Chapter 8 Unit Conversions

Size: px
Start display at page:

Download "Chapter 8 Unit Conversions"

Transcription

1 Chapter 8 Unit Conversions [M]athematics is the easiest of sciences, a fact which is obvious in that no one s brain rejects it. Roger Bacon (c c. 1294), English philosopher and scientist Stand firm in your refusal to remain conscious during algebra. In real life, I assure you, there is no such thing as algebra. Fran Lebowitz (b. 1951), American journalist ou may agree with Roger Bacon that mathematics is the easiest of sciences, but many beginning chemistry students would not. Because they have found mathematics challenging, they wish it were not so important for learning chemistry or for answering so many of the questions that arise in everyday life. They can better relate to Fran Lebowitz s advice in the second quotation. If you are one of the latter group, it will please you to know that even though there is some algebra in chemistry, this chapter teaches a technique for doing chemical calculations (and many other calculations) without it. Although this technique has several common names, it is called unit analysis in this text. You will be using it throughout the rest of this book, in future chemistry and science courses, and in fact, any time you want to calculate the number of nails you need to build a fence, or the number of rolls of paper you require to cover the kitchen shelves. Review Skills The presentation of information in this chapter assumes that you can already perform the tasks listed below. You can test your readiness to proceed by answering the Review Questions at the end of the chapter. This might also be a good time to read the Chapter Objectives, which precede the Review Questions. List the metric units without prefixes and the corresponding abbreviations for length (meter, m), mass (gram, g), volume (liter, L), and energy (joule, J). (Section 1.4) State the numbers or fractions represented by the following metric prefixes, and write their abbreviations: giga, mega, kilo, centi, milli, micro, nano, and pico. (Section 1.4) Given a metric unit, write its abbreviation; given an abbreviation, write the full name of the unit. (Section 1.4) Describe the relationships between the metric units that do not have prefixes (such as meter, gram, and liter) and units derived from them by the addition of prefixes for example, 1 km = 10 3 m. (Section 1.4) 8.1 Unit Analysis 8.2 Rounding Off and Significant Figures 8.3 Density and Density Calculations 8.4 Percentage and Percentage Calculations 8.5 A Summary of the Unit Analysis Process 8.6 Temperature Conversions Unit analysis, the technique for doing unit conversions described in this chapter, can be used for a lot more than chemical calculations. Describe the Celsius, Fahrenheit, and Kelvin scales used to report temperature values. (See Section 1.4) Given a value derived from a measurement, identify the range of possible values it represents, on the basis of the assumption that its uncertainty is ±1 in the last position reported. (For example, 8.0 ml says the value could be from 7.9 ml to 8.1 ml.) (Section 1.5) 287

2 288 Chapter 8 Unit Conversions 8.1 Unit Analysis Many of the questions asked in chemistry and in everyday life can be answered by converting one unit of measure into another. For example, suppose you are taking care of your nephew for the weekend, and he breaks his arm. The doctor sets the arm, puts it in a cast, and prescribes an analgesic to help control the pain. Back at home, after filling the prescription, you realize that the label calls for 2 teaspoons of medicine every six hours, but the measuring device that the pharmacy gave you is calibrated in milliliters. You can t find a measuring teaspoon in your kitchen, so you ve got to figure out how many milliliters are equivalent to 2 tsp. It s been a rough day, there s a crying boy on the couch, and you re really tired. Is there a technique for doing the necessary calculation that is simple and reliable? Unit analysis to the rescue! The main purpose of this chapter is to show you how to make many different types of unit conversions, such as the one required above. You will find that the stepwise thought process associated with the procedure called unit analysis 1 not only guides you in figuring out how to set up unit conversion problems but also gives you confidence that your answers are correct. An Overview of the General Procedure In every affair, consider what precedes and follows, and then undertake it. Epictetus (c. 55-c. 135) Greek Philosopher You will see many different types of unit conversions in this chapter, but they can all be worked using the same general procedure. To illustrate the process, we will convert 2 teaspoons to milliliters and solve the problem of how much medicine to give the little boy described above. The first step in the procedure is to identify the unit for the value we want to calculate. We write this on the left side of an equals sign. Next, we identify the value that we will convert into the desired value, and we write it on the right side of the equals sign. (Remember that a value constitutes both a number and a unit.) We want to know how many milliliters are equivalent to 2 tsp. We express this question as Next, we multiply by one or more conversion factors that enable us to cancel the unwanted units and generate the desired units. A conversion factor is a ratio that describes the relationship between two units. To create a conversion factor for converting teaspoons to milliliters we can look in any modern cookbook (check its index under metric conversions ) and discover that the relationship between teaspoons and milliliters is 1 tsp = 5 ml 1 Unit ananysis has other names, including the factor-label method, the conversion factor method, and dimensional analysis.

3 8.1 Unit Analysis 289 This relationship can be used to produce two ratios, or conversion factors: The first of these can be used to convert teaspoons to milliliters, and the second can be used to convert milliliters to teaspoons. The final step in the procedure is to multiply the known unit (2 tsp) by the proper conversion factor, the one that converts teaspoons to milliliters. Because 1 teaspoon is equivalent to 5 milliliters, multiplying by 5 ml/1 tsp is the same as multiplying by 1. The volume associated with 2 tsp does not change when we multiply by the conversion factor, but the value (number and unit) does. Because one milliliter is one fifth the volume of one teaspoon, there are five times as many milliliters for a given volume. Therefore, 2 tsp and 10 ml represent the same volume. Note that the units in a unit analysis setup cancel just like variables in an algebraic equation. Therefore, when we want to convert tsp to ml, we choose the ratio that has tsp on the bottom to cancel the tsp unit in our original value and leave us with the desired unit of ml. If you have used correct conversion factors, and if your units cancel to yield the desired unit or units, you can be confident that you will arrive at the correct answer. Metric Metric Conversions As you saw in Chapter 1, one of the convenient features of the metric system is that the relationships between metric units can be derived from the metric prefixes. These relationships can easily be translated into conversion factors. For example, milli- means 10-3 (or or 1/1000), so a milliliter (ml) is 10-3 liters (L). Thus there are 1000 or 10 3 milliliters in a liter. (A complete list of the prefixes that you need to know to solve the problems in this text is in Table 1.2.) Two possible sets of conversion factors for relating milliliters to liters can be obtained from these relationships. Objective 2 Objective 2 In the remainder of this text, metric metric conversion factors will have positive exponents like those found in the first set of conversion factors above.

4 290 Chapter 8 Unit Conversions Example Conversion Factors Objective 2 Write two conversion factors that relate nanometers and meters. Use positive exponents in each. Solution Nano- means 10-9, so nanometer means 10-9 meters. 1 nm = 10-9 m and 10 9 nm = 1 m Because we want our conversion factors to have positive exponents, we will build our ratios from the equation on the right (10 9 nm = 1 m): Exercise Conversion Factors Objective 2 Write two conversion factors that relate the following pairs of metric units. Use positive exponents for each. a. joule and kilojoule b. meter and centimeter c. liter and gigaliter d. gram and microgram e. gram and megagram Example Unit Conversions Objective 3 Convert 365 nanometers to kilometers. Solution We want the answer in kilometers (km), and the units we are given are nanometers (nm), so, we are converting from one metric length unit to another metric length unit. We begin by writing? km = 365 m We continue constructing the unit analysis setup by writing the skeleton of a conversion factor: the parentheses, the line dividing the numerator and the denominator, and the unit that we know we want to cancel. This step helps to organize our thoughts by showing us that our first conversion factor must have the nm unit on the bottom to cancel the nm unit associated with 365 nm.

5 8.1 Unit Analysis 291 Note that in this problem both the desired metric unit and the known one have prefixes. One way to make this type of conversion is to change the given unit to the corresponding metric base unit, and then change that metric base unit to the desired unit. We write two conversion factors, one for each of these changes. Sometimes it is useful to write a simple description of your plan first. Our plan in this instance is nm m km The unit analysis setup would therefore be The nm and m units cancel, leaving the answer in km. Exercise Unit Conversions Convert micrograms to megagrams. Objective 3 English-Metric Conversions English units 2 are still common in some countries, while people in other countries (and the scientific community everywhere), use metric units almost exclusively. Unit analysis provides a convenient method for converting between English and metric units. Several of the most commonly needed English metric conversion factors are listed in Table 8.1 on the next page. Because the English inch is defined as 2.54 cm, the number 2.54 in this value is exact. The numbers in the other conversion factors in Table 8.1 are not exact. 2 Table A.2 in Appendix A shows some useful English English conversion factors.

6 292 Chapter 8 Unit Conversions Objective 4 Table 8.1 English-Metric Unit Conversion Factors Type of measurement Probably most useful to know Also useful to know length Sometimes the British are obstinate about the change from English to metric units. Greengrocer Steve Thoburn went to jail for refusing to switch from pounds to kilograms. mass volume Example Unit Conversions Objective 5 The mass of a hydrogen atom is micrograms. Convert this mass into pounds. Solution We start with? lb = μg We then add the skeleton of the first conversion factor. We are converting from metric mass to English mass. Table 8.1 contains a conversion factor that is convenient for most English metric mass conversions, the one relating grams to pounds. Our given unit is micrograms. If we convert the micrograms into grams, we can then convert the gram unit into pounds. μg g lb Exercise Conversion Factors Objective 5 The volume of the Earth s oceans is estimated to be kiloliters. What is this volume in gallons?

7 8.2 Rounding Off and Significant Figures Rounding and Significant Figures Most of your calculations in chemistry are likely to be done using a calculator, and calculators often provide more digits in the answer than you would be justified in reporting as scientific data. This section shows you how to round off an answer to reflect the approximate range of certainty warranted by the data. Measurements, Calculations, and Uncertainty In Section 1.5, you read about the issue of uncertainty in measurement and learned to report measured values to reflect this uncertainty. For example, an inexpensive letter scale might show you that the mass of a nickel is 5 grams, but this is not an exact measurement. It is reasonable to assume that the letter scale measures mass with a precision of ±1 g and that the nickel therefore has a mass between 4 grams and 6 grams. You could use a more sophisticated instrument with a precision of ±0.01 g and report the mass of the nickel as 5.00 g. The purpose of the zeros in this value is to show that this measurement of the nickel s mass has an uncertainty of plus or minus 0.01 g. With this instrument, we can assume that the mass of the nickel is between 4.99 g and 5.01 g. Unless we are told otherwise, we assume that values from measurements have an uncertainty of plus or minus one in the last decimal place reported. Using a far more precise balance found in a chemistry laboratory, you could determine the mass to be g, but this measurement still has an uncertainty of ± g. Measurements never give exact values. Figure 2.1 Measurement Precision Even highly precise measurements have some uncertainty. Each of these balances yields a different precision for the mass of a nickel. mass = 5.0 g meaning 4.9 g to 5.1 g mass = 4.98 g meaning 4.97 g to 4.99 g mass = g meaning g to g

8 294 Chapter 8 Unit Conversions If a calculation is performed using all exact values and if the answer is not rounded off, the answer is exact, but this is a rare occurrence. The values used in calculations are usually not exact, and the answers should be expressed in a way that reflects the proper degree of uncertainty. Consider the conversion of the mass of our nickel from grams to pounds. (There are g per pound.) The number is somewhat uncertain because it comes from a measurement. The number was derived from a calculation, and the answer to that calculation was rounded off to four digits. Therefore, the number is also uncertain. Thus any answer we obtain using these numbers is inevitably going to be uncertain as well. Different calculators or computers report different numbers of decimal places in their answers. For example, perhaps a computer reports the answer to divided by as If we were to report this result as the mass of our nickel, we would be suggesting that we were certain of the mass to a precision of ± , which is not the case. Instead, we report lb (or lb), which is a better reflection of the uncertainty in the numbers we used to calculate our answer. Rounding Off Answers Derived from Multiplication and Division There are three general steps to rounding off answers so that they reflect the uncertainty of the values used in a calculation. Consider the example below, which shows how the mass of a hydrogen atom in micrograms can be converted into the equivalent mass in pounds. The first step in rounding off is to decide which of the numbers in the calculation affect the uncertainty of the answer. We can assume that μg comes from a measurement, and all measurements are uncertain to some extent. Thus affects the uncertainty of our answer. The 10 6 number comes from the definition of the metric prefix micro-, so it is exact. Because it has no effect on the uncertainty of our answer, we will not consider it when we are deciding how to round off our answer. The comes from a calculation that was rounded off, so it is not exact. It affects the uncertainty of our answer and must be considered when we round our answer. The second step in rounding off is to consider the degree of uncertainty in each of our inexact values. We can determine their relative uncertainties by counting the numbers of significant figures: three in and four in The number of significant figures, which is equal to the number of meaningful digits in a value, reflects the degree of uncertainty in the value (this is discussed more specifically in Study Sheet 8.1). A larger number of significant figures indicates a smaller uncertainty. The final step is to round off our answer to reflect the most uncertain value used in our calculation. When an answer is calculated by multiplying or dividing, we round it off to the same number of significant figures as the inexact value with the fewest significant figures. For our example, that value is μg, with three significant figures, so

9 8.2 Rounding Off and Significant Figures 295 we round off the calculated result, , to The following sample study sheet provides a detailed guide to rounding off numbers calculated using multiplication and division. (Addition and subtraction will be covered in the subsequent discussion.) Examples 8.4 and 8.5 demonstrate these steps. Tip-off After calculating a number using multiplication and division, you need to round it off to the correct number of significant figures. General Steps Step 1 Determine whether each value is exact or not, and ignore exact values. Numbers that come from definitions are exact. Numbers in metric-metric conversion factors that are derived from the metric prefixes are exact, such as Numbers in English-English conversion factors with the same type of unit (for example, both length units) top and bottom are exact, such as Sample Study Sheet 8.1 Rounding Off Numbers Calculated Using Multiplication and Division Objective 6 Objective 8 The number 2.54 in the following conversion factor is exact. Numbers derived from counting are exact. For example, there are exactly five toes in the normal foot. Values that come from measurements are never exact. We will assume that values derived from calculations are not exact unless otherwise indicated. (With one exception, the numbers relating English to metric units that you will see in this text have been calculated and rounded, so they are not exact. The exception is 2.54 cm/1 in. The 2.54 comes from a definition.) Step 2 Determine the number of significant figures in each value that is not exact. All non-zero digits are significant. Objective 7

10 296 Chapter 8 Unit Conversions Zeros between nonzero digits are significant. Zeros to the left of nonzero digits are not significant. Zeros to the right of nonzero digits in numbers that include decimal points are significant. Zeros to the right of nonzero digits in numbers without decimal points are ambiguous for significant figures. Objective 8 Step 3 When multiplying and dividing, round your answer off to the same number of significant figures as the value containing the fewest significant figures. If the digit to the right of the final digit you want to retain is less than 5, round down (the last digit remains the same).

11 8.2 Rounding Off and Significant Figures 297 If the digit to the right of the final digit you want to retain is 5 or greater, round up (the last significant digit increases by 1). Example See Examples 8.4 and 8.5. Example Rounding Off Answers Derived from Multiplication and Division The average human body contains 5.2 L of blood. What is this volume in quarts? The unit analysis setup for this conversion is below. Identify whether each value in the setup is exact or not. Determine the number of significant figures in each inexact value, calculate the answer, and report it to the correct number of significant figures. Objective 8 Solution A typical calculator shows the answer to this calculation to be , a number with far too many decimal places, considering the uncertainty of the values used in the calculation. It needs to be rounded to the correct significant figures. Step 1 The 5.2 L is based on measurement, so it is not exact. The L is part of an English-metric conversion factor, and we assume those factors are not exact except for 2.54 cm/in. On the other hand, 4 qt/gal is an English English conversion factor based on the definition of quart and gallon; thus the 4 is exact. Step 2 Because 5.2 contains two nonzero digits, it has two significant figures. The number contains four nonzero digits, so it has four significant figures. Step 3 Because the value with the fewest significant figures has two significant figures, we report two significant figures in our answer, rounding to 5.5.

12 298 Chapter 8 Unit Conversions Example Rounding Off Answers Derived from Multiplication and Division Objective 8 How many minutes does it take an ant walking at 0.01 m/s to travel 6.0 feet across a picnic table? The unit analysis setup for this conversion is below. Identify whether each value in the setup is exact or not. Determine the number of significant figures in each inexact value, calculate the answer, and report it to the correct number of significant figures. Solution Step 1 The table s length and the ant s velocity come from measurements, so 6.0 and 0.01 are not exact. The other numbers are exact because they are derived from definitions. Thus only 6.0 and 0.01 can limit our significant figures. Step 2 Zeros to the right of nonzero digits in numbers that have decimal points are significant, so 6.0 contains two significant figures. Zeros to the left of nonzero digits are not significant, so 0.01 contains one significant figure. Step 3 A typical calculator shows for the answer. Because the value with the fewest significant figures has one significant figure, we report one significant figure in our answer. Our final answer of 3 minutes signifies that it could take 2 to 4 minutes for the ant to cross the table. Exercise Rounding Off Answers Derived from Multiplication and Division Objective 8 A first class stamp allows you to send letters weighing up to 1 oz. (There are 16 ounces per pound.) You weigh a letter and find it has a mass of 10.5 g. Can you mail this letter with one stamp? The unit analysis setup for converting 10.5 g to ounces is below. Identify whether each value in the setup is exact or not. Determine the number of significant figures in each inexact value, calculate the answer, and report it to the correct number of significant figures.

13 8.2 Rounding Off and Significant Figures 299 Exercise Rounding Off Answers Derived from Multiplication and Division The re-entry speed of the Apollo 10 space capsule was 11.0 km/s. How many hours would it have taken for the capsule to fall through 25.0 miles of the stratosphere? The unit analysis setup for this calculation is below. Identify whether each value in the setup is exact or not. Determine the number of significant figures in each inexact value, calculate the answer, and report it to the correct number of significant figures. Objective 8 Apollo 10 Space Capsule Rounding Off Answers Derived from Addition and Subtraction The following sample study sheet provides a guide to rounding off numbers calculated using addition and subtraction. Tip-off After calculating a number using addition and subtraction, you need to round it off to the correct number of decimal positions. General Steps Step 1 Determine whether each value is exact, and ignore exact values (see Study Sheet 8.1). Step 2 Determine the number of decimal places for each value that is not exact. Step 3 Round your answer to the same number of decimal places as the inexact value with the fewest decimal places. Sample Study Sheet 8.2 Rounding Off Numbers Calculated Using Addition and Subtraction Objective 9 Example See Example 8.6.

14 300 Chapter 8 Unit Conversions Example Rounding Off Answers Derived from Addition and Subtraction Objective 9 A laboratory procedure calls for you to determine the mass of an unknown liquid. Let s suppose that you weigh a 100 ml beaker on a new electronic balance and record its mass as g. You then add 10 ml of the unknown liquid to the beaker and discover that the electronic balance has stopped working. You find a 30-year-old balance in a cupboard, use it to weigh the beaker of liquid, and record that mass as 60.2 g. What is the mass of the unknown liquid? Solution You can calculate the mass of the liquid by subtracting the mass of the beaker from the mass of the beaker and the liquid g beaker with liquid g beaker = g liquid We can use the steps outlined in Sample Study Sheet 8.2 to decide how to round off our answer. Step 1 The numbers 60.2 and come from measurements, so they are not exact. Step 2 We assume that values given to us have uncertainties of ±1 in the last decimal place reported, so 60.2 has an uncertainty of ±0.1 g and has an uncertainty of ± g. The first value is precise to the tenths place, and the second value is precise to four places to the right of the decimal point. Step 3 We round answers derived from addition and subtraction to the same number of decimal places as the value with the fewest. Therefore, we report our answer to the tenth s place rounding it off if necessary to reflect this uncertainty. The answer is 7.8 g. Be sure to remember that the guidelines for rounding answers derived from addition or subtraction are different from the guidelines for rounding answers from multiplication or division. Notice that when we are adding or subtracting, we are concerned with decimal places in the numbers used rather than with the number of significant figures. Let s take a closer look at why. In Example 8.6, we subtracted the mass of a beaker ( g) from the mass of the beaker and an unknown liquid (60.2 g) to get the mass of the liquid. If the reading of 60.2 has an uncertainty of ±0.1 g, the actual value could be anywhere between 60.1 g and 60.3 g. The range of possible values for the mass of the beaker is g to g. This leads to a range of possible values for our answer from g to g. Note that our possible values vary from about 7.7 g to about 7.9 g, or ±0.1 of our reported answer of 7.8 g. Because our least precise value (60.2 g) has an uncertainty of ±0.1 g, our answer can be no more precise than ±0.1 g.

15 8.2 Density and Density Calculations 301 Use the same reasoning to prove that the following addition and subtraction problems are rounded to the correct number of decimal positions = = 46.5 Note that although the numbers in the addition problem have four and two significant figures, the answer is reported with three significant figures. This answer is limited to the ones place by the number 31, which we assume has an uncertainty of ±1. Note also that although the numbers in the subtraction problem have six and four significant figures, the answer has only three. The answer is limited to the tenths place by 989.2, which we assume has an uncertainty of ±0.1. Objective 9 Exercise Rounding Off Answers Derived from Addition and Subtraction Report the answers to the following calculations to the correct number of decimal positions. Assume that each number is ±1 in the last decimal position reported. a = b = Objective Density and Density Calculations When people say that lead is heavier than wood, they do not mean that a pea sized piece of lead weighs more than a truckload of pine logs. What they mean is that a sample of lead will have a greater mass than an equal volume of wood. A more concise way of putting this is that lead is more dense than wood. This type of density, formally known as mass density, is defined as mass divided by volume. It is what people usually mean by the term density. The density of lead is g/ml, and the density of pinewood is about 0.5 g/ml. In other words, a milliliter of lead contains g of matter, while a milliliter of pine contains only about half a gram of matter. See Table 8.2 on the next page for the densities of other common substances. Although there are exceptions, the densities of liquids and solids generally decrease with increasing temperature 3. Thus, when chemists report densities, they generally state the temperature at which the density was measured. For example, the density of ethanol is g/ml at 0 C but g/ml at 20 C. 4 A truckload of logs is much heavier (has greater mass) than a pea-sized amount of lead, but the density of lead is much greater than that of wood. 3 The density of liquid water actually increases as its temperature rises from 0 C to 4 C. Such exceptions are very rare. 4 The temperature effect on the density of gases is more complicated, but it, too, changes with changes in temperature. This effect will be described in Chapter 13.

16 302 Chapter 8 Unit Conversions Objective 10 Figure 8.2 Densities of Some Common Substances. The densities of liquids and solids are usually described in grams per milliliter or grams per cubic centimeter. (Remember a milliliter and a cubic centimeter are the same volume.) The particles of a gas are much farther apart than the particles of a liquid or solid, so gases are much less dense than solids and liquids. Thus it is more convenient to describe the densities of gases as grams per liter. The density of air at sea level and 20 C is about 1.2 g/l. Because the density of a substance depends on the substance s identity and its temperature, it is possible to identify an unknown substance by comparing its density at a particular temperature to the densities of known substances at the same temperature. For example, we can determine whether an object is pure gold by measuring its density at 20 C and comparing that to the known density of gold at 20 C, g/ml. Figure 8.2 shows densities of some common substances. Table 8.2 Mass Densities of Some Common Substances (at 20 C unless otherwise stated) Substance Density, g/ml air at sea level (or 1.2 g/l) Styrofoam 0.03 pinewood gasoline 0.70 ethanol ice 0.92 water, H 2 O, at 20 C water, H 2 O, at 0 C water, H 2 O, at 3.98 C seawater whole blood 1.05 bone glass aluminum, Al the planet Earth (average) 5.25 iron, Fe 7.86 silver, Ag 10.5 gold, Au lead, Pb platinum, Pt atomic nucleus a black hole (not 20 C) 10 16

17 8.3 Density and Density Calculations 303 Using Density as a Conversion Factor Because density is reported as a ratio that describes a relationship between two units, the density of a substance can be used in unit analysis to convert between the substance s mass and its volume. Examples 8.7 and 8.8 show how the density of water at 20 C can be used to convert between the mass in grams of a given sample of water and the sample s volume in milliliters. Objective 11 Example Density Conversions What is the mass in grams of 75.0 ml of water at 20 C? Objective 11 Solution The unit analysis setup for this problem begins Being asked to convert from volume into mass is the tip off that we can use the density of water as a conversion factor in solving this problem. We can find water s density on a table of densities, such as Table 8.2. Example Density Conversions What is the volume of kilograms of water at 20 C? Objective 11 Solution Like any other conversion factor, density can be used in the inverted form to make conversions: The conversion factor on the right allows us to convert from mass in grams to volume in milliliters. First, however, we need to convert the given unit, kilograms, to grams. Then, after using the density of water to convert grams to milliliters, we need to convert milliliters to liters.

18 304 Chapter 8 Unit Conversions Exercise Density Conversions Objective 11 a. What is the mass in kilograms of 15.6 gallons of gasoline? b. A shipment of iron to a steel making plant has a mass of metric tons. What is the volume in liters of this iron? Determination of Mass Density The density of a substance can be calculated from its measured mass and volume. The examples that follow show how this can be done and demonstrate more of the unit analysis thought process. Example Density Calculations Objective 12 An empty 2 L graduated cylinder is found to have a mass of g. Liquid methanol, CH 3 OH, is added to the cylinder, and its volume measured as 1.20 L. The total mass of the methanol and the cylinder is g, and the temperature of the methanol is 20 C. What is the density of methanol at this temperature? Solution We are not told the specific units desired for our answer, but we will follow the usual convention of describing the density of liquids in grams per milliliter. It is a good idea to write these units in a way that reminds us we want g on the top of our ratio when we are done and ml on the bottom. Because we want our answer to contain a ratio of two units, we start the right side of our setup with a ratio of two units. Because we want mass on the top when we are done and volume on the bottom, we put our mass unit on the top and our volume unit on the bottom. The mass of the methanol is found by subtracting the mass of the cylinder from the total mass of the cylinder and the methanol. Now that we have placed units for the desired properties (mass and volume) in the correct positions, we convert the units we have been given to the specific units we want. For our problem, this means converting liters to milliliters. Because we want to cancel L and it is on the bottom of the first ratio, the skeleton of the next conversion factor has the L on top. The completed setup, and the answer, are

19 8.3 Density and Density Calculations 305 Example Density Calculations You could find out whether a bracelet is made of silver or platinum by determining its density and comparing it to the densities of silver (10.5 g/ml) and platinum (21.45 g/ml). A bracelet is placed directly on the pan of a balance, and its mass is found to be g. Water is added to a graduated cylinder, and the volume of the water is recorded as 18.2 ml. The bracelet is added to the water, and the volume rises to 23.0 ml. What is the density of the bracelet? Is it more likely to be silver or platinum? Objective 12 Solution We can find the volume of the bracelet by subtracting the volume of the water from the total volume of water and bracelet. We can then calculate the density using the following setup. Rounding off an answer that is derived from a mixture of subtraction (or addition) and division (or multiplication) is more complex than when these calculations are done separately. We need to recognize the different components of the problem and follow the proper rules for each. Because 23.0 and 18.2 are both uncertain in the tenth s place, the answer from the subtraction is reported to the tenth s place only. This answer is 4.8. When we divide , which has five significant figures, by 4.8, which has two significant figures, we report two significant figures in our answer. The density is closer to that of silver, so the bracelet is more likely to be silver than platinum. Exercise Density Calculations a. A graduated cylinder is weighed and found to have a mass of g. A sample of hexane, C 6 H 14, is added to the graduated cylinder, and the total mass is measured as g. The volume of the hexane is 13.2 ml. What is the density of hexane? b. A tree trunk is found to have a mass of kg and a volume of L. What is the density of the tree trunk in g/ml? Objective 12

20 306 Chapter 8 Unit Conversions 8.4 Percentage and Percentage Calculations What does it mean to say that your body is about 8.0% blood, and that when you work hard, between 3% and 4% by volume of your blood goes to your brain? Once you understand their meaning, percentage values such as these will provide you with ratios that can be used as conversion factors. Percentage by mass, the most common form of percentage used in chemical descriptions, is a value that tells us the number of mass units of the part for each 100 mass units of the whole. You may assume that any percentage in this book is a percentage by mass unless you are specifically told otherwise. Thus, when we are told that our bodies are 8.0% blood, we assume that means 8.0% by mass, which is to say that for every 100 grams of body, there are 8.0 grams of blood and that every 100 kilograms of body, there are 8.0 kilograms of blood. We can use any mass units we want in the ratio as long as the units are the same for the part and for the whole. Consequently, a percentage by mass can be translated into any number of conversion factors. The general form for conversion factors derived from mass percentages is Objective 13 Another frequently encountered form of percentage is percentage by volume (or % by volume). Because we assume that all percentages in chemistry are mass percentages unless told otherwise, volume percentages should always be designated as such. The general form for conversion factors derived from volume percentages is Objective 13 For example, the statement that 3.2% by volume of your blood goes to your brain provides you with conversion factors to convert between volume of blood to the brain and volume of blood total.

21 8.4 Percentage and Percentage Calculations 307 Example Unit Conversions Your body is about 8.0% blood. If you weigh 145 pounds, what is the mass of your blood in kilograms? Objective 14 Solution Our setup begins with Because we are not told the type of percentage that 8.0% blood represents, we assume that it is a mass percentage. Both pounds and kilograms are mentioned in the problem, so we could use either one of the following conversion factors. Both of the following setups lead to the correct answer. or 8.0% limits our significant figures to two. Exercise Unit Conversions a. The mass of the ocean is about kg. If the ocean contains 0.014% by mass hydrogen carbonate ions, HCO 3 -, how many pounds of HCO 3 - are in the ocean? b. When you are doing heavy work, your muscles get about 75 to 80% by volume of your blood. If your body contains 5.2 liters of blood, how many liters of blood are in your muscles when you are working hard enough to send them 78% by volume of your blood? Objective 14

22 308 Chapter 8 Unit Conversions 8.5 A Summary of the Unit Analysis Process The winds and waves are always on the side of the ablest navigators. Edward Gibson, English Historian You have seen some of the many uses of unit analysis and looked at various kinds of information that provide useful conversion factors for chemical calculations. Now, it is time for you to practice a general procedure for navigating your way through unit conversion problems so that you will be able to do them efficiently on your own. Sample Study Sheet 8.3 describes a stepwise thought process that can help you to decide what conversion factors to use and how to assemble them into a unit analysis format. Sample Study Sheet 8.3 Calculations Using Unit Analysis Tip-off You wish to express a given value in terms of a different unit or units. General Steps Step 1 State your question in an expression that sets the unknown unit(s) equal to one or more of the values given. To the left of the equals sign, show the unit(s) you want in your answer. To the right of the equals sign, start with an expression composed of the given unit(s) that parallels in kind and placement the units you want in your answer. If you want a single unit in your answer, start with a value that has a single unit. If you want a ratio of two units in your answer, start with a value that has a ratio of two units, or start with a ratio of two values, each of which has one unit. Put each type of unit in the position you want it to have in the answer. Step 2 Multiply the expression to the right of the equals sign by conversion factors that cancel unwanted units and generate the desired units. If you are not certain which conversion factor to use, ask yourself, What is the fundamental conversion the problem requires, and what conversion factor do I need to make that type of conversion? Figure 8.3 provides a guide to useful conversion factors. Step 3 Do a quick check to be sure you used correct conversion factors and that your units cancel to yield the desired unit(s). Step 4 Do the calculation, rounding your answer to the correct number of significant figures and combining it with the correct unit. Example See Examples 8.12 to 8.16.

23 8.5 A Summary of the Unit Analysis Process 309 Figure 8.3 Types of Unit Conversions Here is a summary of some of the basic types of conversions that are common in chemistry and the types of conversion factors used to make them.

24 310 Chapter 8 Unit Conversions Here are more examples of the most useful types of unit analysis conversions. Example Metric-Metric Unit Conversions Convert micrograms to kilograms. Solution When converting from one metric unit to another, convert from the given unit to the base unit and then from the base unit to the unit that you want. Example English-Metric Unit Conversions Convert 475 miles to kilometers. Solution The conversion factor 2.54 cm/in. can be used to convert from an English to a metric unit of length. Memorizing other English-metric conversion factors will save you time and effort. For example, if you know that km = 1 mi, the problem becomes much easier. Example Unit Conversions Using Density What is the volume in liters of pounds of ethanol at 20 C? Solution Pound is a mass unit, and we want volume. Density provides a conversion factor that converts between mass and volume. You can find the density of ethanol on a table such as Table 8.2. It is g/ml at 20 C.

25 8.5 A Summary of the Unit Analysis Process 311 Before we go on to the next example, let s look at one more way to generate unit analysis conversion factors. Anything that can be read as something per something can be used as a unit analysis conversion factor. For example, if a car is moving at 55 miles per hour, we could use the following conversion factor to convert from distance traveled in miles to time in hours or time in hours to distance traveled in miles. If you are building a fence, and plan to use four nails per board, the following conversion factor allows you to calculate the number of nails necessary to nail up 94 fence boards. Example Unit Conversions Using Percentage The label on a can of cat food tells you there are 0.94 lb of cat food per can with 0.15% calcium. If there are three servings per can, how many grams of calcium are in each serving? Solution Note that two phrases in this question can be read as something per something and therefore can be used as a unit analysis conversion factors. The phrase three servings per can leads to the first conversion factor used below, and 0.94 lb of cat food per can leads to the second. Percentages also provide ratios that can be used as unit analysis conversion factors. Because percentages are assumed to be mass percentages unless otherwise indicated, they tell us the number of mass units of the part for each 100 mass units of the whole. The ratio can be constructed using any unit of mass as long as the same unit is written in both the numerator and denominator. This leads to the third conversion factor in our setup. The fourth conversion factor changes pounds to grams. Example Converting a Ratio of Two Units When kg of the sugar glucose are burned (combusted), 37,230 kj of heat are evolved. What is the heat of combustion of glucose in J/g? (Heat evolved is described with a negative sign.) Solution When the answer you want is a ratio of two units, start your unit analysis setup with a ratio of two units. Put the correct type of unit in the correct position in the ratio. For this problem, we put the heat unit on the top and the mass unit on the bottom.

26 312 Chapter 8 Unit Conversions Exercise Unit Conversions a. The diameter of a proton is meters. What is this diameter in nanometers? b. The mass of an electron is kg. What is this mass in nanograms? c. There are lb of sulfuric acid used to make Jell-O each year. Convert this to kilograms. d. A piece of Styrofoam has a mass of g and a volume of L. What is its density in g/ml? e. The density of blood plasma is 1.03 g/ml. A typical adult has about 2.5 L of blood plasma. What is the mass in kilograms of this amount of blood plasma? f. Pain signals are transferred through the nervous system at a speed between 12 and 30 meters per second. If a student drops a textbook on her toe, how long will it take for the signal, traveling at a velocity of 18 meters per second, to reach her brain 6.0 feet away? g. An electron takes seconds to travel across a TV set that is 22 inches wide. What is the velocity of the electron in km/hr? h. The mass of the ocean is about kg. If the ocean contains 0.041% by mass calcium ions, Ca 2+, how many tons of Ca 2+ are in the ocean? (There are 2000 pounds per ton.) i. When you are at rest, your heart pumps about 5.0 liters of blood per minute. Your brain gets about 15% by volume of your blood. What volume of blood in liters is pumped through your brain in 1.0 hour of rest? 8.6 Temperature Conversions Section 1.4 presented the three most frequently used scales for describing temperature: Celsius, Fahrenheit, and Kelvin. In this section, we will use the following equations to convert a temperature reported in one of these systems to the equivalent temperature in another. Note that the numbers 1.8, 32, and in these equations all come from definitions, so they are all exact. Objective 16

27 8.5 Temperature Conversions 313 Example Temperature Conversions Heavy water contains the heavy form of hydrogen called deuterium, whose atoms each have one proton, one neutron, and one electron. Heavy water freezes at 38.9 F. What is this temperature in C? Objective 16 Solution We use the equation for converting Fahrenheit temperatures to Celsius: Rounding off the answer can be tricky here. When you subtract 32 from 38.9, you get 6.9. The 32 is exact, so it is ignored when considering how to round off the answer. The 38.9 is precise to the first number after the decimal point, so the answer to the subtraction is reported to the tenths place. There are two significant figures in 6.9, so when we divide by the exact value of 1.8 F, we round our answer to two significant figures. Example Temperature Conversions The compound 1 chloropropane, CH 3 CH 2 CH 2 Cl, melts at 46.6 C. What is this temperature in F? Objective 16 Solution The equation for converting Celsius temperatures to Fahrenheit is Because the calculation involves multiplication and division as well as addition, you need to apply two different rules for rounding off your answer. When you multiply 46.6, which has three significant figures, by the exact value of 1.8 F, your answer should have three significant figures. The answer on the display of the calculator, 83.88, would therefore be rounded off to You then add the exact value of 32 F and round off that answer to the tenths place.

28 314 Chapter 8 Unit Conversions Example Temperature Conversions Objective 16 Silver melts at 961 C. What is this temperature in K? Solution? K = 961 C = 1234 K For rounding off our answer, we assumed that 961 C came from a measurement and so is not exact. It is precise to the ones place. On the other hand, is exact, and has no effect on the uncertainty of our answer. We therefore report the answer for our addition to the ones place, rounding off to Example Temperature Conversions Objective 16 Tin(II) sulfide, SnS, melts at 1155 K. What is this temperature in C? Solution? C = 1155 K = 882 C Because 1155 is precise to the ones place, and is exact, we report the answer for our subtraction to the ones place. Exercise Temperature Conversions Objective 16 a. N,N-dimethylaniline, C 6 H 5 N(CH 3 ) 2, melts at 2.5 C. What is N,N-dimethylaniline s melting point in F and K? b. Benzenethiol, C 6 H 5 SH, melts at 5.4 F. What is benzenethiol s melting point in C and K? c. The hottest part of the flame on a Bunsen burner is found to be K. What is this temperature in C and F? Chapter Glossary Unit Analysis A general technique for doing unit conversions. Conversion factor A ratio that describes the relationship between two units. Significant figures The number of meaningful digits in a value. The number of significant figures in a value reflects the value s degree of uncertainty. A larger number of significant figures indicates a smaller degree of uncertainty. Mass density Mass divided by volume (usually called density). You can test yourself on the glossary terms at the textbook s Web site.

29 8.6 Chapter Objectives 315 The goal of this chapter is to teach you to do the following. 1. Define all of the terms in the Chapter Glossary. Chapter Objectives Section 8.1 Unit Analysis 2. Write conversion factors that relate the metric base units to units derived from the metric prefixes for example, 3. Use unit analysis to make conversions from one metric unit to another. 4. Write the English metric conversion factors listed on Table Use unit analysis to make conversions between English mass, volume, or length units and metric mass, volume, or length units. Section 8.2 Rounding Off and Significant Figures 6. Identify each value in a calculation as exact or not exact. 7. Write or identify the number of significant figures in any value that is not exact. 8. Round off answers derived from multiplication and division to the correct number of significant figures. 9. Round off answers derived from calculations involving addition or subtraction to the correct number of decimal positions. Section 8.3 Density and Density Calculations 10. Provide or recognize the units commonly used to describe the density of solids, liquids, and gases. 11. Use density as a conversion factor to convert between mass and volume. 12. Calculate the density of a substance from its mass and volume. Section 8.4 Percentage and Percentage Calculations 13. Given a percentage by mass or a percentage by volume, write a conversion factor based on it. 14. Use conversion factors derived from percentages to convert between units of a part and units of the whole. Section 8.5 A Summary of the Unit Analysis Process 15. Use unit analysis to make unit conversions using conversion factors derived from any relationship that can be described as something per something. Section 8.6 Temperature Conversions 16. Convert a temperature reported in the Celsius, Fahrenheit, or Kelvin scale to both of the other two scales.

30 316 Chapter 8 Unit Conversions Review Questions 1. Write the metric base units and their abbreviations for length, mass, and volume. (See Section 1.4.) 2. Complete the following table by writing the type of measurement the unit represents (mass, length, volume, or temperature), and either the name or the abbreviation for the unit. (See Section 1.4.) Unit Type of measurement Abbreviations Unit Type of measurement Abbreviations milliliter μg kilometer K 3. Complete the following relationships between units. (See Section 1.4.) a. m = 1 μm e. cm 3 = 1 ml b. g = 1Mg f. L = 1 m 3 c. L = 1 ml g. kg = 1 t (t = metric ton) d. m = 1 nm h. Mg = 1 t (t = metric ton) 4. An empty 2 L graduated cylinder is weighed on a balance and found to have a mass of g. Liquid methanol, CH 3 OH, is added to the cylinder, and its volume measured as 1.20 L. The total mass of the methanol and the cylinder is measured as g. Based on the way these data are reported, what do you assume is the range of possible values that each represents? (See Section 1.5.) Key Ideas Complete the following statements by writing one of these words or phrases in each blank. cancel inexact correct known counting left decimal places less dense decrease mass defined never exact definitions one desired part fewest decimal places something per something fewest uncertainty exact unit conversion given value unwanted grams per cubic centimeter variables grams per liter volume grams per milliliter whole identity 5. You will find that the stepwise thought process associated with the procedure called unit analysis not only guides you in figuring out how to set up problems but also gives you confidence that your answers are.

31 6. The first step in the unit analysis procedure is to identify the unit for the value we want to calculate. We write this on the side of an equals sign. Next, we identify the that we will convert into the desired value, and we write it on the other side of the equals sign. 7. In the unit analysis process, we multiply by one or more conversion factors that cancel the units and generate the units. 8. Note that the units in a unit analysis setup cancel just like in an algebraic equation. 9. If you have used correct conversion factors in a unit analysis setup, and if your units to yield the desired unit or units, you can be confident that you will arrive at the correct answer. 10. Because the English inch is as 2.54 cm, the number 2.54 in this value is exact. 11. Unless we are told otherwise, we assume that values from measurements have an uncertainty of plus or minus in the last decimal place reported. 12. If a calculation is performed using all exact values and if the answer is not rounded off, the answer is. 13. When an answer is calculated by multiplying or dividing, we round it off to the same number of significant figures as the value with the significant figures. 14. The number of significant figures, which is equal to the number of meaningful digits in a value, reflects the degree of in the value. 15. Numbers that come from definitions and from are exact. 16. Values that come from measurements are. 17. When adding or subtracting, round your answer to the same number of as the inexact value with the. 18. Although there are exceptions, the densities of liquids and solids generally with increasing temperature. 19. The densities of liquids and solids are usually described in or. 20. The particles of a gas are much farther apart than the particles of a liquid or solid, so gases are much than solids and liquids. Thus it is more convenient to describe the densities of gases as. 21. Because the density of a substance depends on the substance s and its temperature, it is possible to identify an unknown substance by comparing its density at a particular temperature to the densities of substances at the same temperature. 22. Because density is reported as a ratio that describes a relationship between two units, the density of a substance can be used in unit analysis to convert between the substance s and its. 23. Percentage by mass, the most common form of percentage used in chemical descriptions, is a value that tells us the number of mass units of the for each 100 mass units of the. 24. Anything that can be read as can be used as a unit analysis conversion factor. 25. The numbers 1.8, 32, and in the equations used for temperature conversions all come from, so they are all exact. Key Ideas 317

32 318 Chapter 8 Unit Conversions Chapter Problems Problems Relating to Appendix B and Calculator Use. If you have not yet read Appendix B, which describes scientific notation, you might want to read it before working the problems that follow. For some of these problems, you might also want to consult your calculator s instruction manual to determine the most efficient way to complete calculations. 26. Convert the following ordinary decimal numbers to scientific notation. a. 67,294 c b. 438,763,102 d Convert the following ordinary decimal numbers to scientific notation. a. 1, c b. 429,209 d Convert the following numbers expressed in scientific notation to ordinary decimal numbers. a c b d Convert the following numbers expressed in scientific notation to ordinary decimal numbers. a c b d Use your calculator to complete the following calculations. a c b d. ( ) Use your calculator to complete the following calculations. a c b d ( ) 32. Use your calculator to complete the following calculations. a d b e c f

33 Chapter Problems Use your calculator to complete the following calculations. (See your calculator s instruction manual if you need help using a calculator.) a d b e c f Use your calculator to complete the following calculations. (See your calculator s instruction manual if you need help using a calculator.) a. ( ) ( ) b. ( ) ( ) c. ( ) ( ) ( ) d. ( ) ( ) e. ( ) 10-4 f. ( ) ( ) 35. Use your calculator to complete the following calculations. (See your calculator s instruction manual if you need help using a calculator.) a. ( ) ( ) b. ( ) ( ) c. ( ) ( ) ( ) d. ( ) ( ) e. ( ) ( ) f. ( ) ) Section 8.1 Unit Analysis 36. Complete each of the following conversion factors by filling in the blank on the top of the ratio. Objective 2 Objective 4 a. d. b. e. c. f.

34 320 Chapter 8 Unit Conversions Objective 2 Objective Complete each of the following conversion factors by filling in the blank on the top of the ratio. a. d. b. e. Objective 2 Objective 4 Objective 2 Objective 4 c. f. 38. Complete each of the following conversion factors by filling in the blank on the top of the ratio. a. b. c. d. 39. Complete each of the following conversion factors by filling in the blank on the top of the ratio. a. d. b. e. Objective 3 Objective 3 Objective 3 Objective 3 Objective 5 Objective 5 Objective 5 Objective 5 Objective 5 c. 40. The mass of an electron is kg. What is this mass in grams? 41. The diameter of a human hair is 2.5 micrometers. What is this diameter in meters? 42. The diameter of typical bacteria cells is centimeters. What is this diameter in micrometers? 43. The mass of a proton is kg. What is this mass in micrograms? 44. The thyroid gland is the largest of the endocrine glands, with a mass between 20 and 25 grams. What is the mass in pounds of a thyroid gland measuring grams? 45. The average human body contains 5.2 liters of blood. What is this volume in gallons? 46. The mass of a neutron is kg. Convert this to ounces. (There are 16 oz/lb.) 47. The earth weighs about tons. Convert this to gigagrams. (There are 2000 lb/ton.) 48. A red blood cell is inches thick. What is this thickness in micrometers?

35 Chapter Problems The gallbladder has a capacity of between 1.2 and 1.7 fluid ounces. What is the capacity in milliliters of a gallbladder that can hold 1.42 fluid ounces? (There are 32 fl oz/qt.) Objective 5 Section 8.2 Rounding Off and Significant Figures 50. Decide whether each of the numbers shown in bold type below is exact or not. If it is not exact, write the number of significant figures in it. a. The approximate volume of the ocean, L. b. A count of 24 instructors in the physical science division of a state college. c. The 54% of the instructors in the physical science division who are women (determined by counting 13 women in the total of 24 instructors and then calculating the percentage) d. The 25% of the instructors in the physical science division who are left handed (determined by counting 6 left handed instructors in the total of 24 and then calculating the percentage) e. f. g. h. A measurement of g water i. A mass of lb water (calculated from Part h, using as a conversion factor) j. A mass of tons (calculated from the lb of the water described in Part i.) 51. Decide whether each of the numbers shown in bold type below is exact or not. If it is not exact, write the number of significant figures in it. a. b. c. Objective 6 Objective 7 Objective 6 Objective 7 d. The diameter of the moon, km e. A measured volume of 8.0 ml water f. A volume L water, calculated from the volume in Part e, using g. A volume of qt water, calculated from the volume in Part f, using h. The count of 114 symbols for elements on a periodic table i. The 40% of halogens that are gases at normal room temperature and pressure (determined by counting 2 gaseous halogens out of the total of 5 halogens and then calculating the percentage) j. The 9.6% of the known elements that are gases at normal room temperature and pressure (determined by counting 11 gaseous elements out of the 114 elements total and then calculating the percentage)

36 322 Chapter 8 Unit Conversions Objective 7 Objective 7 Objective 7 Objective 7 Objective 8 Objective Assuming that the following numbers are not exact, how many significant figures does each number have? a b c. 505 d e Assuming that the following numbers are not exact, how many significant figures does each number have? a. 9,875 b c d e Assuming that the following numbers are not exact, how many significant figures does each number have? a b c Assuming that the following numbers are not exact, how many significant figures does each number have? a b c Convert each of the following numbers to a number having 3 significant figures. a b c d e f. 2,846.5 g Convert each of the following numbers to a number having 4 significant figures. a b c d e. 11, f

37 Chapter Problems Complete the following calculations and report your answers with the correct number of significant figures. The exponential factors, such as 10 3, are exact, and the 2.54 in part (c) is exact. All the other numbers are not exact. a. Objective 8 b. c. 59. Complete the following calculations and report your answers with the correct number of significant figures. The exponential factors, such as 10 3, are exact, and the 5280 in part (c) is exact. All the other numbers are not exact. a. Objective 8 b. c. 60. Report the answers to the following calculations to the correct number of decimal positions. Assume that each number is precise to ±1 in the last decimal position reported. a = b = 61. Report the answers to the following calculations to the correct number of decimal positions. Assume that each number is precise to ±1 in the last decimal position reported. a = b = Objective 9 Objective 9 Section 8.3 Density and Density Calculations Because the ability to make unit conversions using the unit analysis format is an extremely important skill, be sure to set up each of the following calculations using the unit analysis format, even if you see another way to work the problem, and even if another technique seems easier. 62. A piece of balsa wood has a mass of g and a volume of L. What is its density in g/ml? 63. A ball of clay has a mass of 2.65 lb and a volume of qt. What is its density in g/ml? 64. The density of water at 0 C is g/ml. What is the mass in kilograms of ml of water? 65. The density of water at 3.98 C is g/ml. What is the mass in pounds of L of water? Objective 12 Objective 12 Objective 11 Objective 11

38 324 Chapter 8 Unit Conversions Objective 11 Objective The density of a piece of ebony wood is g/ml. What is the volume in quarts of a lb piece of this ebony wood? 67. The density of whole blood is 1.05 g/ml. A typical adult has about 5.5 L of whole blood. What is the mass in pounds of this amount of whole blood? Section 8.4 Percentage and Percentage Calculations Objective 13 Objective 14 Objective 13 Objective 14 Objective 13 Objective 14 Objective 13 Objective 14 Objective 13 Objective 14 Objective 13 Objective The mass of the ocean is about kg. If the ocean contains 1.076% by mass sodium ions, Na +, what is the mass in kilograms of Na + in the ocean? 69. While you are at rest, your brain gets about 15% by volume of your blood. If your body contains 5.2 L of blood, how many liters of blood are in your brain at rest? how many quarts? 70. While you are doing heavy work, your heart pumps up to 25.0 L of blood per minute. Your brain gets about 3-4% by volume of your blood under these conditions. What volume of blood in liters is pumped through your brain in 125 minutes of work that causes your heart to pump 22.0 L per minute, 3.43% of which goes to your brain? 71. While you are doing heavy work, your heart pumps up to 25.0 L of blood per minute. Your muscles get about 80% by volume of your blood under these conditions. What volume of blood in quarts is pumped through your muscles in 105 minutes of work that causes your heart to pump 21.0 L per minute, 79.25% by volume of which goes to your muscles? 72. In chemical reactions that release energy, from 10-8 % to 10-7 % of the mass of the reacting substances is converted to energy. Consider a chemical reaction for which % of the mass is converted into energy. What mass in milligrams is converted into energy when kilograms of substance reacts? 73. In nuclear fusion, about 0.60% of the mass of the fusing substances is converted to energy. What mass in grams is converted into energy when 22 kilograms of substance undergoes fusion? Section 8.5 A Summary of the Unit Analysis Process 74. If an elevator moves 1340 ft to the 103 rd floor of the Sears Tower in Chicago in 45 seconds, what is the velocity (distance traveled divided by time) of the elevator in kilometers per hour? 75. The moon orbits the sun with a velocity of miles per hour. What is this velocity in meters per second? 76. Sound travels at a velocity of 333 m/s. How long does it take for sound to travel the length of a 100 yard football field? 77. How many miles can a commercial jetliner flying at 253 meters per second travel in 6.0 hours?

39 Chapter Problems A peanut butter sandwich provides about kj of energy. A typical adult uses about 95 kcal/hr of energy while sitting. If all of the energy in one peanut butter sandwich were to be burned off by sitting, how many hours would it be before this energy was used? (A kcal is a dietary calorie. There are J/cal.) 79. One-third cup of vanilla ice cream provides about 145 kcal of energy. A typical adult uses about 195 kcal/hr of energy while walking. If all of the energy in onethird of a cup of vanilla ice cream were to be burned off by walking, how many minutes would it take for this energy to be used? (A kcal is a dietary calorie.) 80. When one gram of hydrogen gas, H 2 (g), is burned, kj of heat are released. How much heat is released when kg of hydrogen gas are burned? 81. When one gram of liquid ethanol, C 2 H 5 OH(l ), is burned, 29.7 kj of heat are released. How much heat is released when pounds of liquid ethanol are burned? 82. When one gram of carbon in the graphite form is burned, 32.8 kj of heat are released. How many kilograms of graphite must be burned to release kj of heat? 83. When one gram of methane gas, CH 4 (g), is burned, 55.5 kj of heat are released. How many pounds of methane gas must be burned to release kj of heat? 84. The average adult male needs about 58 g of protein in the diet each day. A can of vegetarian refried beans has 6.0 g of protein per serving. Each serving is 128 g of beans. If your only dietary source of protein were vegetarian refried beans, how many pounds of beans would you need to eat each day? 85. The average adult needs at least g of carbohydrates in the diet each day. A can of vegetarian refried beans has 19 g of carbohydrate per serving. Each serving is 128 g of beans. If your only dietary source of carbohydrate were vegetarian refried beans, how many pounds of beans would you need to eat each day? 86. About tons of 30% by mass hydrochloric acid, HCl(aq), are used to remove metal oxides from metals to prepare them for painting or for the addition of a chrome covering. How many kilograms of pure HCl would be used to make this hydrochloric acid? (Assume that 30% has two significant figures. There are 2000 lb/ton.) 87. Normal glucose levels in the blood are from 70 to 110 mg glucose per 100 ml of blood. If the level falls too low, there can be brain damage. If a person has a glucose level of 108 mg/100 ml, what is the total mass of glucose in grams in 5.10 L of blood? 88. A typical non obese male has about 11 kg of fat. Each gram of fat can provide the body with about 38 kj of energy. If this person requires kj of energy per day to survive, how many days could he survive on his fat alone? 89. The kidneys of a normal adult male filter 125 ml of blood per minute. How many gallons of blood are filtered in one day? 90. During quiet breathing, a person breathes in about 6 L of air per minute. If a person breathes in an average of L of air per minute, what volume of air in liters does this person breathe in 1 day?

An Overview of the General Procedure

An Overview of the General Procedure 288 Chapter 8 Unit Conversions 8.1 Unit Analysis Many of the questions asked in chemistry and in everyday life can be answered by converting one unit of measure into another. F example, suppose you are

More information

CHAPTER 2. Atoms and Elements. Objectives

CHAPTER 2. Atoms and Elements. Objectives CHAPTER 2 Atoms and Elements Objectives You will be able to do the following: 1. Given a periodic table, determine the group number for the column in which the element is found. This includes the 1-18

More information

Chapter 2 Unit Conversions

Chapter 2 Unit Conversions 9 Chapter 2 Unit Conversions Review Skills 2.1 Unit Analysis An Overview of the General Procedure Metric-Metric Unit Conversions English-Metric Unit Conversions 2.2 Rounding Off and Significant igures

More information

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING

CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING CHAPTER TWO: MEASUREMENTS AND PROBLEM SOLVING Measurements: Our Starting Point! Why should we begin our study of chemistry with the topic of measurement?! Much of the laboratory work in this course is

More information

Chapter 2 Measurement and Problem Solving

Chapter 2 Measurement and Problem Solving Measurement and Problem Solving What Is a Measurement? Quantitative observation. Comparison to an agreed upon standard. Every measurement has a number and a unit. 2 A Measurement The unit tells you to

More information

Chapter 1 Matter,Measurement, and Problem Solving

Chapter 1 Matter,Measurement, and Problem Solving Chapter 1 Matter,Measurement, and Problem Solving Classification of Matter matter is anything that has mass and occupies space we can classify matter based on whether it s solid, liquid, or gas State Shape

More information

Study guide for AP test on TOPIC 1 Matter & Measurement

Study guide for AP test on TOPIC 1 Matter & Measurement Study guide for AP test on TOPIC 1 Matter & Measurement The following list is a GUIDE to what you should study in order to be prepared for the AP test on TOPIC 1 ALL students should: Recall a definition

More information

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry

1.5 Reporting Values from Measurements. Accuracy and Precision. 20 Chapter 1 An Introduction to Chemistry 20 Chapter 1 An Introduction to Chemistry 1.5 Reporting Values from Measurements All measurements are uncertain to some degree. Scientists are very careful to report the values of measurements in a way

More information

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory!

2 Standards for Measurement. Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! 2 Standards for Measurement Careful and accurate measurements of ingredients are important both when cooking and in the chemistry laboratory! Chapter Outline 2.1 Scientific Notation 2.2 Measurement and

More information

Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities

Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities Chapter 1 (Part 2) Measurements in Chemistry 1.6 Physical Quantities This is a property that can by physically measured. It consists of a number and a unit of measure. (e.g. ) Units Units are very important.

More information

The Metric System and Measurement

The Metric System and Measurement Introduction The Metric System and Measurement The metric system is the world standard for measurement. Not only is it used by scientists throughout the world, but most nations have adopted it as their

More information

Chemistry 104 Chapter Two PowerPoint Notes

Chemistry 104 Chapter Two PowerPoint Notes Measurements in Chemistry Chapter 2 Physical Quantities Measurable physical properties such as height, volume, and temperature are called Physical quantity. A number and a unit of defined size is required

More information

The Metric System and Measurement

The Metric System and Measurement The Metric System and Measurement Introduction The metric system is the world standard for measurement. Not only is it used by scientists throughout the world, but most nations have adopted it as their

More information

The following list is a GUIDE to what you should study in order to be prepared for the AP test on TOPIC 1 ALL students should:

The following list is a GUIDE to what you should study in order to be prepared for the AP test on TOPIC 1 ALL students should: Study guide for AP test on TOPIC 1 Matter & Measurement The following list is a GUIDE to what you should study in order to be prepared for the AP test on TOPIC 1 ALL students should: Recall a definition

More information

Chemical Principles 50:160:115. Fall understand, not just memorize. remember things from one chapter to the next

Chemical Principles 50:160:115. Fall understand, not just memorize. remember things from one chapter to the next Chemical Principles 50:160:115 Fall 2016 Chemistry is easy IF: don t fall behind understand, not just memorize do problems remember things from one chapter to the next Proficient in: Explanations at the

More information

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet.

Chemistry Basic Science Concepts. Observations: are recorded using the senses. Examples: the paper is white; the air is cold; the drink is sweet. Note Packet # 1 1 Chemistry: the study of matter. Chemistry Basic Science Concepts Matter: anything that has mass and occupies space. Observations: are recorded using the senses. Examples: the paper is

More information

Math Skills Needed For Chemistry

Math Skills Needed For Chemistry Lecture Presentation Chapter 1 Chemistry in Our Lives What is Chemistry? Chemistry is the study of composition, structure, properties, and reactions of matter. happens all around you every day. Antacid

More information

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s)

Chapter 2 Measurements & Calculations. Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Chapter 2 Measurements & Calculations Quantity: A thing that can be measured. ex. Length (6.3 ft), mass (35 kg), and time (7.2 s) Measurements can be expressed in a variety of units: Example: length(cm,

More information

SAMPLE EXERCISE 1.1 Distinguishing among Elements, Compounds, and Mixtures

SAMPLE EXERCISE 1.1 Distinguishing among Elements, Compounds, and Mixtures SAMPLE EXERCISE 1.1 Distinguishing among Elements, Compounds, and Mixtures White gold, used in jewelry, contains two elements, gold and palladium. Two different samples of white gold differ in the relative

More information

Using Scientific Measurements

Using Scientific Measurements Section 3 Main Ideas Accuracy is different from precision. Significant figures are those measured precisely, plus one estimated digit. Scientific notation is used to express very large or very small numbers.

More information

Chapter 2 Measurements and Solving Problems

Chapter 2 Measurements and Solving Problems History of Measurement Chapter 2 Measurements and Solving Problems Humans once used handy items as standards or reference tools for measurement. Ex: foot, cubit, hand, yard. English System the one we use.

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

Lecture Presentation. Chapter 1. Chemistry in Our Lives. Karen C. Timberlake

Lecture Presentation. Chapter 1. Chemistry in Our Lives. Karen C. Timberlake Lecture Presentation Chapter 1 Chemistry in Our Lives What is Chemistry? Chemistry is the study of composition, structure, properties, and reactions of matter. happens all around you every day. Antacid

More information

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY

Name Date Class MEASUREMENTS AND THEIR UNCERTAINTY 3.1 MEASUREMENTS AND THEIR UNCERTAINTY Section Review Objectives Convert measurements to scientific notation Distinguish among the accuracy, precision, and error of a measurement Identify the number of

More information

Pre-Lab 0.2 Reading: Measurement

Pre-Lab 0.2 Reading: Measurement Name Block Pre-Lab 0.2 Reading: Measurement section 1 Description and Measurement Before You Read Weight, height, and length are common measurements. List at least five things you can measure. What You

More information

Measurements in Chemistry Chapter 2

Measurements in Chemistry Chapter 2 Measurements in Chemistry Chapter 2 Problem-Set Solutions 2.1 It is easier to use because it is a decimal unit system. 2.2 Common measurements include mass, volume, length, time, temperature, pressure,

More information

Matter & Measurement. Chapter 1 Chemistry 2A

Matter & Measurement. Chapter 1 Chemistry 2A Matter & Measurement Chapter 1 Chemistry 2A Chemistry: the branch of science concerned with the characteristics, composition, and transformations of matter Matter: anything that has mass and occupies space

More information

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1)

Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Accelerated Chemistry Study Guide What is Chemistry? (Chapter 1) Conversion factor Density Uncertainty Significant digits/figures Precision Accuracy Percent error September 2017 Page 1 of 32 Scientific

More information

Welcome to Chemistry 121

Welcome to Chemistry 121 General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake Welcome to Chemistry 121 2013 Pearson Education, Inc. General, Organic, and Biological Chemistry Fourth Edition Karen Timberlake

More information

Co Curricular Data Analysis Review

Co Curricular Data Analysis Review Chapter Vocabulary Co Curricular Data Analysis Review Base Unit Second (s) Meter (m) Kilogram (kg) Kelvin (K) Derived unit Liter Density Scientific notation Dimensional analysis (Equality) not in book

More information

Table One. Mass of a small package using three different measurement methods

Table One. Mass of a small package using three different measurement methods MS20 Laboratory Scientific Measurements and the Metric System Objectives To understand how to make measurements utilizing various instruments To learn how to use the metric system To convert between the

More information

Chapter 2: In The Lab

Chapter 2: In The Lab Handbook of Anatomy and Physiology 75 Chapter 2: In The Lab The Metric System and Measurement Introduction The metric system is the world standard for measurement. Not only is it used by scientists throughout

More information

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways

Law vs. Theory. Steps in the Scientific Method. Outcomes Over the Long-Term. Measuring Matter in Two Ways Law vs. Theory A law summarizes what happens A theory (model) is an attempt to explain why it happens. Unit 2: (Chapter 5) Measurements and Calculations Cartoon courtesy of NearingZero.net Steps in the

More information

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits

Example 3: 4000: 1 significant digit Example 4: : 4 significant digits Notes: Measurement and Math 1 Accuracy and Precision Precision depends on the precision of the measuring device o For example a device that can measure to the ten thousands place (1.6829 grams) is a more

More information

Ch 1: Introduction: Matter and Measurement

Ch 1: Introduction: Matter and Measurement AP Chemistry: Introduction: Matter and Measurement Lecture Outline 1.1 The Study of Chemistry Chemistry study of properties of materials and changes that they undergo. Can be applied to all aspects of

More information

CHAPTER 1 Matter & Measurement

CHAPTER 1 Matter & Measurement CHAPTER 1 Matter & Measurement General, Organic, & Biological Chemistry Janice Gorzynski Smith CHAPTER 1: Matter & Measurement Learning Objectives:! Definition of matter! Solids, liquids, and gases! Physical

More information

Measurements in Chemistry Chapter 2

Measurements in Chemistry Chapter 2 Measurements in Chemistry Chapter 2 Problem-Set Solutions 2.1 It is easier to use because it is a decimal unit system. 2.2 Common measurements include mass, volume, length, time, temperature, pressure,

More information

Chapter 2: Measurements and Problem Solving

Chapter 2: Measurements and Problem Solving C h 2 : M e a s u r e m e n t s a n d P r o b l e m S o l v i n g P a g e 1 Chapter 2: Measurements and Problem Solving Read Chapter 2, work problems. Look over the lab assignments before the lab. Keep

More information

Chapter 2 Measurement and Problem Solving. What Is a Measurement? Scientific Notation 8/20/09. Introductory Chemistry, 3 rd Edition Nivaldo Tro

Chapter 2 Measurement and Problem Solving. What Is a Measurement? Scientific Notation 8/20/09. Introductory Chemistry, 3 rd Edition Nivaldo Tro Introductory Chemistry, 3 rd Edition Nivaldo Tro Measurement and Problem Solving Roy Kennedy Massachusetts Bay Community College Wellesley Hills, MA 2009, Prentice Hall What Is a Measurement? Quantitative

More information

Chapter 3 Metric Units and Conversions

Chapter 3 Metric Units and Conversions Chapter 3 Metric Units and Conversions 3.1 The Metric System and Prefixes Metric system: a simple decimal system of measurement that uses the following basic units: Quantity Basic Unit Symbol length meter

More information

Measurement Chapter 1.6-7

Measurement Chapter 1.6-7 Unit 1 Essential Skills Measurement Chapter 1.6-7 The Unit 1 Test will cover material from the following Chapters and Sections: 1.all 2.5-8 3.all 2 Two types of Data: When we make observations of matter,

More information

Measurement and Units. An Introduction to Chemistry By Mark Bishop

Measurement and Units. An Introduction to Chemistry By Mark Bishop Measurement and Units An Introduction to Chemistry By Mark Bishop Values from Measurements A value is a quantitative description that includes both a unit and a number. For 100 meters, the meter is a unit

More information

Chem 115 POGIL Worksheet - Week 1 Units, Measurement Uncertainty, and Significant Figures

Chem 115 POGIL Worksheet - Week 1 Units, Measurement Uncertainty, and Significant Figures Chem 115 POGIL Worksheet - Week 1 Units, Measurement Uncertainty, and Significant Figures Why? All scientists the world over use metric units. Since 1960, the metric system in use has been the Système

More information

General Chemistry Unit 8 Measurement ( )

General Chemistry Unit 8 Measurement ( ) General Chemistry Unit 8 Measurement (2017-2018) Significant Figures Scientific Notation Unit Analysis Unit of Measure Accuracy and Precision Density Percent Error 1 Adding Numbers: Add numbers as you

More information

Everyday Conversion: Money

Everyday Conversion: Money Everyday Conversion: Money Everyday Measurement: Water Everyday Measurement: Water Everyday Accuracy: Weighing Scales The need to measure correctly and convert! Some Interesting Quantities Length Volume

More information

Measurement and Calculations

Measurement and Calculations Measurement and Calculations Quantitative Observation How much? Need Measurement Measurement is the comparison of a physical quantity to be measured with a unit of measurement-that is a fixed standard

More information

links: the world's smallest billboard at What is chemistry? A working definition

links: the world's smallest billboard at   What is chemistry? A working definition 1 of 8 links: the world's smallest billboard at http://www.almaden.ibm.com/vis/stm/atomo.html I. The study of chemistry What is chemistry? A working definition Chemistry is the study of things made up

More information

Chapter 1 An Introduction to Chemistry

Chapter 1 An Introduction to Chemistry 1 Chapter 1 An Introduction to Chemistry 1.1 What Is Chemistry, and What Can Chemistry Do for You? Special Topic 1.1: Green Chemistry 1.2 Suggestions for Studying Chemistry 1.3 The Scientific Method 1.4

More information

Properties the characteristics that give each substance a unique identity

Properties the characteristics that give each substance a unique identity All course materials, including lectures, class notes, quizzes, exams, handouts, presentations, and other materials provided to students for this course are protected intellectual property. As such, the

More information

5) If you count 7 pennies, you can only report one significant figure in that measurement. Answer: FALSE Diff: 1 Page Ref: 2.3

5) If you count 7 pennies, you can only report one significant figure in that measurement. Answer: FALSE Diff: 1 Page Ref: 2.3 Introductory Chemistry, 4e (Tro) Chapter 2 Measurement and Problem Solving True/False Questions 1) Numbers are usually written so that the uncertainty is in the last reported digit. Diff: 1 Page Ref: 2.1

More information

CHAPTER 2: MEASUREMENTS IN CHEMISTRY

CHAPTER 2: MEASUREMENTS IN CHEMISTRY CHAPTER 2: MEASUREMENTS IN CHEMISTRY MULTIPLE CHOICE 1) The mathematical meaning associated with the metric system prefixes centi, milli, and micro is, respectively, a) 10 2, 10 4, and 10 6 c) 10 3, 10

More information

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E.

Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E. Unit I: Measurements A. Significant figures B. Rounding numbers C. Scientific notation D. Using electronic calculators E. Using sig figs in arithmetic operations F. The metric system G. Problem solving

More information

Chapter 1 Matter and Energy. Classifying Matter An Exercise. Chemical Classifications of Matter

Chapter 1 Matter and Energy. Classifying Matter An Exercise. Chemical Classifications of Matter Chapter 1 Matter and Energy Matter and its Classification Physical and Chemical Changes and Properties of Matter Energy and Energy Changes Scientific Inquiry 1-1 Copyright The McGraw-Hill Companies, Inc.

More information

Every time a measurement is taken, we must be aware of significant figures! Define significant figures.

Every time a measurement is taken, we must be aware of significant figures! Define significant figures. SCHM 103: FUNDAMENTALS OF CHEMISTRY Ch. 2: Numerical Side of Chemistry Types of data collected in experiments include: Qualitative: Quantitative: Making Measurements Whenever a piece of data is collected,

More information

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7

BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 BRCC CHM 101 Class Notes Chapter 1 Page 1 of 7 Chemistry - the study of matter, its behavior and interactions. matter - anything that takes up space and has mass mass - the substance which makes up the

More information

Chapter 2a. Measurements and Calculations

Chapter 2a. Measurements and Calculations Chapter 2a Measurements and Calculations Chapter 2 Table of Contents 2.1 Scientific Notation 2.2 Units 2.3 Measurements of Length, Volume, and Mass 2.4 Uncertainty in Measurement 2.5 Significant Figures

More information

Full file at

Full file at Chapter Two Multiple Choice 1. Which SI prefix means 1000? A. Milli B. Centi C. Deci D. Kilo Answer: D; Difficulty: easy; Reference: Section 2.5 2. The number, 14.74999, when rounded to three digits is

More information

2 Standards of Measurement

2 Standards of Measurement What You ll Learn the SI units and symbols for length, volume, mass, density, time, and temperature how to convert related SI units 2 Standards of Measurement (A), 2(D), 2(C), 2(E) Before You Read If someone

More information

Name: Class: Date: General Organic and Biological Chemistry 7th Edition Stoker SOLUTIONS MANUAL

Name: Class: Date: General Organic and Biological Chemistry 7th Edition Stoker SOLUTIONS MANUAL General Organic and Biological Chemistry 7th Edition Stoker TEST BANK Full download at: https://testbankreal.com/download/general-organic-biological-chemistry-7thedition-stoker-test-bank/ General Organic

More information

Chemistry Unit 1 Primary reference: Chemistry: Matter and Change [Glencoe, 2017]

Chemistry Unit 1 Primary reference: Chemistry: Matter and Change [Glencoe, 2017] Scientific Investigation 1.1 SOL 1a, 1b,1c, 1e, 1g Chemistry Unit 1 Primary reference: Chemistry: Matter and Change [Glencoe, 2017] Topic Essential Knowledge Study Support Use chemicals and equipment safely.

More information

Dr. Ramy Y. Morjan. Figure 1. PDF created with pdffactory trial version Observations. Quantitative.

Dr. Ramy Y. Morjan. Figure 1. PDF created with pdffactory trial version  Observations. Quantitative. 1.1 What is Chemistry? Chemistry can be defined as the science that deals with the materials of the universe and the changes that these materials undergo and the energy associated with those changes. Chemistry

More information

precision accuracy both neither

precision accuracy both neither I. Measurement and Observation There are two basic types of data collected in the lab: Quantitative : numerical information (e.g., the mass of the salt was.45 g) Qualitative : non-numerical, descriptive

More information

Ch. 3 Notes---Scientific Measurement

Ch. 3 Notes---Scientific Measurement Ch. 3 Notes---Scientific Measurement Qualitative vs. Quantitative Qualitative measurements give results in a descriptive nonnumeric form. (The result of a measurement is an describing the object.) *Examples:,,

More information

Name /100. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name /100. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chap. 1 & 2 Study Sheet AccChemistry Name /100 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Which of the following statements about soda pop

More information

Welcome to General Chemistry I

Welcome to General Chemistry I Welcome to General Chemistry I Chemistry Chemistry is a branch of science that studies the composition and properties of matter and the changes it undergoes H 2 O http://theresilientearth.com/?q=content/climate-models-blown-away-water-vapor

More information

Chapter 3 Scientific Measurement

Chapter 3 Scientific Measurement Chapter 3 Scientific Measurement Measurements 2 types: Qualitative measurements (words) Heavy, hot, or long Quantitative measurements (# s) & depend on: 1) Reliability of measuring instrument 2) Care w/

More information

Chapter 2. Measurements and Calculations

Chapter 2. Measurements and Calculations Chapter 2 Measurements and Calculations Section 2.1 Scientific Notation Measurement Quantitative observation. Has 2 parts number and unit. Number tells comparison. Unit tells scale. If something HAS a

More information

Chapter 1. Chemistry: The Study of Change. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill

Chapter 1. Chemistry: The Study of Change. Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chemistry, Raymond Chang 10th edition, 2010 McGraw-Hill Chapter 1 Chemistry: The Study of Change Ahmad Aqel Ifseisi Assistant Professor of Analytical Chemistry College of Science, Department of Chemistry

More information

Chapter 1. Matter, Measurement, and Problem Solving Copyright 2011 Pearson Education, Inc. 28/11/1435

Chapter 1. Matter, Measurement, and Problem Solving Copyright 2011 Pearson Education, Inc. 28/11/1435 Chapter 1 Matter, Measurement, and Problem Solving Chemistry: A Molecular Approach, Second Edition Nivaldo J. Tro CRS Clicker Questions Jason A. Kautz University of Nebraska-Lincoln Which of the following

More information

Welcome to Chemistry

Welcome to Chemistry Welcome to Chemistry Introduction to Chemistry Exit Question What kind of skills and strategies did you need to be successful in this class activity? Day 2 9/10/13 QOD: What are my goals in this course?

More information

MEASUREMENT IN THE LABORATORY

MEASUREMENT IN THE LABORATORY 1 MEASUREMENT IN THE LABORATORY INTRODUCTION Today's experiment will introduce you to some simple but important types of measurements commonly used by the chemist. You will measure lengths of objects,

More information

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements

3.2 Units of Measurement > Chapter 3 Scientific Measurement. 3.2 Units of Measurement. 3.1 Using and Expressing Measurements Chapter 3 Scientific Measurement 3.1 Using and Expressing Measurements 3.2 Units of Measurement 3.3 Solving Conversion Problems 1 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

More information

Part 1: Matter. Chapter 1: Matter, Measurements, and Calculations. Sections MATTER Matter is anything that has mass and occupies space.

Part 1: Matter. Chapter 1: Matter, Measurements, and Calculations. Sections MATTER Matter is anything that has mass and occupies space. Part 1: Matter Chapter 1: Matter, Measurements, and Calculations Sections 1.1-1.4 1 2 MATTER Matter is anything that has mass and occupies space. MASS Mass is a measurement of the amount of matter in an

More information

Chapter 5 Assessment. 164 Chapter 5 Measurements and Calculations. 8. Write each of the following numbers in standard scientific notation. a.

Chapter 5 Assessment. 164 Chapter 5 Measurements and Calculations. 8. Write each of the following numbers in standard scientific notation. a. Chapter 5 Assessment All exercises with blue numbers have answers in the back of this book. 5.1 Scientific Notation and Units A. Scientific Notation 1. When the number 98,145 is written in standard scientific

More information

Chemistry: The Central Science

Chemistry: The Central Science Chapter 1 Chemistry: The Central Science Dr. A. Al-Saadi 1 Chapter 1 Section 1 Why Chemistry? Everything in this universe is made out of approximately 100 different kinds of atoms. Sand (Silicon, Oxygen)

More information

Chapter 1 Scientific Measurements

Chapter 1 Scientific Measurements Chapter 1 Scientific Measurements Chemistry, 7 th Edition International Student Version Brady/Jespersen/Hyslop Matter and Its Classifications Matter Anything that has mass and occupies space Mass How much

More information

Scientific Units of Measurement & Conversion

Scientific Units of Measurement & Conversion Scientific Units of Measurement & Conversion Principle or Rationale: Scientific measurements are made and reported using the metric system and conversion between different units is an integral part of

More information

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart

PREFIXES AND SYMBOLS SI Prefixes you need to know by heart PREFIXES AND SYMBOLS SI Prefixes you need to know by heart Prefix Symbol In 10 n in Decimal Forms Giga G 10 9 1,000,000,000 Mega M 10 6 1,000,000 kilo k 10 3 1,000 deci d 10 1 0.1 centi c 10 2 0.01 milli

More information

Section 5.1 Scientific Notation and Units Objectives

Section 5.1 Scientific Notation and Units Objectives Objectives 1. To show how very large or very small numbers can be expressed in scientific notation 2. To learn the English, metric, and SI systems of measurement 3. To use the metric system to measure

More information

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1

Solutions to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1 to: Units and Calculations Homework Problem Set Chemistry 145, Chapter 1 1. Give the name and abbreviation of the SI Unit for: a. Length meter m b. Mass kilogram kg c. Time second s d. Electric Current

More information

Chapter 1 (Part 2) Measurements in Chemistry

Chapter 1 (Part 2) Measurements in Chemistry Chapter 1 (Part 2) Measurements in Chemistry 1.7 Physical Quantities English Units Those of us who were raised in the US are very accustomed to these. Elsewhere in the world, these are very confusing.

More information

Stuff and Energy. Chapter 1

Stuff and Energy. Chapter 1 Stuff and Energy Chapter 1 Chapter 1 Instructional Goals 1. Explain, compare, and contrast the terms scientific method, hypothesis, and experiment. 2. Compare and contrast scientific theory and scientific

More information

General Chemistry I Introductory Concepts. Units, dimensions, and mathematics for problem solving

General Chemistry I Introductory Concepts. Units, dimensions, and mathematics for problem solving General Chemistry I Introductory Concepts Units, dimensions, and mathematics for problem solving Unit Conversion What is the value of S in cm per second? S = 5x10 3 furlongs fortnight Conversion Factor:

More information

Chapter 2: Standards for Measurement. 2.1 Scientific Notation

Chapter 2: Standards for Measurement. 2.1 Scientific Notation Chapter 2: Standards for Measurement 2.1 Scientific Notation A measurement (quantitative observation) consists of two parts: o Numerical value which gives magnitude, and o Unit which gives the scale used

More information

Calculations Relating to the Dimensions of the Physical World

Calculations Relating to the Dimensions of the Physical World Calculations Relating to the Dimensions of the Physical World Dimensions of the Physical World Classification of the physical world Geosphere = the solid earth Hydrosphere = the realms of water Atmosphere

More information

Name Period Date. Measurements. Fill-in the blanks during the PowerPoint presentation in class.

Name Period Date. Measurements. Fill-in the blanks during the PowerPoint presentation in class. Name Period Date Measurements Fill-in the blanks during the PowerPoint presentation in class. What is Scientific Notation? Scientific notation is a way of expressing big numbers and small numbers. It is

More information

Measurements in Chemistry

Measurements in Chemistry Measurements in Chemistry Measurements are part of our daily lives. We measure our weight, driving distances and gallons of gasoline. A health professional might measure blood pressure, temperature and

More information

LAB EXERCISE: Basic Laboratory Techniques

LAB EXERCISE: Basic Laboratory Techniques LAB EXERCISE: Basic Laboratory Techniques Introduction Scientists use measurements in describing objects and these measurements are based on universally accepted standards. A measurement of height specifies

More information

CHAPTER ONE. The Foundations of Chemistry

CHAPTER ONE. The Foundations of Chemistry CHAPTER ONE The Foundations of Chemistry Why is Chemistry Important? Materials for our homes Components for computers and other electronic devices Cooking Fuel Body functions 2 Some definitions / Vocabulary

More information

Introductory Chemistry Fifth Edition Nivaldo J. Tro

Introductory Chemistry Fifth Edition Nivaldo J. Tro Introductory Chemistry Fifth Edition Nivaldo J. Tro Chapter 2 Measurement and Problem Solving Dr. Sylvia Esjornson Southwestern Oklahoma State University Weatherford, OK Reporting the Measure of Global

More information

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin

INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin Lecture INTRODUCTORY CHEMISTRY Concepts and Critical Thinking Seventh Edition by Charles H. Corwin The Metric System by Christopher G. Hamaker Illinois State University Basic Units and Symbols The English

More information

Chapter 3 - Measurements

Chapter 3 - Measurements Chapter 3 - Measurements You ll learn it in the summer, If not, it ll be a bummer. You ll need to know conversions, For units, Euro version. Metrics are powers of ten, And you might cry when, You re forced

More information

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision?

Section 3 Using Scientific Measurements. Look at the specifications for electronic balances. How do the instruments vary in precision? Lesson Starter Look at the specifications for electronic balances. How do the instruments vary in precision? Discuss using a beaker to measure volume versus using a graduated cylinder. Which is more precise?

More information

Today is Thursday, February 11 th, 2016

Today is Thursday, February 11 th, 2016 In This Lesson: Scientific Notation and Unit Analysis (Lesson 4 of 6) Today is Thursday, February 11 th, 2016 Stuff You Need: Calculator Paper Towel Pre-Class: By now you ve probably heard of scientific

More information

Chapter One. Chapter One. Getting Started: Some Key Terms. Chemistry: Matter and Measurement. Key Terms. Key Terms. Key Terms: Properties

Chapter One. Chapter One. Getting Started: Some Key Terms. Chemistry: Matter and Measurement. Key Terms. Key Terms. Key Terms: Properties 1 Getting Started: Some Key Terms 2 Chemistry: Matter and Measurement Chemistry is the study of the composition, structure, and properties of matter and of changes that occur in matter. Matter is anything

More information

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method

Chapter 2. Preview. Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Preview Objectives Scientific Method Observing and Collecting Data Formulating Hypotheses Testing Hypotheses Theorizing Scientific Method Section 1 Scientific Method Objectives Describe the purpose of

More information

Chapter 1 Introduction: Matter and Measurement Honors Chemistry Lecture Notes. 1.1 The Study of Chemistry: The study of and the it undergoes.

Chapter 1 Introduction: Matter and Measurement Honors Chemistry Lecture Notes. 1.1 The Study of Chemistry: The study of and the it undergoes. Chapter 1 Introduction: Matter and Measurement Honors Chemistry Lecture Notes 1.1 The Study of Chemistry: The study of and the it undergoes. Matter: Anything that has and takes up The Atomic and Molecular

More information

WHAT IS CHEMISTRY? Chemistry 51 Chapter 1. Chemistry is the science that deals with the materials of the universe, and the changes they undergo.

WHAT IS CHEMISTRY? Chemistry 51 Chapter 1. Chemistry is the science that deals with the materials of the universe, and the changes they undergo. WHAT IS CHEMISTRY? Chemistry is the science that deals with the materials of the universe, and the changes they undergo. Materials of the universe can be of several forms: Gas: Liquid: Solid: air, oxygen

More information

UNIT 1 - MATH & MEASUREMENT

UNIT 1 - MATH & MEASUREMENT READING MEASURING DEVICES NOTES Here are a couple of examples of graduated cylinders: An important part of Chemistry is measurement. It is very important that you read the measuring devices we use in lab

More information

CHAPTER 2: SCIENTIFIC MEASUREMENTS

CHAPTER 2: SCIENTIFIC MEASUREMENTS CHAPTER 2: SCIENTIFIC MEASUREMENTS Problems: 1-26, 37-76, 80-84, 89-93 2.1 UNCERTAINTY IN MEASUREMENTS measurement: a number with attached units To measure, one uses instruments = tools such as a ruler,

More information