j s dfnd as follows: X j = µ + τ + ε j whr and µ = grand man τ = µ - µ [ ] K = τ = 0 ε j s random rror dstrbutd Normal(0,) Estmaton Paramtr Estmat usng µ X.. τ [X X ]... µ + τ X. wthn btwn ˆ K = wthn = K (n )S = (n ) Expctd Valu of F p-valu btwn wthn H O tru Larg H A tru + Δ > > Small

17 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 7 of 8 Exampl Thr groups of physcal thrapy patnts wr subjctd to dffrnt tratmnt rgmns. At th nd of a spcfd prod of tm ach was gvn a tst to masur tratmnt ffctvnss. Th sampl sz was 4 n ach group. Th followng scors wr obtand. X =70 Tratmnt X =50 X =80 * X = n X =()(70)=40 3 * X * = = X = * X = n X =()(50)=00 3 * X 3= n X 3 =()(80)=60 H O : µ = µ = µ 3 H A : not Stp : Tst th assumpton of qualty of varancs. Tsts of th assumpton of qualty of varancs ar dscussd n Scton 4a. Ths ar of lmtd usfulnss for two rasons: () Tsts of qualty of varanc tnd to b snstv to th assumpton of normalty. () Analyss of varanc mthodology s prtty robust to volatons of th assumpton of a common varanc. Stp : Estmat th wthn group varanc ( nos ). Ths wll b a wghtd avrag of th k sparat sampl varancs. K = 3 = ˆ wthn = 3 ( n ) = ( n ) S = =

18 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 8 of 8 Stp 3: Estmat th btwn group varanc ( nos + sgnal ). Ths wll b a sampl varanc calculaton for a spcal data st comprsd of X= nx, X= nx, X= nx s * * * 3 3 ˆ btwn = 3 = ( X X ) ( 3 ) = = Stp 4: Summarz n an analyss of varanc tabl. Prform F-tst of null hypothss of qual mans. Sourc df a Sum of Squars Man Squar Varanc Rato = F K n Btwn groups ( K- ) = ( ) X X Wthn Groups ( n ) = = j= = K K n = 9 ( ) X X = j= j K n ( X X) ( K ) = j= = btwn n = K K ( Xj X ) ( n ) = j= = btwn F = =.54 wthn = = wthn = Total N a dgrs of frdom K n ( ) Xj X = j= = p-valu = Pr [F DF=,9 >.54 ] =.7 Concluson. Th null hypothss s not rjctd. Ths data do not provd statstcally sgnfcant vdnc that ffctvnss of tratmnt s dffrnt, dpndng on th typ of tratmnt rcvd ( vrsus vrsus 3 ).

19 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 9 of 8 Stp 5: Don t forgt to look at your data!.. * Stata llustraton.dotplot scor, ovr(txgroup) cntr nogroup nx(30).* Stata llustraton. graph box scor, ovr(txgroup).* Stata llustraton. onway scor txgroup, tabulat Rspons to Tratmnt Among Physcal Thrapy Patnts, by Tratmnt Rgm (N=) a Rspons Tratmnt n Avrag Standard Dvaton a On way analyss of varanc, p=.7; Bartltt tst of qualty of varanc, p=.46 Stata command Nots - For small sampls, try a sd-by-sd dot plot usng th Stata command dotplot. For largr sampls, do a sd-by-sd box and whskr plot usng th command graph box. Notc that th scattr of th data sms to dffr among th groups (n partcular, th magntud of th scattr s notcably smallr among patnts rcvng tratmnt #). Th small sampl szs may xplan ts lack of statstcal sgnfcanc. Also bcaus of small sampl sz (possbly), th dscrpancy n man rsponss (70 vrsus 50 vrsus 80) also fals to rach statstcal sgnfcanc.

20 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 0 of 8 4. Chckng Assumptons of th On Way Analyss of Varanc a. Tsts for Homognty of Varanc Volaton of th assumpton of homognty of varancs s somtms, but not always, a problm. Rcall that th dnomnator of th ovrall F statstc n a on way analyss of varanc s th wthn group man squar. It s a wghtd avrag of th sparat wthn group varanc stmats S and, as such, s an stmat of th assumd common varanc.,,..., K ar at last rasonably smlar, thn th wthn group man squar s a good summary of th wthn group varablty. o Whn th wthn group varanc paramtrs Th ovrall F tst for qualty of mans n an analyss of varanc s rasonably robust to modrat volatons of th assumpton of homognty of varanc. Howvr, parws t-tsts and hypothss tsts of contrasts ar not robust to volatons of homognty of varanc, as whn th,,..., ar vry unqual. K Tsts of homognty of varanc ar approprat for th on way analyss of varanc only. Thr ar a varty of tsts avalabl. F Tst for Equalty of Two Varancs Ths was ntroducd n PubHlth540 Unt 7, Scton Hypothss Tstng (S p 50 undr Bartltt s tst - Ths tst has hgh statstcal powr whn th assumpton of normalty s mt. Howvr, t s vry snstv to th assumpton of normalty. Lvn s tst Ths tst has th advantag of bng much lss snstv to volatons of normalty. Its dsadvantag s that t has lss powr than Bartltt s tst. Brown-Forsyth tst, also calld Lvn (md) tst Smlar to Lvn s Tst.

21 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag of 8 Bartltt s Tst H: = =... = O K H: At last on s unqual to th othrs A Obtan th K sparat sampl varancs Obtan ˆ K = wthn = K ( n ) = ( n ) S S,...,S K th stmat of th (null hypothss) common K K Comput B = [ln( ˆ wthn )] ( n- ) - ( n-) ln( S ) not Som txts us ths as th tst. Comput C = + - 3(K-) n - = = K K = ( ) = ( n-) not Ths s a corrcton factor Comput Bartltt Tst Statstc = B C not th dstrbuton of B/C s bttr approxmatd by ch squar. Whn th null hypothss s tru, Bartltt Tst Statstc s dstrbutd Ch squar (df=k-) Rjct null for larg valus of Bartltt Tst Stata llustraton Bartltt s tst of qual varanc s provdd wth rsults of command onway.* onway yvarabl groupvarabl. onway scor txgroup

22 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag of 8 Lvn s Tst ( Dsprson varabl Analyss of Varanc ) Th da of Lvn s tst and ts modfcaton s to crat a nw random varabl, a dsprson random varabl whch w wll rprsnt as d and that s a masur of how th varancs ar dffrnt. Lvn s tst (and ts modfcatons) ar a on way analyss of varanc on a dsprson random varabl d. H: = =... = O K H: At last on s unqual to th othrs A Comput d j = X j - X. Prform a on way analyss of varanc of th d j Whn th null hypothss s tru, th Lvn Tst On Way Analyss of Varanc s dstrbutd F (numrator df = K-, dnomnator df = N-K) Rjct null for larg valus of Lvn Tst On Way Anova F Stata llustraton Lvn tst s W0 n rsults of command robvar.* robvar yvarabl, by groupvarabl). robvar scor, by(txgroup) Brown and Forsyth Modfcaton of Lvn s Tst ( Dsprson varabl Analyss of Varanc ) Th Brown and Forsyth modfcaton of Lvn s tst utlzs as ts dsprson random varabl d th absolut dvaton from th group mdan. H: = =... = O K H: At last on s unqual to th othrs A Comput d j = X j - mdan(x,x,..., X n ). Prform a on way analyss of varanc of th d j

23 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 3 of 8 Whn th null hypothss s tru, th Brown and Forsyth On Way Analyss of Varanc s dstrbutd F (numrator df = K-, dnomnator df = N-K) Rjct null for larg valus of Brown and Forsyth Tst On Way Anova F Stata llustraton Brown-Forsyth tst s W50 n rsults of command robvar.* robvar yvarabl, by groupvarabl). robvar scor, by(txgroup) Statstcs n Practc: Gudlns for Assssng Homognty of Varanc Look at th varancs (or standard dvatons) for ach group frst! Compar th numrc valus of th varancs (or standard dvatons) If th rato of th standard dvatons s lss than 3 (or so), t s okay not to worry about homognty of varancs Construct a sd-by-sd box plot of th data and hav a look at th szs of th boxs. Scond, assss th rasonablnss of th normalty assumpton. Ths s mportant to th valdty of th tsts of homognty of varancs. Lvn s tst of qualty of varancs s last affctd by non-normalty; t s a good choc. Bartltt s tst should b usd wth cauton, gvn ts snstvty to volatons of normalty.

24 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 4 of 8 b. Graphcal Assssmnts and Tsts of Normalty Graphcal assssmnts and tsts of normalty wr ntroducd prvously. S agan PubHlth 640 Unt, Rgrsson & Corrlaton, Scton 5b, pp Analyss of Varanc mthods ar rasonably robust to volaton of th assumpton of normalty n analyss of varanc. Whl, strctly spakng, th assumpton of normalty n a on way analyss of varanc s that wthn ach of th K groups th ndvdual X j for j =,, n ar assumd to b a smpl random sampl from a Normal( µ, ), Th analyss of varanc s actually rlyng on normalty of th samplng dstrbuton of th mans X for =,,..., K. Ths s grat bcaus w can appal to th cntral lmt thorm. Thus, provdd that th sampl szs n ach group ar rasonabl ( say 0-30 or mor), and provdd th undrlyng dstrbutons ar not too too dffrnt from normalty, thn th analyss of varanc s rasonably robust to volaton of th assumpton of normalty. As wth normal thory rgrsson, assssmnts of normalty ar of two typs n analyss of varanc. Prlmnary s to calculat th rsduals: - For X j = obsrvaton for j th prson n group= - Rsdual r j = ( X-X) j. dffrnc btwn obsrvd and man for group. Graphcal Assssmnts of th dstrbuton of th rsduals: - Dot plots wth ovrlay normal - Quantl-Quantl plots usng rfrnt = normal. Numrcal Asssmnts: - Calculaton of skwnss and kurtoss statstcs - Shapro Wlk tst of normalty - Kolmogorov Smrnov/Lllfors tsts of normalty - Andrson Darlng/Cramr von Mss tsts of normalty

25 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 5 of 8 Statstcs n Practc: Gudlns for th Handlng of Volatons of Normalty Small sampl sz sttng (wthn group sampl sz n < 0, approxmatly): Rplac th normal thory on way analyss of varanc wth a Kruskal Walls nonparamtrc on way analyss of varanc. Ths wll b ntroducd n Topc 9, Nonparamtrcs Larg sampl sz sttng: If you rally must, consdr a normalzng data transformaton. Possbl transformatons nclud th followng: () Logarthmc Transformaton: * X = ln(x+) hlps postv skwnss () Squar Root Transformaton: * X = X hlps htroscdastcty (3) Arcsn Transformaton: * p = arcsn p for outcom 0 to 00 prcntag (4) If your data ar actual proportons of th typ X/n and you hav X and n consdr Anscomb Arcsn Transformaton: * p = arcsn 3 X+ 8 3 n+ 4

26 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 6 of 8 5. Introducton to Mor Complcatd Dsgns So far w hav consdrd just on analyss of varanc dsgn: th on way analyss of varanc dsgn. - or mor groups wr compard (.g. w compard 4 groups) - Howvr, th groups rprsntd lvls of just factor (.g. rac/thncty) Analyss of varanc mthods can bcom mor complcatd for a varty of rasons, ncludng but not lmtd to th followng- () Th modl may hav mor trms, ncludng ntractons and/or adjustmnt for confoundng - Fttng and ntrprtaton bcom mor challngng. () On or mor of th trms n th modl mght b masurd wth rror nstad of bng fxd Estmats of varanc, thr ntrprtaton and confdnc ntrval constructon ar mor nvolvd. (3) Th parttonng of total varablty mght not b as straghtforward as what w hav sn so far Undrstandng and workng wth analyss of varanc tabls and, spcally, knowng whch F tst to us, can b hard. a. Balancd vrsus Unbalancd Th dstncton prtans to th parttonng of th total varablty and, spcfcally, th complxty nvolvd n th varanc componnts and thr stmaton. BALANCED Th sampl sz n ach cll s th sam. Equalty of sampl sz maks th analyss asr. Spcfcally, th parttonng of SSQ s straghtforward A way balancd anova wth n= s calld th randomzd block dsgn

27 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 7 of 8 UNBALANCED Th sampl szs n th clls ar dffrnt. Th parttonng of SSQ s no longr straghtforward. Hr, a rgrsson approach (rfrnc cll codng) s somtms asr to follow b. Fxd vrsus Random Effcts Fxd vrsus random s mor complcatd than you mght thnk. - Th dstncton has to do wth how th nfrncs wll b usd - Th formal analyss of varanc s largly unchangd. Thr xst a numbr of dfntons of fxd vrsus random ffcts. Among thm ar th followng. - Fxd ffcts ar lvls of ffcts chosn by th nvstgator, whras Random ffcts ar slctd at random from a largr populaton - Fxd ffcts ar thr () lvls chosn by th nvstgator or () all th lvls possbl Random ffcts ar a random sampl from som unvrs of all possbl lvls. - Fxd ffcts ar ffcts that ar ntrstng n thmslvs, whras Effcts ar nvstgatd as random f th undrlyng populaton s of ntrst.

28 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 8 of 8 Exampls - Exampls of Fxd Effcts () Tratmnt (mdcn v surgry) () Gndr (all gndrs) - Exampls of Random Effcts () lttr of anmals (ths s an xampl of a random block) () ntrvwr n a data collcton sttng whr thr mght b multpl ntrvwrs or ratrs. Illustraton - In fxd vrsus random, th ways w thnk about th null hypothss ar slghtly dffrnt. Consdr a on way anova analyss whch xplors varatons n SAT scors, dpndng on th unvrsty afflaton of th studnts. - Outcom s X j = SAT scor for j th ndvdual at Unvrsty - Factor s Unvrsty wth = f Unvrsty s Massachustts f Unvrsty s Wsconsn 3 f Unvrsty s Alaska - Subscrpt j ndxs studnt wthn th Unvrsty - FIXED ffcts prspctv Intrst prtans only to th 3 Unvrsts (MA, WI, and AK) H 0 : µ Massachustts = µ Wsconsn = µ Alaska - RANDOM ffcts prspctv Massachustts, Wsconsn, and Alaska ar a random sampl from th populaton of unvrsts n th US. H 0 : Man SAT scors ar qual at all Amrcan Unvrsts

29 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 9 of 8 c. Factoral vrsus Nstd Th dstncton factoral vrsus nstd s an mportant dstncton prtanng to th dscovry of ntracton or ffct modfcaton (factoral) vrsus control for confoundng (nstd). Consdr th contxt of a two way analyss of varanc that xplors Factor A at a lvls and Factor B at b lvls FACTORIAL All combnatons of factor A and factor B ar nvstgatd. Factoral dsgn prmts nvstgaton of A x B ntracton Thus, good for xploraton of ffct modfcaton, synrgsm, tc. Frquntly usd n publc halth, obsrvatonal pdmology Exampl - Factor A = Plant at a=3 lvls and Factor B = CO at b= lvls Not: All (3)() = 6 combnatons ar ncludd

30 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 30 of 8 NESTED Th lvls of th scond factor ar nstd n th frst. Confoundng (by Factor A) of th Factor B- Outcom rlatonshp s controlld through us of stratfcaton on Factor A Famlar xampls ar hrarchcal, splt plot, rpatd masurs, mxd modls. Nstd dsgns ar frquntly usd n bology, psychology, and complx survy mthodologs. Factor A, th stratfyng varabl, s somtms calld th prmary samplng unt. Exampl Factor A = Trs at 3 lvls and Factor B = Laf at 5 lvls, nstd Trs 3 Lavs

31 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 3 of 8 6. Som Othr Analyss of Varanc Dsgns What dsgn should you us? In brf, th answr dpnds on () th rsarch quston () knowldg of undrlyng bology and, spcfcally, knowldg of xtrnal nfluncs that mght b ffct modfyng or confoundng or both and (3) avalablty of sampl sz. Brfly, thr othr analyss of varanc dsgns ar ntroducd hr a. Th Randomzd Complt Block Dsgn b. Two Way Fxd Effcts Analyss of Varanc Equal cll numbrs c. Th Two Way Hrarchcal or Nstd Dsgn a. Th Randomzd Complt Block Dsgn Randomzd Complt Block Dsgn Modl Sttng: I groups or tratmnts ndxd =,,. I J blocks ndxd j=,,., J sz s n ach tratmnt x block combnaton X j = Obsrvaton for th on ndvdual n th jth block of th th group/tratmnt Th randomzd complt block dsgn modl of X j s dfnd as follows: X j = µ + α + β j + ε j whr and µ = grand man [ ] and α = 0 α = µ. - µ I = J β j = µ.j - µ and β = 0 j j= ε j s random rror dstrbutd Normal(0,)

32 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 3 of 8 Exampl - An nvstgator wshs to compar 3 tratmnts for HIV dsas. Howvr, t s suspctd that rspons to tratmnt mght b confoundd by basln cd4 count. Th nvstgator sks to control (bttr yt, lmnat) confoundng. To accomplsh ths, consntng subjcts ar groupd nto 8 homognous blocks accordng to cd4 count. Wthn ach block, basln cd4 counts ar assumd to b smlar. Wthn ach block, thr ar 3 subjcts, on pr tratmnt. Assgnmnt of subjct to tratmnt wthn ach block s randomzd. Layout Block s stratum of cd4 count Patnt 8 st Drug 3 Drug Drug nd Drug Drug Drug 3 3rd Drug Drug 3 Drug Whl thr ar two factors.. - Only on factor s of ntrst Tratmnt (drug) at 3 lvls. - Th othr factor s calld a blockng factor; ts nflunc on outcom s not of ntrst. But w do want to control for ts possbl confoundng ffct. A charactrstc of a randomzd complt block dsgn s that th sampl sz s ONE n ach Tratmnt x Block combnaton.

33 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 33 of 8 Randomzd Complt Block Dsgn Analyss of Varanc ndxs tratmnt, =. I j ndxs block, j =. J µ j = Man [ Outcom ] for drug n block j =.. I In ths xampl, I = 3 j =,,, J In ths xampl, J = 8 E[ X j ] = µ j = µ + α + β j à X j = µ + α + β j + ε j whr () () I α = [ µ - µ ] and α = 0. = J β = [ µ - µ ] and β = 0 j.j j j= X j = X.. + [ X. - X.. ] + [ X.j - X.. ] + [ X j - X. - X.j + X.. ] algbrac dntty ε j s assumd dstrbutd Normal(0, ) Bcaus n= n ach cll, block x tratmnt ntractons, f thy xst, cannot b stmatd.

34 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 34 of 8 Total SSQ and ts Parttonng X j = X.. + [ X. - X ] + [ X.j - X ] + [ X j - X. - X.j + X.. ] à [ X j - X.. ] = [ X. - X ] + [ X.j - X ] + [ X j - X. - X.j + X.. ]. Squarng both sds and summng ovr all obsrvatons ylds (bcaus th cross product trms sum to zro!) I J = j= [ X - X ] j.. I J I J I J....j.. j..j.. = j= = j= = j= = [ X - X ] + [ X - X ] + [ X - X - X + X ] I J I J....j.. j..j.. = j= = j= = J [ X - X ] + I [ X - X ] + [ X - X - X + X ] Analyss of Varanc Tabl Sourc df a Sum of Squars E (Man Squar) F Du tratmnt ( I- ) J ( X-X... ) Du block (J-) I = J I ( X-X.j..) j= + J = + I I α ( I-) J j= β j ( J-) MSQ F= MSQ tratmnt rsdual df = (I-), (I-)(J-) MSQ F= MSQ block rsdual df = (J-), (I-)(J-) Rsdual (I-)(J-) I J ( j..j..) X - X - X + X = j= Total IJ a dgrs of frdom I J ( X-X j..) = j=

35 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 35 of 8 b. Th Two Way Fxd Effcts Analyss of Varanc Two Way Analyss of Varanc Fxd Effcts Modl Sttng: I lvls of Factor # and ar ndxd =,,. I J lvls of Factor # and ar ndxd ndxd j=,,., J Th sampl sz for th group dfnd by Factor at lvl and Factor at lvl j s n j k ndxs th kth obsrvaton n th j th group X jk = Obsrvaton for th k th ndvdual n th jth block of th th group/tratmnt Th two way analyss of varanc fxd ffcts modl of X jk s dfnd as follows: X jk = µ + α + β j + ( αβ ) j + ε jk whr µ = grand man [ ] and α = 0 α = µ. - µ I = J β j = µ.j - µ and β = 0 j ( αβ ) j = µ + µ. µ j= [ ]+ µ. j µ + µ j µ. µ ( ) + µ ( ) µ. j µ I ( αβ ) j = 0 and ( αβ ) j = 0 = j j= and ε j s random rror dstrbutd Normal(0,)

36 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 36 of 8 Exampl - An nvstgator wshs compar th fsh growth mans among 6 groups n a way factoral dsgn factor # bng lght at lvls and factor # bng watr tmpratur at 3 lvls. Two Way Fxd Effcts Analyss of Varanc Lt ndx lght, =,. j ndx watr tmpratur, j =,, 3. k ndx ndvdual n th (, j) th group, k =,, n j. µ j = Expctd man growth at 6 wks for fsh rasd undr condtons of lght = and watr tmpratur = j. µ j = µ + [ µ. - µ ] + [ µ. j - µ ] + [ µ j - (µ. - µ) (µ. j - µ) + µ ] µ = Ovrall populaton man β = [ µ. - µ ] s th lght ffct. It s stmatd by X X..... τ j = [ µ. j - µ ] s th watr tmpratur ffct. It s stmatd by X X. j.... (βτ) j = [ µ j - (µ. - µ) (µ. j - µ) + µ ] s th xtra, jont, ffct of th th lght lvl and j th watr tmpratur. It s stmatd by ( ) ( ) X X X X X + X j j Thus, an ndvdual rspons X j s modld X jk = µ j + ε jk = µ + [ µ. - µ ] + [ µ. j - µ ] + [ µ j - (µ. - µ) (µ. j - µ) + µ ] + ε jk = µ + α + β j + (αβ) j + ε jk

37 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 37 of 8 Assumptons I α =0 β j =0 = I J j= (αβ) j =0 (αβ) j =0 = J j= Analyss of Varanc Sourc df a Sum of Squars Man Squar F I J n Du lght ( I- ) ( ) j I J X.. X ( ) ( )... X.. X... I = j= k= n j = j= k= = ˆlght F ˆ = ˆ lght Du tmpratur (J-) I J n ( ) j X. j. X... = j= k= n j I J ( X. j. X... ) ( J ) = j= k= = ˆtmp F ˆ = ˆ tmp Du ntracton (I-)(J-) I J nj = j= k = ( X j. X.. X. j. + X... ) I = J nj j= k = ( X j. X.. X. j. + X... ) I ( )( J ) F ˆ = ˆ lght* tmp = ˆlght * tmp Wthn Groups I J = j= ( n j ) n j I n ( X jk X j. ) I J n j X jk X j. = j= k= = j= k= I J = j= ( ) ( n j ) = Total N a dgrs of frdom n j I J ( X ) jk X... = j= k=

38 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 38 of 8 Exampl, contnud Rcall that t s of ntrst to study th ffct of watr tmpratur and lght on fsh growth. - Outcom X = fsh growth at sx wks - Factor I s Lght at lvls (low and hgh) - Factor II s Watr Tmpratur at 3 lvls (cold, lukwarm, warm) Followng ar th data. Lght Watr Tmp X = Fsh Growth =low =cold 4.55 =low =cold 4.4 =low =lukwarm 4.89 =low =lukwarm 4.88 =low 3=warm 5.0 =low 3=warm 5. =hgh =cold 5.55 =hgh =cold 4.08 =hgh =lukwarm 6.09 =hgh =lukwarm 5.0 =hgh 3=warm 7.0 =hgh 3=warm 6.9 Thr ar 3 analyss qustons and, thus, thr null hypothss of ntrst: () Ho: No ffct du to lght,.g. man lngth s th sam ovr th two lvls of lght () Ho: No ffct du to tmpratur.g. man lngth s th sam ovr th thr lvls of tmpratur (3) Ho: Not a dffrntal ffct of on tratmnt ovr th lvls of th othr (.g. no ntracton)

39 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 39 of 8 A manngful analyss mght procd n ths ordr. Stp. Tst for no ntracton - If thr s ntracton, ths mans that th ffct of lght on growth dpnds on th watr tmpratur and vc vrsa. - Accordngly, th manng that can b gvn to an analyss of ffcts of lght (Factor I) or an analyss of th ffcts of watr tmpratur (Factor II) dpnd on an undrstandng of ntracton - Th corrct F statstc s du ntracton - Numrator df = (I-)(J-). I J - Dnomnator df = ( n- j ) = j= F= ˆ lght*tmpratur ˆ If ntracton s NOT sgnfcant Stp. Tst for man ffct of Factor I Us ˆ F= ˆ factor I Numrator df = (I-). I J Dnomnator df = ( n- j ) = j= If ntracton s SIGNIFICANT Analyst must dcd whthr thr s manng to tst for man ffcts, as th rspons to on lvl of a factor (g. Factor II = watr tmpratur) dpnds on th lvl of anothr factor (g. Factor I = lvl of lght) If th analyst dcds to collaps th data to a on way analyss of varanc, thn th manng of th analyss of a man ffct s that t ylds an stmat of th avrag man ffct, takn ovr th lvls of th othr factor. Ths may or may not b of ntrst Rpat for Factor II.

40 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 40 of 8 Exampl contnud Sourc df a Sum Squars Man Squar F Du lght ( - ) = = ˆ lght F ˆlght = 0.39 ˆ = rror P =.08 Du watr tmp (3-) = = ˆ tmp F ˆtmp = 6.95 ˆ = rror p=.07 Du ntracton (I-)(J-) = = ˆ lght*tmp F ˆlght* tmp =. ˆ = rror p=.9 Error I J ( n j ) = 6 = j= = ˆ rror Total N = a dgrs of frdom

41 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 4 of 8 Th analyss of varanc tabl tlls us th followng.. Fal to rjct th hypothss of no ntracton. Thus w can tst for man ffcts usng th MSE.. Rjct th null hypothss of no tmpratur ffct. 3. Rjct th null hypothss of no lght ffct Don t forgt to look at your data! Stata Illustraton:. us " labl dfn tmpf "=cold" "=lukwarm" 3 "3=warm". labl valus Tmp tmpf. labl dfn lghtf "=low" "=hgh". labl valus Lght lghtf. labl var growth "Growth at 6 Wks". sort tmp. graph box growth, ovr(tmp). sort lght. graph box growth, ovr(lght) Rjct Null of NO tmpratur ffct Rjct Null of NO lght ffct 7.0 Growth at 6 Wks 7.0 Growth at 6 Wks 4.08 =cold =lukwarm 3=warm 4.08 =low =hgh

42 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 4 of 8 c. Th Two Way Hrarchcal (Nstd) Dsgn Th Two Way Hrarchcal (Nstd) Dsgn Modl Sttng: I groups or tratmnts ndxd =,,. I J prmary samplng unts nstd wthn ach tratmnts and ndxd j=,,., J sz s n n ach tratmnt x block combnaton; ths ar scondary samplng unts k ndxs th scondary samplng unts and ar ndxd k =,,., n X jk = Obsrvaton for th k th scondary samplng unt of th jth prmary samplng unt n th th group/tratmnt Th two way hrarchcal (nstd) dsgn modl of X jk s dfnd as follows: X jk = µ + α + b () j + ε (j )k whr µ = grand man [ ] and α = 0 α = µ. - µ I = and b ()j s random and dstrbutd Normal(0, b ) ε j s random rror dstrbutd Normal(0,) b and ε ar mutually ndpndnt ()j (j)k Exampl - An nvstgator wshs compar 3 sprays appld to lavs on trs. Each tratmnt s appld to 6 lavs of 4 trs. Thus, th total numbr of obsrvatons s (3 tratmnts)(4 trs)(6 lavs) = 7 In an xampl such as ths, samplng s don n multpl stags. Hr () In stag, a random sampl of trs s slctd (thus tr s th prmary samplng unt) and () n stag, wthn ach tr, a random sampl of lavs s slctd for masurmnt.

43 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 43 of 8 In a two way hrarchcal (nstd) dsgn, I = # tratmnts. In ths xampl, I=3 J = # prmary samplng unts In ths xampl, J=4 n = # scondary samplng unts, nstd In ths xampl, n=6 - Only on factor s of ntrst Tratmnt (spray) at 3 lvls. - Th ffct of tr s random and s not of ntrst. - Smlarly, th ffct of laf s random and s not of ntrst. Two Way Hrarchcal (Nstd) Analyss of Varanc Th nstd modl, for th rason of havng random ffcts, looks a lttl dffrnt from a fxd ffcts modl. µ = Man [ Outcom ] for spray = µ + α X jk = µ + α + b ()j + ε (j)k whr - Th parnthss notaton ()j tlls us that tr j s nstd n spray - Th parnthss notaton (j)k tlls us that laf k s nstd n th jth tr rcvng spray I α = [ µ - µ ] and α = 0. = X jk = X.. + [ X.. - X... ] + [ X j. - X.. ] + [ X jk - X j. ] algbrac dntty Assumptons Th Th b ar ndpndnt and dstrbutd Normal(0, ) ()j ε ar ndpndnt and dstrbutd Normal(0, ) (j)k Th b ()j and ε (j)k ar mutually ndpndnt b

44 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 44 of 8 Total SSQ and ts Parttonng X jk = X.. + [ X.. - X... ] + [ X j. - X.. ] + [ X jk - X j. ] à [ X jk - X.. ] = [ X.. - X... ] + [ X j. - X.. ] + [ X jk - X j. ]. Squarng both sds and summng ovr all obsrvatons ylds (bcaus th cross product trms sum to zro!) I J n = j= k= [ X - X ] jk... I J n I J n I J n..... j... jk j. = j= k= = j= k= = j= k= = [ X - X ] + [ X - X ] + [ X - X ] I I J I I n..... j... jk j. = = j= = j= k= = Jn [ X - X ] + n [ X - X ] + [ X - X ]

45 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 45 of 8 Analyss of Varanc Tabl Sourc df a Sum of Squars E (Man Squar) F Du tratmnt ( I- ) Jn ( X.. -X...) I = + n b + Jn I = α ( I-) F= MSQ MSQ df = (I-), I(J-) tratmnt wthn tratmnt among sampls Wthn tratmnt Among sampls I J I (J-) n ( Xj. -X..) = j= + n b MSQ F= wthn tratmnt among sampls MSQ rsdual df = (J-), IJ(n-) Rsdual IJ(n-) I J n ( X jk - Xj. ) = j= k= Total IJn a dgrs of frdom I J n ( Xjk -X... ) = j= k= Not: Th corrct F tst for tratmnt has n th dnomnator th man squar for wthn tratmnt among sampls. Ths can b apprcatd as th corrct dfnton by lookng at th xpctd man squars

46 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 46 of 8 7. Introducton to Varanc Componnts and Expctd Man Squars For th advancd studnt PubHlth 640 studnts can skp ths scton Why? An undrstandng of varanc componnts and xpctd man squars guds us n undrstandng hypothss tstng and, n partcular, F-tst dfnton. Whn th dsgn contans only fxd ffcts + masurmnt rror, thn all F-tsts ar corrctly dfnd as Man squar (ffct of ntrst) F = Man squar(rror) Howvr, f th dsgn contans any random ffcts, thn th dnomnator of an F-tst s not ncssarly man squar (rror). Th quston s thn: What s th corrct dfnton of th F-tst? Byond th scop of ths cours s th algbra nvolvd n th soluton for th corrct dfnton of an F tst n a modl contanng on or mor random ffcts. Howvr, th da s th followng. Usng a dvaton from mans thnkng, r-xprss th obsrvd outcom X j (or X jk or X ()j or whatvr, dpndng on th dsgn) usng an algbrac dntty that corrsponds to th analyss of varanc modl and that rvals th ffcts n th modl. For xampl On Way Analyss of Varanc X = X + [ X - X ] + [ X - X ] à j..... j. [ X - X ] = [ X - X ] + [ X - X ] j..... j. Two Way Analyss of Varanc X jk = X.. + [ X.. - X... ] + [ X.j. - X...] + [ X j. - X.. -X.j. +X]... + [Xjk X] j. [ X - X ] = [ X - X ] + [ X - X ] + [ X - X -X +X ]+[X X ] jk j.... j....j.... jk j. Randomzd Complt Block Dsgn X j = X.. + [ X. - X.. ] + [ X.j - X.. ] + [ X j - X. - X.j + X.. ] [X j - X..] = [ X. - X.. ] + [ X.j - X.. ] + [ X j - X. - X.j + X.. ] à

47 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 47 of 8 Hrarchcal or Nstd Dsgn X = X + [ X - X ] + [ X - X ] + [ X - X ] jk j... jk j. [ X - X ] = [ X - X ] + [ X - X ] + [ X - X ]. jk j... jk j. à Squar both sds and solv for xpctd valu a far amount of tdous algbra. How to Obtan Expctd Man Squars Wthout Havng to do th Whol Algbrac Drvaton Exampl Two Way Factoral Dsgn (Balancd) - Consdr th two way factoral analyss of varanc dsgn wth Factor A at a lvls and Factor B at b lvls and an qual numbr of rplcats = n at ach combnaton of Factor A x Factor B. Stp Prtnd that all th factors ar random. Thus, assocatd wth ach random ffct s a varanc componnt. In ths scnaro - X jk - µ = a + b j + (ab) j + ε jk whr Th Th Th Th a ar ndpndnt and dstrbutd Normal(0, ) j b ar ndpndnt and dstrbutd Normal(0, ) (ab) ar ndpndnt and dstrbutd Normal(0, ) j ε ar ndpndnt and dstrbutd Normal(0, ) jk a, b, (ab) and ε Th j j jk ar mutually ndpndnt a b ab

48 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 48 of 8 Stp Partton dgrs of frdom, usng th followng ruls. df, total corrctd = Total sampl sz df for ach man ffct of factor = # lvls df for ach two way ntracton = product of man ffct df df for rror (rplcaton) = sum of th (wthn group sampl sz ) Exampl, contnud - A has a lvls, B has b lvls, all combnatons ar rprsntd, yldng ab clls, ach wth a wthn group sampl sz of n. Thus, Effct A B AB Error (Rplcaton) Total, corrctd Df (a-) (b-) (a-)(b-) ab(n-) (N-) = abn- Stp 3 Construct a tabl shll wth varanc componnts across th top and sourcs of varanc as rows along th sd. Omt row for total corrctd Sourc \ Varanc A B AB Error (Rplcaton) AB A B Stp 4 Corrct th column hadngs by wrtng n th corrct coffcnts of th varanc componnts across th top usng th followng ruls. always has coffcnt = Othrws, th coffcnts ar th lttrs that ar not n th subscrpts Exampl - Sourc \ Varanc n AB nb A na B A B AB Error (Rplcaton)

49 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 49 of 8 Stp 5 Each xpctd man squar wll nclud Sourc \ Varanc n AB nb A na B A B AB Error (Rplcaton) Stp 6 For ach sourc of varaton row of your tabl, nclud n th xpctd man squar thos column hadngs for whch th subscrpt lttrngs nclud th lttrs of th sourc. Work from th bottom up. Exampl - For sourc AB, th lttrng s ab. Includ th on column hadng w ab n th subscrpt Sourc \ Varanc n AB nb A na B A B AB Error (Rplcaton) + n AB For sourc B, th lttrng s b. Includ th two column hadngs w b n th subscrpt Sourc \ Varanc n AB nb A na B A B AB Error (Rplcaton) + n AB + na B + n AB For sourc A, th lttrng s a. Includ th two column hadngs w a n th subscrpt Sourc \ Varanc n AB nb A na B A + n AB + nb A B + n AB + na B AB + n AB Error (Rplcaton)

50 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 50 of 8 Stp 7 For th fxd ffcts, corrct your xpctd man squars soluton that you dvlopd undr th assumpton of random ffcts usng th followng approach. Th coffcnts rman th sam Kp n th soluton. Kp th last trm n th soluton. Drop from th soluton all th trms n btwn. Rplac th wth somthng somthng Th numrator somthng s th sum of th fxd ffcts (not squarng) Th dnomnator somthng s th dgrs of frdom Exampl, contnud Suppos that, n actualty, A and B ar both fxd In stp, w prtndd that A and B wr both random - X - µ = a + b + (ab) + ε whr Th Th Th Th jk j j jk a ar ndpndnt and dstrbutd Normal(0, ) j b ar ndpndnt and dstrbutd Normal(0, ) (ab) ar ndpndnt and dstrbutd Normal(0, ) jk j ε ar ndpndnt and dstrbutd Normal(0, ) a, b, (ab) and ε Th j j jk ar mutually ndpndnt a b ab Now, n stp 7, wrt down th corrct fxd ffcts modl - X jk - µ = α + β j + (αβ) j + ε jk wth a α = 0 and = b a β j=0 and (αβ) j=0 and j= = b j= (αβ) =0 j

51 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 5 of 8 Expctd Man Squars for Two Way Factoral Dsgn wth qual sampl sz = n/cll Sourc \ Varanc All random Effcts All Fxd Effcts A + n AB + nb A à α + nb kp drop kp + n AB + na B à B AB kp Error (Rplcaton) kp drop kp + n à AB kp + na + n (a-) β j (b-) ( αβ) j (a-)(b-)

52 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 5 of 8 8. Introducton to Varanc Componnts How to Construct F Tsts For th advancd studnt PubHlth 640 studnts can skp ths scton Th xpctd man squars ar usful n solvng for th corrct F-tst n analyss of varanc hypothss tstng. Ths scton s a lttl how to. Exampl Consdr agan th two way factoral analyss of varanc dsgn wth Factor A at a lvls and Factor B at b lvls and an qual numbr of rplcats = n at ach combnaton of Factor A x Factor B. Factor A s random. Factor B s fxd Dfn th F tst for th null hypothss X jk - µ = a + β j + (aβ) j + ε jk H o: β = β =... = β b = 0 (no man ffct of Factor B). Stp Wrt down th xpctd man squars. Not An ntracton [ random ffct] x [ fxd ffct] s a random ffct Sourc \ Varanc A E(MSQ) + n AB + nb A B + n + na AB β j (b-) AB + n AB Error (Rplcaton)

53 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 53 of 8 Stp Locat n th tabl of xpctd man squars th sourc for whch th xpctd man squar that contans th trms you want to tst. Sourc \ Varanc E(MSQ) A + n AB + nb A B + n + na AB Error (Rplcaton) + n AB AB β j (b-) Stp 3 Consdr th assumpton that th null hypothss s tru. What happns to ths partcular xpctd man squar whn th null s tru?. Sourc \ Varanc E(MSQ) E(MSQ) whn Null Tru A B + n AB + nb A + n + na AB Error (Rplcaton) + n AB AB β j (b-) + n AB + nb A + n n Stp 4 Th dnomnator man squar wll b th man squar for th othr sourc that has th sam xpctd man squar. Sourc \ Varanc E(MSQ) whn Null Tru A + n AB + nb A B AB Error (Rplcaton) + n Null dfns numrator of F AB statstc + n Dnomnator of F statstc s AB th man squar w sam E(MSQ) AB AB Thus, MSQ (B) F = wth dgrs of frdom = (b-), (a-)(b-) MSQ (AB) (b-); (a-)(b-)

54 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 54 of 8 Appndx Rvw: Statstcal Comparson of Two Groups Rcall som tools that ar rlatd to th Normal dstrbuton. ) Th Studnt s t-dstrbuton ) Th Ch Squar Dstrbuton 3) Th F Dstrbuton 4) Th Dstrbuton of th Sum of Two Indpndnt Normals Gvn: W hav on sampl of n x ndpndnt obsrvatons from a dstrbuton that s Normal(µ x, x ): X X nx and W hav a scond sampl of n y ndpndnt obsrvatons from a dstrbuton that s Normal(µ y, y ): Y Y ny X From ths sampls, w calculat th followng: n x n x = X = Y n y n y = Y j= j n x ( X X) S = x = n x ( ) S y = n y ( Y j Y ) j= ( n y ) ) Th Studnt s t-dstrbuton On dfnton of th Studnt s t-dstrbuton s n th contxt of standardzaton. Th da s vry smlar to th da of standardzaton to a z-scor. Hr, howvr, th standardzaton formula uss S x nstad of. Th rsult looks vry much lk a z-scor. Howvr, t s calld a t-scor. t = ( X µ ) x s dstrbutd Studnt s t wth dgrs of frdom = (n df = nx x ) s n x Smlarly, w can standardz Y usng µ y and S y Studnt s t wth dgrs of frdom = (n y - ). to obtan t-scor random varabls that ar dstrbutd

55 PubHlth 640 Sprng Introducton to Analyss of Varanc Pag 55 of 8 ) Th Ch Squar Dstrbuton Ths dstrbuton s usful n analyss of varablty. For th varablty n th X s: ( n x )S x s dstrbutd Ch squar wth dgrs of frdom = (n x ). x Smlarly, w can nvstgat th varablty n Y. 3) Th F Dstrbuton Th F dstrbuton drvs n svral ways. W ll consdr just on. F = S S x y x y s dstrbutd F wth two dgr of frdom spcfcatons. Numrator dgrs of frdom = (n x ) Dnomnator dgrs of frdom = (n y ) 4) Th Dstrbuton of th Sum of Two Indpndnt Normals If X s dstrbutd Normal(µ x, x ) and Y s dstrbutd Normal(µ y, y ) thn, undr ndpndnc of X and Y ( X + Y ) s also dstrbutd Normal( [ µ x + µ y ], [ x + y ] ) Th applcaton of ths rsult that w actually us hr s th followng. If X has dstrbuton Normal(µ x, x /n x ) and Y has dstrbuton Normal(µ y, y /n y ) thn, undr ndpndnc ( X Y ) + s also dstrbutd Normal( [ µ x + µ y ], [ x /n x + y /n y ] )

Unit 7 Introduction to Analysis of Variance

Unit 7 Introduction to Analysis of Variance PubHlth 640 Sprng 05 7. Introducton to Analyss of Varanc Pag of 7 Unt 7 Introducton to Analyss of Varanc Always graph rsults of an analyss of varanc - Grald van Bll. Analyss of varanc s a spcal cas of

More information

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous

ST 524 NCSU - Fall 2008 One way Analysis of variance Variances not homogeneous ST 54 NCSU - Fall 008 On way Analyss of varanc Varancs not homognous On way Analyss of varanc Exampl (Yandll, 997) A plant scntst masurd th concntraton of a partcular vrus n plant sap usng ELISA (nzym-lnkd

More information

Chapter 6 Student Lecture Notes 6-1

Chapter 6 Student Lecture Notes 6-1 Chaptr 6 Studnt Lctur Nots 6-1 Chaptr Goals QM353: Busnss Statstcs Chaptr 6 Goodnss-of-Ft Tsts and Contngncy Analyss Aftr compltng ths chaptr, you should b abl to: Us th ch-squar goodnss-of-ft tst to dtrmn

More information

Analyzing Frequencies

Analyzing Frequencies Frquncy (# ndvduals) Frquncy (# ndvduals) /3/16 H o : No dffrnc n obsrvd sz frquncs and that prdctd by growth modl How would you analyz ths data? 15 Obsrvd Numbr 15 Expctd Numbr from growth modl 1 1 5

More information

Logistic Regression I. HRP 261 2/10/ am

Logistic Regression I. HRP 261 2/10/ am Logstc Rgrsson I HRP 26 2/0/03 0- am Outln Introducton/rvw Th smplst logstc rgrsson from a 2x2 tabl llustrats how th math works Stp-by-stp xampls to b contnud nxt tm Dummy varabls Confoundng and ntracton

More information

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12

EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12 EEC 686/785 Modlng & Prformanc Evaluaton of Computr Systms Lctur Dpartmnt of Elctrcal and Computr Engnrng Clvland Stat Unvrsty wnbng@.org (basd on Dr. Ra Jan s lctur nots) Outln Rvw of lctur k r Factoral

More information

A Note on Estimability in Linear Models

A Note on Estimability in Linear Models Intrnatonal Journal of Statstcs and Applcatons 2014, 4(4): 212-216 DOI: 10.5923/j.statstcs.20140404.06 A Not on Estmablty n Lnar Modls S. O. Adymo 1,*, F. N. Nwob 2 1 Dpartmnt of Mathmatcs and Statstcs,

More information

Review - Probabilistic Classification

Review - Probabilistic Classification Mmoral Unvrsty of wfoundland Pattrn Rcognton Lctur 8 May 5, 6 http://www.ngr.mun.ca/~charlsr Offc Hours: Tusdays Thursdays 8:3-9:3 PM E- (untl furthr notc) Gvn lablld sampls { ɛc,,,..., } {. Estmat Rvw

More information

te Finance (4th Edition), July 2017.

te Finance (4th Edition), July 2017. Appndx Chaptr. Tchncal Background Gnral Mathmatcal and Statstcal Background Fndng a bas: 3 2 = 9 3 = 9 1 /2 x a = b x = b 1/a A powr of 1 / 2 s also quvalnt to th squar root opraton. Fndng an xponnt: 3

More information

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D

Soft k-means Clustering. Comp 135 Machine Learning Computer Science Tufts University. Mixture Models. Mixture of Normals in 1D Comp 35 Machn Larnng Computr Scnc Tufts Unvrsty Fall 207 Ron Khardon Th EM Algorthm Mxtur Modls Sm-Suprvsd Larnng Soft k-mans Clustrng ck k clustr cntrs : Assocat xampls wth cntrs p,j ~~ smlarty b/w cntr

More information

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP

COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP ISAHP 00, Bal, Indonsa, August -9, 00 COMPLEX NUMBER PAIRWISE COMPARISON AND COMPLEX NUMBER AHP Chkako MIYAKE, Kkch OHSAWA, Masahro KITO, and Masaak SHINOHARA Dpartmnt of Mathmatcal Informaton Engnrng

More information

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D

10/7/14. Mixture Models. Comp 135 Introduction to Machine Learning and Data Mining. Maximum likelihood estimation. Mixture of Normals in 1D Comp 35 Introducton to Machn Larnng and Data Mnng Fall 204 rofssor: Ron Khardon Mxtur Modls Motvatd by soft k-mans w dvlopd a gnratv modl for clustrng. Assum thr ar k clustrs Clustrs ar not rqurd to hav

More information

Grand Canonical Ensemble

Grand Canonical Ensemble Th nsmbl of systms mmrsd n a partcl-hat rsrvor at constant tmpratur T, prssur P, and chmcal potntal. Consdr an nsmbl of M dntcal systms (M =,, 3,...M).. Thy ar mutually sharng th total numbr of partcls

More information

The Hyperelastic material is examined in this section.

The Hyperelastic material is examined in this section. 4. Hyprlastcty h Hyprlastc matral s xad n ths scton. 4..1 Consttutv Equatons h rat of chang of ntrnal nrgy W pr unt rfrnc volum s gvn by th strss powr, whch can b xprssd n a numbr of dffrnt ways (s 3.7.6):

More information

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13)

Econ107 Applied Econometrics Topic 10: Dummy Dependent Variable (Studenmund, Chapter 13) Pag- Econ7 Appld Economtrcs Topc : Dummy Dpndnt Varabl (Studnmund, Chaptr 3) I. Th Lnar Probablty Modl Suppos w hav a cross scton of 8-24 yar-olds. W spcfy a smpl 2-varabl rgrsson modl. Th probablty of

More information

Today s logistic regression topics. Lecture 15: Effect modification, and confounding in logistic regression. Variables. Example

Today s logistic regression topics. Lecture 15: Effect modification, and confounding in logistic regression. Variables. Example Today s stc rgrsson tocs Lctur 15: Effct modfcaton, and confoundng n stc rgrsson Sandy Eckl sckl@jhsh.du 16 May 28 Includng catgorcal rdctor crat dummy/ndcator varabls just lk for lnar rgrsson Comarng

More information

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation

Lecture 14. Relic neutrinos Temperature at neutrino decoupling and today Effective degeneracy factor Neutrino mass limits Saha equation Lctur Rlc nutrnos mpratur at nutrno dcoupln and today Effctv dnracy factor Nutrno mass lmts Saha quaton Physcal Cosmoloy Lnt 005 Rlc Nutrnos Nutrnos ar wakly ntractn partcls (lptons),,,,,,, typcal ractons

More information

Outlier-tolerant parameter estimation

Outlier-tolerant parameter estimation Outlr-tolrant paramtr stmaton Baysan thods n physcs statstcs machn larnng and sgnal procssng (SS 003 Frdrch Fraundorfr fraunfr@cg.tu-graz.ac.at Computr Graphcs and Vson Graz Unvrsty of Tchnology Outln

More information

Lecture 3: Phasor notation, Transfer Functions. Context

Lecture 3: Phasor notation, Transfer Functions. Context EECS 5 Fall 4, ctur 3 ctur 3: Phasor notaton, Transfr Functons EECS 5 Fall 3, ctur 3 Contxt In th last lctur, w dscussd: how to convrt a lnar crcut nto a st of dffrntal quatons, How to convrt th st of

More information

Naresuan University Journal: Science and Technology 2018; (26)1

Naresuan University Journal: Science and Technology 2018; (26)1 Narsuan Unvrsty Journal: Scnc and Tchnology 018; (6)1 Th Dvlopmnt o a Corrcton Mthod or Ensurng a Contnuty Valu o Th Ch-squar Tst wth a Small Expctd Cll Frquncy Kajta Matchma 1 *, Jumlong Vongprasrt and

More information

BLOCKS REPLICATION EXPERIMENTAL UNITS RANDOM VERSUS FIXED EFFECTS

BLOCKS REPLICATION EXPERIMENTAL UNITS RANDOM VERSUS FIXED EFFECTS DESIGN CONCEPTS: BLOCKS REPLICATION EXPERIMENTAL UNITS RANDOM VERSUS FIXED EFFECTS TREATMENT DESIGNS (PLANS) VS. EXPERIMENTAL DESIGNS Outln: Blockd dsgns Random Block Effcts REML analyss Incomplt Blocks

More information

8-node quadrilateral element. Numerical integration

8-node quadrilateral element. Numerical integration Fnt Elmnt Mthod lctur nots _nod quadrlatral lmnt Pag of 0 -nod quadrlatral lmnt. Numrcal ntgraton h tchnqu usd for th formulaton of th lnar trangl can b formall tndd to construct quadrlatral lmnts as wll

More information

Observer Bias and Reliability By Xunchi Pu

Observer Bias and Reliability By Xunchi Pu Obsrvr Bias and Rliability By Xunchi Pu Introduction Clarly all masurmnts or obsrvations nd to b mad as accuratly as possibl and invstigators nd to pay carful attntion to chcking th rliability of thir

More information

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015

SCITECH Volume 5, Issue 1 RESEARCH ORGANISATION November 17, 2015 Journal of Informaton Scncs and Computng Tchnologs(JISCT) ISSN: 394-966 SCITECH Volum 5, Issu RESEARCH ORGANISATION Novmbr 7, 5 Journal of Informaton Scncs and Computng Tchnologs www.sctcrsarch.com/journals

More information

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn.

Lucas Test is based on Euler s theorem which states that if n is any integer and a is coprime to n, then a φ(n) 1modn. Modul 10 Addtonal Topcs 10.1 Lctur 1 Prambl: Dtrmnng whthr a gvn ntgr s prm or compost s known as prmalty tstng. Thr ar prmalty tsts whch mrly tll us whthr a gvn ntgr s prm or not, wthout gvng us th factors

More information

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Univ.-Prof. Dr. Jan Franke-Viebach Unv.Prof. r. J. FrankVbach WS 067: Intrnatonal Economcs ( st xam prod) Unvrstät Sgn Fakultät III Unv.Prof. r. Jan FrankVbach Exam Intrnatonal Economcs Wntr Smstr 067 ( st Exam Prod) Avalabl tm: 60 mnuts

More information

A primary objective of a phase II trial is to screen for antitumor activity; agents which are found to have substantial antitumor activity and an

A primary objective of a phase II trial is to screen for antitumor activity; agents which are found to have substantial antitumor activity and an SURVIVAL ANALYSIS A prmary objctv of a phas II tral s to scrn for anttumor actvty; agnts whch ar found to hav substantal anttumor actvty and an approprat spctrum of toxcty ar lkly ncorporatd nto combnatons

More information

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari

Heisenberg Model. Sayed Mohammad Mahdi Sadrnezhaad. Supervisor: Prof. Abdollah Langari snbrg Modl Sad Mohammad Mahd Sadrnhaad Survsor: Prof. bdollah Langar bstract: n ths rsarch w tr to calculat analtcall gnvalus and gnvctors of fnt chan wth ½-sn artcls snbrg modl. W drov gnfuctons for closd

More information

From Structural Analysis to FEM. Dhiman Basu

From Structural Analysis to FEM. Dhiman Basu From Structural Analyss to FEM Dhman Basu Acknowldgmnt Followng txt books wr consultd whl prparng ths lctur nots: Znkwcz, OC O.C. andtaylor Taylor, R.L. (000). Th FntElmnt Mthod, Vol. : Th Bass, Ffth dton,

More information

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm

2. Grundlegende Verfahren zur Übertragung digitaler Signale (Zusammenfassung) Informationstechnik Universität Ulm . Grundlgnd Vrfahrn zur Übrtragung dgtalr Sgnal (Zusammnfassung) wt Dc. 5 Transmsson of Dgtal Sourc Sgnals Sourc COD SC COD MOD MOD CC dg RF s rado transmsson mdum Snk DC SC DC CC DM dg DM RF g physcal

More information

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization

Economics 600: August, 2007 Dynamic Part: Problem Set 5. Problems on Differential Equations and Continuous Time Optimization THE UNIVERSITY OF MARYLAND COLLEGE PARK, MARYLAND Economcs 600: August, 007 Dynamc Part: Problm St 5 Problms on Dffrntal Equatons and Contnuous Tm Optmzaton Quston Solv th followng two dffrntal quatons.

More information

An Appropriate F -Test for Two-Way Balanced Interactive Model

An Appropriate F -Test for Two-Way Balanced Interactive Model n pproprat F -st for wo-wa alancd Intractv Modl F.C. Ez 1, F.O dmon 1, C.P. Nnanwa M.I. Ezan 3 1 Dpartmnt of Statstcs, Nnamd-zkw Unvrst, wka, Ngra. Dpartmnt of Mathmatcs, Nnamd-zkw Unvrst, wka, Ngra. 3

More information

Unit 7 Introduction to Analysis of Variance Always graph results of an analysis of variance - Gerald van Belle.

Unit 7 Introduction to Analysis of Variance Always graph results of an analysis of variance - Gerald van Belle. BIOSTATS 640 Sprng 08 7. Introducton to Analyss of Varance Page of 80 Unt 7 Introducton to Analyss of Varance Always graph results of an analyss of varance - Gerald van Belle. Welcome to Unt 7. We return

More information

Introduction to logistic regression

Introduction to logistic regression Itroducto to logstc rgrsso Gv: datast D { 2 2... } whr s a k-dmsoal vctor of ral-valud faturs or attrbuts ad s a bar class labl or targt. hus w ca sa that R k ad {0 }. For ampl f k 4 a datast of 3 data

More information

Jones vector & matrices

Jones vector & matrices Jons vctor & matrcs PY3 Colást na hollscol Corcagh, Ér Unvrst Collg Cork, Irland Dpartmnt of Phscs Matr tratmnt of polarzaton Consdr a lght ra wth an nstantanous -vctor as shown k, t ˆ k, t ˆ k t, o o

More information

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION

CHAPTER 7d. DIFFERENTIATION AND INTEGRATION CHAPTER 7d. DIFFERENTIATION AND INTEGRATION A. J. Clark School o Engnrng Dpartmnt o Cvl and Envronmntal Engnrng by Dr. Ibrahm A. Assakka Sprng ENCE - Computaton Mthods n Cvl Engnrng II Dpartmnt o Cvl and

More information

EXST Regression Techniques Page 1

EXST Regression Techniques Page 1 EXST704 - Rgrssion Tchniqus Pag 1 Masurmnt rrors in X W hav assumd that all variation is in Y. Masurmnt rror in this variabl will not ffct th rsults, as long as thy ar uncorrlatd and unbiasd, sinc thy

More information

An Overview of Markov Random Field and Application to Texture Segmentation

An Overview of Markov Random Field and Application to Texture Segmentation An Ovrvw o Markov Random Fld and Applcaton to Txtur Sgmntaton Song-Wook Joo Octobr 003. What s MRF? MRF s an xtnson o Markov Procss MP (D squnc o r.v. s unlatral (causal: p(x t x,

More information

A Probabilistic Characterization of Simulation Model Uncertainties

A Probabilistic Characterization of Simulation Model Uncertainties A Proalstc Charactrzaton of Sulaton Modl Uncrtants Vctor Ontvros Mohaad Modarrs Cntr for Rsk and Rlalty Unvrsty of Maryland 1 Introducton Thr s uncrtanty n odl prdctons as wll as uncrtanty n xprnts Th

More information

Discrete Shells Simulation

Discrete Shells Simulation Dscrt Shlls Smulaton Xaofng M hs proct s an mplmntaton of Grnspun s dscrt shlls, th modl of whch s govrnd by nonlnar mmbran and flxural nrgs. hs nrgs masur dffrncs btwns th undformd confguraton and th

More information

You already learned about dummies as independent variables. But. what do you do if the dependent variable is a dummy?

You already learned about dummies as independent variables. But. what do you do if the dependent variable is a dummy? CHATER 5: DUMMY DEENDENT VARIABLES AND NON-LINEAR REGRESSION. Th roblm of Dummy Dpndnt Varabls You alrady larnd about dumms as ndpndnt varabls. But what do you do f th dpndnt varabl s a dummy? On answr

More information

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach

Fakultät III Wirtschaftswissenschaften Univ.-Prof. Dr. Jan Franke-Viebach Unvrstät Sgn Fakultät III Wrtschaftswssnschaftn Unv.-rof. Dr. Jan Frank-Vbach Exam Intrnatonal Fnancal Markts Summr Smstr 206 (2 nd Exam rod) Avalabl tm: 45 mnuts Soluton For your attnton:. las do not

More information

UNIT 8 TWO-WAY ANOVA WITH m OBSERVATIONS PER CELL

UNIT 8 TWO-WAY ANOVA WITH m OBSERVATIONS PER CELL UNIT 8 TWO-WAY ANOVA WITH OBSERVATIONS PER CELL Two-Way Anova wth Obsrvatons Pr Cll Structur 81 Introducton Obctvs 8 ANOVA Modl for Two-way Classfd Data wth Obsrvatons r Cll 83 Basc Assutons 84 Estaton

More information

Lecture Outline Biost 517 Applied Biostatistics I

Lecture Outline Biost 517 Applied Biostatistics I Lctur Outln Bost 57 Appld Bostatstcs I Scott S. Emrson, M.D., Ph.D. Profssor of Bostatstcs Unvrsty of Washngton Lctur 5: Smpl Rgrsson Dcmbr 3, 22 Gnral Rgrsson Sttng Smpl Rgrsson Modls Lnar Rgrsson Infrnc

More information

ph People Grade Level: basic Duration: minutes Setting: classroom or field site

ph People Grade Level: basic Duration: minutes Setting: classroom or field site ph Popl Adaptd from: Whr Ar th Frogs? in Projct WET: Curriculum & Activity Guid. Bozman: Th Watrcours and th Council for Environmntal Education, 1995. ph Grad Lvl: basic Duration: 10 15 minuts Stting:

More information

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS

ACOUSTIC WAVE EQUATION. Contents INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS ACOUSTIC WAE EQUATION Contnts INTRODUCTION BULK MODULUS AND LAMÉ S PARAMETERS INTRODUCTION As w try to vsualz th arth ssmcally w mak crtan physcal smplfcatons that mak t asr to mak and xplan our obsrvatons.

More information

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline

September 27, Introduction to Ordinary Differential Equations. ME 501A Seminar in Engineering Analysis Page 1. Outline Introucton to Ornar Dffrntal Equatons Sptmbr 7, 7 Introucton to Ornar Dffrntal Equatons Larr artto Mchancal Engnrng AB Smnar n Engnrng Analss Sptmbr 7, 7 Outln Rvw numrcal solutons Bascs of ffrntal quatons

More information

CHAPTER 33: PARTICLE PHYSICS

CHAPTER 33: PARTICLE PHYSICS Collg Physcs Studnt s Manual Chaptr 33 CHAPTER 33: PARTICLE PHYSICS 33. THE FOUR BASIC FORCES 4. (a) Fnd th rato of th strngths of th wak and lctromagntc forcs undr ordnary crcumstancs. (b) What dos that

More information

x = , so that calculated

x = , so that calculated Stat 4, secton Sngle Factor ANOVA notes by Tm Plachowsk n chapter 8 we conducted hypothess tests n whch we compared a sngle sample s mean or proporton to some hypotheszed value Chapter 9 expanded ths to

More information

First derivative analysis

First derivative analysis Robrto s Nots on Dirntial Calculus Chaptr 8: Graphical analysis Sction First drivativ analysis What you nd to know alrady: How to us drivativs to idntiy th critical valus o a unction and its trm points

More information

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS

Lecture 23 APPLICATIONS OF FINITE ELEMENT METHOD TO SCALAR TRANSPORT PROBLEMS COMPUTTION FUID DYNMICS: FVM: pplcatons to Scalar Transport Prolms ctur 3 PPICTIONS OF FINITE EEMENT METHOD TO SCR TRNSPORT PROBEMS 3. PPICTION OF FEM TO -D DIFFUSION PROBEM Consdr th stady stat dffuson

More information

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION*

A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* A NEW GENERALISATION OF SAM-SOLAI S MULTIVARIATE ADDITIVE GAMMA DISTRIBUTION* Dr. G.S. Davd Sam Jayakumar, Assstant Profssor, Jamal Insttut of Managmnt, Jamal Mohamd Collg, Truchraall 620 020, South Inda,

More information

Α complete processing methodology for 3D monitoring using GNSS receivers

Α complete processing methodology for 3D monitoring using GNSS receivers 7-5-5 NATIONA TECHNICA UNIVERSITY OF ATHENS SCHOO OF RURA AND SURVEYING ENGINEERING DEPARTMENT OF TOPOGRAPHY AORATORY OF GENERA GEODESY Α complt procssng mthodology for D montorng usng GNSS rcvrs Gorg

More information

GPC From PeakSimple Data Acquisition

GPC From PeakSimple Data Acquisition GPC From PakSmpl Data Acquston Introducton Th follong s an outln of ho PakSmpl data acquston softar/hardar can b usd to acqur and analyz (n conjuncton th an approprat spradsht) gl prmaton chromatography

More information

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time.

??? Dynamic Causal Modelling for M/EEG. Electroencephalography (EEG) Dynamic Causal Modelling. M/EEG analysis at sensor level. time. Elctroncphalography EEG Dynamc Causal Modllng for M/EEG ampltud μv tm ms tral typ 1 tm channls channls tral typ 2 C. Phllps, Cntr d Rchrchs du Cyclotron, ULg, Blgum Basd on slds from: S. Kbl M/EEG analyss

More information

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17)

MCB137: Physical Biology of the Cell Spring 2017 Homework 6: Ligand binding and the MWC model of allostery (Due 3/23/17) MCB37: Physical Biology of th Cll Spring 207 Homwork 6: Ligand binding and th MWC modl of allostry (Du 3/23/7) Hrnan G. Garcia March 2, 207 Simpl rprssion In class, w drivd a mathmatical modl of how simpl

More information

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2

167 T componnt oftforc on atom B can b drvd as: F B =, E =,K (, ) (.2) wr w av usd 2 = ( ) =2 (.3) T scond drvatv: 2 E = K (, ) = K (1, ) + 3 (.4).2.2 166 ppnd Valnc Forc Flds.1 Introducton Valnc forc lds ar usd to dscrb ntra-molcular ntractons n trms of 2-body, 3-body, and 4-body (and gr) ntractons. W mplmntd many popular functonal forms n our program..2

More information

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density

Radial Cataphoresis in Hg-Ar Fluorescent Lamp Discharges at High Power Density [NWP.19] Radal Cataphorss n Hg-Ar Fluorscnt Lamp schargs at Hgh Powr nsty Y. Aura, G. A. Bonvallt, J. E. Lawlr Unv. of Wsconsn-Madson, Physcs pt. ABSTRACT Radal cataphorss s a procss n whch th lowr onzaton

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by Dan Klain Vrsion 28928 Corrctions and commnts ar wlcom Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix () A A k I + A + k!

More information

Polytropic Process. A polytropic process is a quasiequilibrium process described by

Polytropic Process. A polytropic process is a quasiequilibrium process described by Polytropc Procss A polytropc procss s a quasqulbrum procss dscrbd by pv n = constant (Eq. 3.5 Th xponnt, n, may tak on any valu from to dpndng on th partcular procss. For any gas (or lqud, whn n = 0, th

More information

The Matrix Exponential

The Matrix Exponential Th Matrix Exponntial (with xrciss) by D. Klain Vrsion 207.0.05 Corrctions and commnts ar wlcom. Th Matrix Exponntial For ach n n complx matrix A, dfin th xponntial of A to b th matrix A A k I + A + k!

More information

Higher order derivatives

Higher order derivatives Robrto s Nots on Diffrntial Calculus Chaptr 4: Basic diffrntiation ruls Sction 7 Highr ordr drivativs What you nd to know alrady: Basic diffrntiation ruls. What you can larn hr: How to rpat th procss of

More information

Physics 256: Lecture 2. Physics

Physics 256: Lecture 2. Physics Physcs 56: Lctur Intro to Quantum Physcs Agnda for Today Complx Numbrs Intrfrnc of lght Intrfrnc Two slt ntrfrnc Dffracton Sngl slt dffracton Physcs 01: Lctur 1, Pg 1 Constructv Intrfrnc Ths wll occur

More information

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces

Electrochemical Equilibrium Electromotive Force. Relation between chemical and electric driving forces C465/865, 26-3, Lctur 7, 2 th Sp., 26 lctrochmcal qulbrum lctromotv Forc Rlaton btwn chmcal and lctrc drvng forcs lctrochmcal systm at constant T and p: consdr G Consdr lctrochmcal racton (nvolvng transfr

More information

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS

NON-SYMMETRY POWER IN THREE-PHASE SYSTEMS O-YMMETRY OWER THREE-HAE YTEM Llana Marlna MATCA nvrsty of Orada, nvrstat str., no., 487, Orada; lmatca@uorada.ro Abstract. For thr-phas lctrcal systms, n non-symmtrcal stuaton, an analyz mthod costs on

More information

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches.

22/ Breakdown of the Born-Oppenheimer approximation. Selection rules for rotational-vibrational transitions. P, R branches. Subjct Chmistry Papr No and Titl Modul No and Titl Modul Tag 8/ Physical Spctroscopy / Brakdown of th Born-Oppnhimr approximation. Slction ruls for rotational-vibrational transitions. P, R branchs. CHE_P8_M

More information

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint

Optimal Ordering Policy in a Two-Level Supply Chain with Budget Constraint Optmal Ordrng Polcy n a Two-Lvl Supply Chan wth Budgt Constrant Rasoul aj Alrza aj Babak aj ABSTRACT Ths papr consdrs a two- lvl supply chan whch consst of a vndor and svral rtalrs. Unsatsfd dmands n rtalrs

More information

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula

u x v x dx u x v x v x u x dx d u x v x u x v x dx u x v x dx Integration by Parts Formula 7. Intgration by Parts Each drivativ formula givs ris to a corrsponding intgral formula, as w v sn many tims. Th drivativ product rul yilds a vry usful intgration tchniqu calld intgration by parts. Starting

More information

Lecture 4 BLUP Breeding Values

Lecture 4 BLUP Breeding Values Lctr 4 BLUP Brdng Vals Glhrm J. M. Rosa Unvrsty of Wsconsn-Madson Mxd Modls n Qanttatv Gntcs SISG, Sattl 8 Sptmbr 8 Lnar Mxd Effcts Modl y = Xβ + + rsponss ncdnc matrcs fxd ffcts random ffcts rsdals G

More information

A Propagating Wave Packet Group Velocity Dispersion

A Propagating Wave Packet Group Velocity Dispersion Lctur 8 Phys 375 A Propagating Wav Packt Group Vlocity Disprsion Ovrviw and Motivation: In th last lctur w lookd at a localizd solution t) to th 1D fr-particl Schrödingr quation (SE) that corrsponds to

More information

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS

ON THE COMPLEXITY OF K-STEP AND K-HOP DOMINATING SETS IN GRAPHS MATEMATICA MONTISNIRI Vol XL (2017) MATEMATICS ON TE COMPLEXITY OF K-STEP AN K-OP OMINATIN SETS IN RAPS M FARAI JALALVAN AN N JAFARI RA partmnt of Mathmatcs Shahrood Unrsty of Tchnology Shahrood Iran Emals:

More information

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES

HORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WITH VARIABLE PROPERTIES 13 th World Confrnc on Earthquak Engnrng Vancouvr, B.C., Canada August 1-6, 4 Papr No. 485 ORIZONTAL IMPEDANCE FUNCTION OF SINGLE PILE IN SOIL LAYER WIT VARIABLE PROPERTIES Mngln Lou 1 and Wnan Wang Abstract:

More information

General Notes About 2007 AP Physics Scoring Guidelines

General Notes About 2007 AP Physics Scoring Guidelines AP PHYSICS C: ELECTRICITY AND MAGNETISM 2007 SCORING GUIDELINES Gnral Nots About 2007 AP Physics Scoring Guidlins 1. Th solutions contain th most common mthod of solving th fr-rspons qustions and th allocation

More information

Applied Statistics II - Categorical Data Analysis Data analysis using Genstat - Exercise 2 Logistic regression

Applied Statistics II - Categorical Data Analysis Data analysis using Genstat - Exercise 2 Logistic regression Applid Statistics II - Catgorical Data Analysis Data analysis using Gnstat - Exrcis 2 Logistic rgrssion Analysis 2. Logistic rgrssion for a 2 x k tabl. Th tabl blow shows th numbr of aphids aliv and dad

More information

Outline. Types of Experimental Designs. Terminology. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12

Outline. Types of Experimental Designs. Terminology. EEC 686/785 Modeling & Performance Evaluation of Computer Systems. Lecture 12 EEC 686/785 Modlng & Prformanc Evaluaton of Computr Sytm Lctur Outln Rvw of lctur r Factoral Dgn wth Rplcaton Dpartmnt of Elctrcal and Computr Engnrng Clvland Stat Unvrty wnbng@.org (bad on Dr. Ra Jan

More information

Statistics for Economics & Business

Statistics for Economics & Business Statstcs for Economcs & Busness Smple Lnear Regresson Learnng Objectves In ths chapter, you learn: How to use regresson analyss to predct the value of a dependent varable based on an ndependent varable

More information

The Fourier Transform

The Fourier Transform /9/ Th ourr Transform Jan Baptst Josph ourr 768-83 Effcnt Data Rprsntaton Data can b rprsntd n many ways. Advantag usng an approprat rprsntaton. Eampls: osy ponts along a ln Color spac rd/grn/blu v.s.

More information

Households Demand for Food Commodities: Evidence from Kurunegala Divisional Secretarial Division, Sri Lanka

Households Demand for Food Commodities: Evidence from Kurunegala Divisional Secretarial Division, Sri Lanka Housholds Dmand for Food Commodts: Evdnc from Kurungala Dvsonal Scrtaral Dvson, Sr Lanka U.W.B.M. Kumar and John Ngl Dpartmnt of Economcs and Statstcs, Unvrsty of Pradnya, Sr Lanka Kywords: Houshold dmand;

More information

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University

External Equivalent. EE 521 Analysis of Power Systems. Chen-Ching Liu, Boeing Distinguished Professor Washington State University xtrnal quvalnt 5 Analyss of Powr Systms Chn-Chng Lu, ong Dstngushd Profssor Washngton Stat Unvrsty XTRNAL UALNT ach powr systm (ara) s part of an ntrconnctd systm. Montorng dvcs ar nstalld and data ar

More information

What are those βs anyway? Understanding Design Matrix & Odds ratios

What are those βs anyway? Understanding Design Matrix & Odds ratios Ral paramtr stimat WILD 750 - Wildlif Population Analysis of 6 What ar thos βs anyway? Undrsting Dsign Matrix & Odds ratios Rfrncs Hosmr D.W.. Lmshow. 000. Applid logistic rgrssion. John Wily & ons Inc.

More information

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added

Relate p and T at equilibrium between two phases. An open system where a new phase may form or a new component can be added 4.3, 4.4 Phas Equlbrum Dtrmn th slops of th f lns Rlat p and at qulbrum btwn two phass ts consdr th Gbbs functon dg η + V Appls to a homognous systm An opn systm whr a nw phas may form or a nw componnt

More information

are given in the table below. t (hours)

are given in the table below. t (hours) CALCULUS WORKSHEET ON INTEGRATION WITH DATA Work th following on notbook papr. Giv dcimal answrs corrct to thr dcimal placs.. A tank contains gallons of oil at tim t = hours. Oil is bing pumpd into th

More information

Search sequence databases 3 10/25/2016

Search sequence databases 3 10/25/2016 Sarch squnc databass 3 10/25/2016 Etrm valu distribution Ø Suppos X is a random variabl with probability dnsity function p(, w sampl a larg numbr S of indpndnt valus of X from this distribution for an

More information

Questions k 10k 100k 1M Speaker. output

Questions k 10k 100k 1M Speaker. output Quston 1 Qustons If th only nstrumnt you had n your posssson to dtct C voltag sgnals was an audo spakr, how could you us t to dtrmn whch of two C voltag wavforms has th gratst prod? Hz FUNCTION GENERTOR

More information

1 Minimum Cut Problem

1 Minimum Cut Problem CS 6 Lctur 6 Min Cut and argr s Algorithm Scribs: Png Hui How (05), Virginia Dat: May 4, 06 Minimum Cut Problm Today, w introduc th minimum cut problm. This problm has many motivations, on of which coms

More information

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter

Cramér-Rao Inequality: Let f(x; θ) be a probability density function with continuous parameter WHEN THE CRAMÉR-RAO INEQUALITY PROVIDES NO INFORMATION STEVEN J. MILLER Abstract. W invstigat a on-paramtr family of probability dnsitis (rlatd to th Parto distribution, which dscribs many natural phnomna)

More information

On Selection of Best Sensitive Logistic Estimator in the Presence of Collinearity

On Selection of Best Sensitive Logistic Estimator in the Presence of Collinearity Amrcan Journal of Appld Mathmatcs and Statstcs, 05, Vol. 3, No., 7- Avalabl onln at http://pubs.scpub.com/ajams/3// Scnc and Educaton Publshng DOI:0.69/ajams-3-- On Slcton of Bst Snstv Logstc Estmator

More information

Application of Local Influence Diagnostics to the Linear Logistic Regression Models

Application of Local Influence Diagnostics to the Linear Logistic Regression Models Dhaka Unv. J. Sc., 5(): 6978 003(July) Applcaton of Local Influnc Dagnostcs to th Lnar Logstc Rgrsson Modls Monzur Hossan * and M. Ataharul Islam Dpartmnt of Statstcs, Unvrsty of Dhaka Rcvd on 5.0.00.

More information

Solution of Assignment #2

Solution of Assignment #2 olution of Assignmnt #2 Instructor: Alirza imchi Qustion #: For simplicity, assum that th distribution function of T is continuous. Th distribution function of R is: F R ( r = P( R r = P( log ( T r = P(log

More information

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA

4 Analysis of Variance (ANOVA) 5 ANOVA. 5.1 Introduction. 5.2 Fixed Effects ANOVA 4 Analyss of Varance (ANOVA) 5 ANOVA 51 Introducton ANOVA ANOVA s a way to estmate and test the means of multple populatons We wll start wth one-way ANOVA If the populatons ncluded n the study are selected

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 301 Signals & Systms Prof. Mark Fowlr ot St #21 D-T Signals: Rlation btwn DFT, DTFT, & CTFT 1/16 W can us th DFT to implmnt numrical FT procssing This nabls us to numrically analyz a signal to find

More information

Principles of Humidity Dalton s law

Principles of Humidity Dalton s law Principls of Humidity Dalton s law Air is a mixtur of diffrnt gass. Th main gas componnts ar: Gas componnt volum [%] wight [%] Nitrogn N 2 78,03 75,47 Oxygn O 2 20,99 23,20 Argon Ar 0,93 1,28 Carbon dioxid

More information

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012

The van der Waals interaction 1 D. E. Soper 2 University of Oregon 20 April 2012 Th van dr Waals intraction D. E. Sopr 2 Univrsity of Orgon 20 pril 202 Th van dr Waals intraction is discussd in Chaptr 5 of J. J. Sakurai, Modrn Quantum Mchanics. Hr I tak a look at it in a littl mor

More information

R-Estimation in Linear Models with α-stable Errors

R-Estimation in Linear Models with α-stable Errors R-Estmaton n Lnar Modls wth α-stabl Errors Marc Halln Départmnt d Mathématqu and E.C.A.R.E.S., Unvrsté Lbr d Bruxlls London, Dcmbr 11, 2015 M. Halln (ULB) R-Estmaton n Lnar Modls wth α-stabl Errors London,

More information

Multivariate Linear and Non-Linear Causality Tests

Multivariate Linear and Non-Linear Causality Tests Th Thal Economtrcs Soct Vol. No. (Januar ) 59-68 Multvarat nar Non-nar Causalt Tsts Zhdong Ba a Wng-Kung Wong b Bngzh Zhang c a School of Mathmatcs Statstcs Northast Normal Unvrst Chna; Dpartmnt of Statstcs

More information

~ Outline ~ 1. Normalization Quality filtering Rank-Invariant selection for non-differentially expressed genes Fit normalization curve

~ Outline ~ 1. Normalization Quality filtering Rank-Invariant selection for non-differentially expressed genes Fit normalization curve Statstcal Issus n cdna Mcroarray Analyss Issus n cdna mcroarray analyss: qualty fltrn, channl normalzaton, modls of varatons and assssmnt of n ffcts G.C. Tsn, M. Oh, L. Rohln, J.C. Lao and W.H. Won Ima

More information

APPENDIX: STATISTICAL TOOLS

APPENDIX: STATISTICAL TOOLS I. Nots o radom samplig Why do you d to sampl radomly? APPENDI: STATISTICAL TOOLS I ordr to masur som valu o a populatio of orgaisms, you usually caot masur all orgaisms, so you sampl a subst of th populatio.

More information

/ n ) are compared. The logic is: if the two

/ n ) are compared. The logic is: if the two STAT C141, Sprng 2005 Lecture 13 Two sample tests One sample tests: examples of goodness of ft tests, where we are testng whether our data supports predctons. Two sample tests: called as tests of ndependence

More information

Collisions between electrons and ions

Collisions between electrons and ions DRAFT 1 Collisions btwn lctrons and ions Flix I. Parra Rudolf Pirls Cntr for Thortical Physics, Unirsity of Oxford, Oxford OX1 NP, UK This rsion is of 8 May 217 1. Introduction Th Fokkr-Planck collision

More information

Epistemic Foundations of Game Theory. Lecture 1

Epistemic Foundations of Game Theory. Lecture 1 Royal Nthrlands cadmy of rts and Scncs (KNW) Mastr Class mstrdam, Fbruary 8th, 2007 Epstmc Foundatons of Gam Thory Lctur Gacomo onanno (http://www.con.ucdavs.du/faculty/bonanno/) QUESTION: What stratgs

More information