RADIALLY ADAPTIVE EVALUATION OF THE SPHERICAL HARMONIC GRAVITY SERIES FOR NUMERICAL ORBITAL PROPAGATION

Size: px
Start display at page:

Download "RADIALLY ADAPTIVE EVALUATION OF THE SPHERICAL HARMONIC GRAVITY SERIES FOR NUMERICAL ORBITAL PROPAGATION"

Transcription

1 AAS RADIALLY ADAPTIVE EVALUATION OF THE SPHERICAL HARMONIC GRAVITY SERIES FOR NUMERICAL ORBITAL PROPAGATION Austin B. Probe, * Brent Macomber,* Julie I. Read,* Robyn M. Woollands,* and John L. Junkins Evaluation of the Spherical Harmonic Series for gravity is one of the most computationally intensive requirements for high-accuracy orbital propagation. The Earth s gravity is non-uniform and these perturbative effects must be incorporated into orbital propagation models to ensure an accurate numerical approximation is computed. However, considering the radial nonlinearity of the force-field allows for the judicious selection of the harmonic series degree and order as a method of reducing computational cost, without sacrificing accuracy. This paper details a method of radial adaptation for the spherical harmonic series, supporting analysis demonstrating its accuracy, and some characteristic results. INTRODUCTION The spherical harmonic series, which theoretically represents gravity as a solution of Laplace s equation, is routinely used as method for high-fidelity gravity calculation in precision astrodynamics. Due to the computationally intensive nature of this series, when carried to a high degree and order expansion, it is frequently one of the most burdensome elements of high-accuracy orbital propagation. Despite this high cost, the non-uniform elements of the Earth s gravity field must be considered to achieve accurate numerical representations of orbital trajectories. The standard spherical harmonic calculation requires that the user select the fixed degree and order to be used a-priori. This is generally a heuristic choice based on the user s desired level of accuracy and their available computational resources. The selected degree and order are then used to compute values for the normalized Associated Legendre Polynomials for the geocentric latitude ϕ (Eqn. 1-5). P 0,0 = 1 P 1,0 = 3 cos(φ) P 1,1 = 3 sin(φ) (1) (2) (3) * Graduate Researcher, Aerospace Engineering, Texas A&M University, 702 H.R. Bright Building M.S Distinguished Professor, department, Aerospace Engineering, Texas A&M University, 702 H.R. Bright Building M.S

2 P n,n = 2n+1 2n sin(φ) P n 1,n 1 n > 1 P n,m = (2n+1)(2n 1) (n+m)(n m) cos(φ) P n 1,m (2n+1)(m2 (n 1) 2 ) (2n 3)(m n)(n+m) P n 2,m m < n (4) (5) Once obtained, the normalized Associated Legendre Polynomials can be evaluated with the radius (r), longitude (λ), and the constant spherical harmonic coefficients (C n,m and S n,m ) for the selected gravity model to produce the gravitational potential (Eqn. 6). 1 U(r, φ, λ) = μ n r (R e r ) n=2 n P n,m ( C n,m cos(λ) + S n,m sin (λ)) m=0 (6) Selection of the fixed degree and order in this fashion can be problematic. It is difficult to make a selection appropriate for the application without a clear knowledge of the relationship between the degree and order and the resulting accuracy for the series. Ideally, the order would be selected to so that the accuracy of the gravitational approximation calculated would match the desired tolerance for propagation and the physical acceleration accuracy of the other models being used. To avoid using an inaccurate gravity approximation conservative degree and order specifications are frequently chosen. This can result in significant wasted computation time, because as shown in Fig. 1 the computational cost of the spherical harmonic model increases quadratically with the degree. 2 Fig. 1: Relative Cost of Gravity Series Computation Additionally, the Earth s gravity is non-uniform and the standard method of degree and order selection does not account for these changes. A spacecraft in an eccentric orbit with a perigee radius of 1.2 Earth radii experiences far greater perturbative gravitational effects compared with when it is at apogee, say 7 Earth radii. Close to the Earth where the gravitational acceleration changes more abruptly it is essential to consider the high order, computationally expensive, gravity model. As the strength of the gravitational field decreases radially, the changes are much more subtle and we can anticipate that a lower fidelity gravity model is all that is required. The traditional method of selecting the degree for the spherical harmonic gravity, must account for the worst-case scenario at

3 perigee, meaning that significant wasted computation is introduced for the rest of the orbit, especially near apogee. Various efforts have been made to develop new methods of accurately approximating gravitational potential that are more efficient in terms of the memory and computation required. However, some of these methods still require the selection of various heuristic elements and do not address the potential wasted calculation resulting in changes from the force field. While these methods have some advantages, they lack the heuristic and operational heritage of the spherical harmonic model. This means that their implementation would require significant changes to existing methods and substantial testing and verification. 3,4,5 RADIALLY ADAPTIVE SPHERICAL HARMONIC EVALUATION The ideal implementation of a spherical harmonic gravitational approximation would allow the specification of the required accuracy by the user and provide an approximate solution that meets that requirement. This would reduce the effort needed from the user to select a degree and order while also avoiding inaccurate approximations and wasted computation. Careful consideration of the character of the gravitational force-field and analysis of the spherical harmonic gravity approximation allows for the judicious selection of the series degree and order as a method of reducing computational cost, without sacrificing accuracy. To achieve this adaptation of degree and order for the spherical harmonic series based on radius and required accuracy can be applied to ensure the appropriate level of system dynamics is captured with the minimum computational cost. Adaptation Reference Study To determine the appropriate way to adapt the function order based on the orbital radius and required accuracy a study was performed examining the size of each of the component terms of the spherical harmonic series as a function of the series degree and order. An examination of the marginal contributions for the various series components for a single evaluation of the EGM2008 series is shown in Fig This demonstrates that while the marginal contribution generally decreases with series degree and order it does not do so monotonically. Fig. 2: Marginal contributions of gravity terms as a function of order and magnitude

4 To determine the maximum possible contribution from each degree we identify the maximum value of the Associated Legendre Function for each degree and order. This occurs for the P n,0 value when the geocentric latitude is 0, as can be seen from Eqn Fig. 3 shows the variation maximum Associated Legendre Function value as a function of degree and latitude. Taking this as the maximum contribution from the Associated Legendre Function at each degree and order, the maximum marginal component of gravitational potential can be obtained by multiplying it by the greater of C n,m or S n,m within the summation in Eqn. 6. Fig. 3: Maximum Associated Legendre Function component as a function of order and geocentric latitude This maximum perturbation value from within the summation for each degree and order is recorded. This process is then repeated at a series of radii chosen using densified cosine sampling depicted in Fig. 4. The transformation between the densified cosine sampling and ordinary cosine sampling of the radius is known, and it permits the orthogonality conditions of Chebyshev polynomial approximation to be satisfied with physically much denser radial sampling nearest the surface of the Earth. This device allows the required order as a function of a given acceleration accuracy and radius (see Fig. 5 & 6) to be approximated as an orthogonal Chebyshev polynomial using gravity evaluations on a significantly reduced number of radial evaluation points. 5

5 Fig. 4: Comparison of Uniform and Cosine-Like Sampling for Series Evaluation Comparing the maximum perturbation value to the required level of accuracy allows you to select the appropriate order for each evaluation. Fig. 5 shows the resulting relationship between the acceptable error tolerance, the orbital radius, and the required spherical harmonic gravity order (with a limit of 50) and Fig. 6 shows the acceptable error tolerance, the orbital radius, and the required spherical harmonic gravity order on a logarithmic scale for the entire series. This surface can be easily inverted to obtain the required gravity expansion order (N O) as a function of two variables (required accuracy of acceleration, and radial distance from the center of the Earth). Thus, for specified acceleration accuracy, each call of the gravity routine is inherently adaptive based on the radial distance, and this scheme is implementable to achieve increased efficiency with any existing algorithm to compute a spherical harmonic gravity field. Fig. 5: Required spherical harmonic gravity degree as a function of accuracy of the gravitational acceleration vector

6 RESULTS Fig. 6: Required spherical harmonic gravity degree as a function of accuracy of the gravitational acceleration vector Once the required order surface is obtained, it is then possible to fit a function to this surface and use it to guide the selection of the order that should be used for each spherical harmonic gravity evaluation during orbital propagation. Fig. 7 shows the resulting required gravity degree around a highly eccentric orbit that is functionally equivalent to evaluating a (40 40) gravity field everywhere. At the beginning and end of the orbit when the spacecraft is near perigee the full (40 40) model is required, but as the craft moves further away from the earth the adaptation allow for a lower degree and order to be used.

7 Fig. 7: Variation in the required gravity degree for a high eccentricity orbit (limit 40). This radially adaptive gravity results in a lower computational cost for a given orbit as shown by the total number of equivalent gravity evaluations, or the comparison of the cost of each evaluation used with respect to the cost of a selected maximum allowed order. The equivalent N gravity cost is defined as follows: E = 1 ( ) 2 + Const., where N is the order selected, N max is 2 N max the maximum allowed order, and the constant represents the function overhead. The computational savings of this method are a function of the orbit selected and the maximum allowed order of the spherical harmonic series selected for the propagation. Highly eccentric orbits allow for the adaptation to use a lower gravity order for more evaluations, thus reducing the cost. Selecting a high maximum allowed order for use means that the drop in degree with adaptation can be greater. To illustrate the advantages of the radial adaptation RK45 was used to propagate a series of orbits with meter level precision (required accuracy ~10-8 ) with perigee altitudes at 1.05 Earth radii and varying eccentricities using both a fixed degree and order of (100x100) and the radially adaptive method. Fig. 8 shows the relative computation time required and how it relates to eccentricity. Fig. 9 shows that the relative Hamiltonian conservation for the 0.8 eccentricity orbit for the radially adaptive model and the fixed degree and order (100x100) are essentially equivalent, illustrating that the accuracy for the two is comparable.

8 Fig. 8: Relative evaluation time as a function of eccentricity Fig. 9: Hamiltonian conservation comparison for radially adaptive propagation vs. fixed degree and order of 100 CONCLUSION This method for radial adaptation of the spherical harmonic function allows for automatic selection of the required degree and order based on user specified accuracy, reducing the probability of wasted computation or inaccurate solutions. This method can greatly accelerate orbital propagation that utilizes the spherical harmonic series, especially for highly eccentric orbits. Additionally, radial adaptation can be integrated into current spherical harmonic code with minimal modifications.

9 REFERENCES 1 Gottlieb, R. G., Fast Gravity, Gravity Partials, Normalized Gravity, Gravity Gradient Torque and Magnetic Field: Derivation, Code and Data, Tech. Rep. NASA Contractor Report , NASA Lyndon B. Johnson Space Center, Houston, TX, February Beylkin, G. and Cramer, R., Toward Multiresolution Estimation and Efficient Representation of Gravitational Fields, Celestial Mechanics and Dynamical Astronomy, Vol. 84, pp , Arora, N., Russell, R.P., Efficient Interpolation of the GRACE GGM03C Gravity Model, Paper AAS , Kauai, HA, Feb Jones, Brandon A., Efficient Models for the Evaluation and Estimation of the Gravity Field, Ph.D. dissertation, University of Colorado at Boulder, CO, Bani Younes, A., Orthogonal Polynomial Approximation in Higher Dimensions: Applications in Astrodynamics., Ph.D. dissertation, Texas A&M Univ, College Station, TX, Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K., An Earth Gravitational Model to Degree 2160: EGM2008, in Proceedings of the European Geosciences Union General Assembly, Vienna, Austria, April

Terminal Convergence Approximation Modified Chebyshev Picard Iteration for efficient numerical integration of orbital trajectories

Terminal Convergence Approximation Modified Chebyshev Picard Iteration for efficient numerical integration of orbital trajectories Terminal Convergence Approximation Modified Chebyshev Picard Iteration for efficient numerical integration of orbital trajectories Austin B. Probe Texas A&M University Brent Macomber, Donghoon Kim, Robyn

More information

Fast Gravitational Field Model using Adaptive Orthogonal Finite Element Approximation

Fast Gravitational Field Model using Adaptive Orthogonal Finite Element Approximation Fast Gravitational Field Model using Adaptive Orthogonal Finite Element Approximation Ahmad Bani Younes, Brent Macomber, Robyn M. Woollands, Austin Probe, John L. Junkins Texas A & M University, Aerospace

More information

Enhancements to Modified Chebyshev-Picard Iteration Efficiency for Perturbed Orbit Propagation

Enhancements to Modified Chebyshev-Picard Iteration Efficiency for Perturbed Orbit Propagation Copyright 2016 Tech Science Press CMES, vol.111, no.1, pp.29-64, 2016 Enhancements to Modified Chebyshev-Picard Iteration Efficiency for Perturbed Orbit Propagation B. Macomber 1, A. B. Probe 1, R. Woollands

More information

METHOD OF PARTICULAR SOLUTIONS AND KUSTAANHEIMO-STIEFEL REGULARIZED PICARD ITERATION FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS

METHOD OF PARTICULAR SOLUTIONS AND KUSTAANHEIMO-STIEFEL REGULARIZED PICARD ITERATION FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS (Preprint) AAS 5-373 METHOD OF PARTICULAR SOLUTIONS AND KUSTAANHEIMO-STIEFEL REGULARIZED PICARD ITERATION FOR SOLVING TWO-POINT BOUNDARY VALUE PROBLEMS Robyn M. Woollands, Julie L. Read, Brent Macomber,

More information

On Sun-Synchronous Orbits and Associated Constellations

On Sun-Synchronous Orbits and Associated Constellations On Sun-Synchronous Orbits and Associated Constellations Daniele Mortari, Matthew P. Wilkins, and Christian Bruccoleri Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843,

More information

LYAPUNOV-BASED ELLIPTICAL TO CIRCULAR PLANAR ORBIT TRANSFERS IN LEVI-CIVITA COORDINATES

LYAPUNOV-BASED ELLIPTICAL TO CIRCULAR PLANAR ORBIT TRANSFERS IN LEVI-CIVITA COORDINATES (Preprint) AAS 2-66 LYAPUNOV-BASED ELLIPTICAL TO CIRCULAR PLANAR ORBIT TRANSFERS IN LEVI-CIVITA COORDINATES Sonia Hernandez, Maruthi R. Akella, and Cesar A. Ocampo INTRODUCTION We consider planar orbit

More information

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming IEPC-2015-299 /ISTS-2015-b-299 Presented at Joint Conference of 30th International Symposium on Space Technology

More information

Bézier Description of Space Trajectories

Bézier Description of Space Trajectories Bézier Description of Space Trajectories Francesco de Dilectis, Daniele Mortari, Texas A&M University, College Station, Texas and Renato Zanetti NASA Jonhson Space Center, Houston, Texas I. Introduction

More information

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado.

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado. Analytical Mechanics of Space Systems Third Edition Hanspeter Schaub University of Colorado Boulder, Colorado John L. Junkins Texas A&M University College Station, Texas AIM EDUCATION SERIES Joseph A.

More information

Applications of Artificial Potential Function Methods to Autonomous Space Flight

Applications of Artificial Potential Function Methods to Autonomous Space Flight Applications of Artificial Potential Function Methods to Autonomous Space Flight Sara K. Scarritt and Belinda G. Marchand AAS/AIAA Astrodynamics Specialist Conference July 31 - Aug. 4 2011 Girdwood, Alaska

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

Efficient Orbit Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration Method

Efficient Orbit Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration Method Copyright 2016 Tech Science Press CMES, vol.111, no.1, pp.65-81, 2016 Efficient Orbit Propagation of Orbital Elements Using Modified Chebyshev Picard Iteration Method J.L. Read 1, A. Bani Younes 2 and

More information

Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA

Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA Two-Way Orbits Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA November 17, 24 Abstract. This paper introduces a new set

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Numerical Methods Gaëtan Kerschen Space Structures & Systems Lab (S3L) Why Different Propagators? Analytic propagation: Better understanding of the perturbing forces. Useful

More information

HIGH-ORDER STATE FEEDBACK GAIN SENSITIVITY CALCULATIONS USING COMPUTATIONAL DIFFERENTIATION

HIGH-ORDER STATE FEEDBACK GAIN SENSITIVITY CALCULATIONS USING COMPUTATIONAL DIFFERENTIATION (Preprint) AAS 12-637 HIGH-ORDER STATE FEEDBACK GAIN SENSITIVITY CALCULATIONS USING COMPUTATIONAL DIFFERENTIATION Ahmad Bani Younes, James Turner, Manoranjan Majji, and John Junkins INTRODUCTION A nonlinear

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Third Body Perturbation

Third Body Perturbation Third Body Perturbation p. 1/30 Third Body Perturbation Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid

More information

Sequential Orbit Determination with the. Cubed-Sphere Gravity Model

Sequential Orbit Determination with the. Cubed-Sphere Gravity Model Sequential Orbit Determination with the Cubed-Sphere Gravity Model Brandon A. Jones 1, George H. Born 2, and Gregory Beylkin 3 University of Colorado, Boulder, CO, 80309, USA The cubed-sphere model provides

More information

Physics 6303 Lecture 11 September 24, LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation

Physics 6303 Lecture 11 September 24, LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation Physics 6303 Lecture September 24, 208 LAST TIME: Cylindrical coordinates, spherical coordinates, and Legendre s equation, l l l l l l. Consider problems that are no axisymmetric; i.e., the potential depends

More information

Orbit Representation

Orbit Representation 7.1 Fundamentals 223 For this purpose, code-pseudorange and carrier observations are made of all visible satellites at all monitor stations. The data are corrected for ionospheric and tropospheric delays,

More information

THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL

THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL INPE-1183-PRE/67 THIRD-BODY PERTURBATION USING A SINGLE AVERAGED MODEL Carlos Renato Huaura Solórzano Antonio Fernando Bertachini de Almeida Prado ADVANCES IN SPACE DYNAMICS : CELESTIAL MECHANICS AND ASTRONAUTICS,

More information

(ii) Observational Geomagnetism. Lecture 5: Spherical harmonic field models

(ii) Observational Geomagnetism. Lecture 5: Spherical harmonic field models (ii) Observational Geomagnetism Lecture 5: Spherical harmonic field models Lecture 5: Spherical harmonic field models 5.1 Introduction 5.2 How to represent functions on a spherical surface 5.3 Spherical

More information

Compass Star Tracker for GPS Applications

Compass Star Tracker for GPS Applications AAS 04-007 Compass Star Tracker for GPS Applications Malak A. Samaan Daniele Mortari John L. Junkins Texas A&M University 27th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE February 4-8, 2004 Breckenridge,

More information

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3)

B. Loomis, D. Wiese, R. S. Nerem (1) P. L. Bender (2) P. N. A. M. Visser (3) Possible mission architectures for a GRACE follow-on mission including a study on upgraded instrumentation suites, and multiple satellite pairs in moderately-inclined orbits B. Loomis, D. Wiese, R. S.

More information

Symbolic Solution of Kepler s Generalized Equation

Symbolic Solution of Kepler s Generalized Equation Symbolic Solution of Kepler s Generalized Equation Juan Félix San-Juan 1 and Alberto Abad 1 Universidad de La Rioja, 6004 Logroño, Spain juanfelix.sanjuan@dmc.unirioja.es, Grupo de Mecánica Espacial, Universidad

More information

Orbital and Celestial Mechanics

Orbital and Celestial Mechanics Orbital and Celestial Mechanics John P. Vinti Edited by Gim J. Der TRW Los Angeles, California Nino L. Bonavito NASA Goddard Space Flight Center Greenbelt, Maryland Volume 177 PROGRESS IN ASTRONAUTICS

More information

Integration of the Coupled Orbit-Attitude Dynamics Using Modified Chebyshev-Picard Iteration Methods

Integration of the Coupled Orbit-Attitude Dynamics Using Modified Chebyshev-Picard Iteration Methods Copyright 16 Tech Science Press CMES, vol.111, no., pp.19-146, 16 Integration of the Coupled Orbit-Attitude Dynamics Using Modified Chebyshev-Picard Iteration Methods Xiaoli Bai 1, John L. Junkins Abstract:

More information

Ceres Rotation Solution under the Gravitational Torque of the Sun

Ceres Rotation Solution under the Gravitational Torque of the Sun Ceres Rotation Solution under the Gravitational Torque of the Sun Martin Lara, Toshio Fukushima, Sebastián Ferrer (*) Real Observatorio de la Armada, San Fernando, Spain ( ) National Astronomical Observatory,

More information

Bandlimited implicit Runge Kutta integration for Astrodynamics

Bandlimited implicit Runge Kutta integration for Astrodynamics Celest Mech Dyn Astr (2014) 119:143 168 DOI 10.1007/s10569-014-9551-x ORIGINAL ARTICLE Bandlimited implicit Runge Kutta integration for Astrodynamics Ben K. Bradley Brandon A. Jones Gregory Beylkin Kristian

More information

(ii) We have already found out the velocity of the satellite in orbit in part (i) (using equation (2.5)) to be km/s

(ii) We have already found out the velocity of the satellite in orbit in part (i) (using equation (2.5)) to be km/s Chapter 2 Questions and Solutions Question 1. Explain what the terms centrifugal and centripetal mean with regard to a satellite in orbit around the earth. A satellite is in a circular orbit around the

More information

Space Surveillance using Star Trackers. Part I: Simulations

Space Surveillance using Star Trackers. Part I: Simulations AAS 06-231 Space Surveillance using Star Trackers. Part I: Simulations Iohan Ettouati, Daniele Mortari, and Thomas Pollock Texas A&M University, College Station, Texas 77843-3141 Abstract This paper presents

More information

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423 Chapter 5 - Part 1 Orbit Perturbations D.Mortari - AERO-43 Orbital Elements Orbit normal i North Orbit plane Equatorial plane ϕ P O ω Ω i Vernal equinox Ascending node D. Mortari - AERO-43 Introduction

More information

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION 1 SHEN YU JUN, 2 TAN YAN QUAN, 3 TAN GUOXIAN 1,2,3 Raffles Science Institute, Raffles Institution, 1 Raffles Institution Lane, Singapore E-mail:

More information

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho

SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS. Sandro da Silva Fernandes. Cleverson Maranhão Porto Marinho SUN INFLUENCE ON TWO-IMPULSIVE EARTH-TO-MOON TRANSFERS Sandro da Silva Fernandes Instituto Tecnológico de Aeronáutica, São José dos Campos - 12228-900 - SP-Brazil, (+55) (12) 3947-5953 sandro@ita.br Cleverson

More information

Optimal Control based Time Optimal Low Thrust Orbit Raising

Optimal Control based Time Optimal Low Thrust Orbit Raising Optimal Control based Time Optimal Low Thrust Orbit Raising Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P., India 2

More information

Chapter 8. Precise Lunar Gravity Assist Trajectories. to Geo-stationary Orbits

Chapter 8. Precise Lunar Gravity Assist Trajectories. to Geo-stationary Orbits Chapter 8 Precise Lunar Gravity Assist Trajectories to Geo-stationary Orbits Abstract A numerical search technique for designing a trajectory that transfers a spacecraft from a high inclination Earth orbit

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

Analytical Non-Linear Uncertainty Propagation: Theory And Implementation

Analytical Non-Linear Uncertainty Propagation: Theory And Implementation Analytical Non-Linear Uncertainty Propagation: Theory And Implementation Kohei Fujimoto 1 Texas A&M University, College Station, TX, 77843 Daniel J. Scheeres 2 The University of Colorado-Boulder, Boulder,

More information

Attitude Determination using Infrared Earth Horizon Sensors

Attitude Determination using Infrared Earth Horizon Sensors SSC14-VIII-3 Attitude Determination using Infrared Earth Horizon Sensors Tam Nguyen Department of Aeronautics and Astronautics, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge,

More information

Analysis of frozen orbits for solar sails

Analysis of frozen orbits for solar sails Trabalho apresentado no XXXV CNMAC, Natal-RN, 2014. Analysis of frozen orbits for solar sails J. P. S. Carvalho, R. Vilhena de Moraes, Instituto de Ciência e Tecnologia, UNIFESP, São José dos Campos -

More information

A Study of Six Near-Earth Asteroids Summary Introduction

A Study of Six Near-Earth Asteroids Summary Introduction A Study of Six Near-Earth Asteroids John Junkins 1, Puneet Singla 1, Daniele Mortari 1, William Bottke 2, Daniel Durda 2 Summary We consider here 6 Earth-orbit-crossing asteroids (ECAs) as possible targets

More information

ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES

ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES Journal of Science and Arts Year 16, No. 1(34), pp. 67-76, 2016 ORIGINAL PAPER ORBITAL DECAY PREDICTION AND SPACE DEBRIS IMPACT ON NANO-SATELLITES MOHAMMED CHESSAB MAHDI 1 Manuscript received: 22.02.2016;

More information

PARALLEL ALGORITHM FOR TRACK INITIATION FOR OPTICAL SPACE SURVEILLANCE

PARALLEL ALGORITHM FOR TRACK INITIATION FOR OPTICAL SPACE SURVEILLANCE PARALLEL ALGORITHM FOR TRACK INITIATION FOR OPTICAL SPACE SURVEILLANCE Paul W. Schumacher, Jr., * Matthew P. Wilkins, and Christopher W. T. Roscoe INTRODUCTION We propose a type of admissible-region analysis

More information

Orbit Determination Using Satellite-to-Satellite Tracking Data

Orbit Determination Using Satellite-to-Satellite Tracking Data Chin. J. Astron. Astrophys. Vol. 1, No. 3, (2001 281 286 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn Chinese Journal of Astronomy and Astrophysics Orbit Determination Using Satellite-to-Satellite

More information

Keywords: Kinematics; Principal planes; Special orthogonal matrices; Trajectory optimization

Keywords: Kinematics; Principal planes; Special orthogonal matrices; Trajectory optimization Editorial Manager(tm) for Nonlinear Dynamics Manuscript Draft Manuscript Number: Title: Minimum Distance and Optimal Transformations on SO(N) Article Type: Original research Section/Category: Keywords:

More information

INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE (IADC) SPACE DEBRIS ISSUES IN THE GEOSTATIONARY ORBIT AND THE GEOSTATIONARY TRANSFER ORBITS

INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE (IADC) SPACE DEBRIS ISSUES IN THE GEOSTATIONARY ORBIT AND THE GEOSTATIONARY TRANSFER ORBITS INTER-AGENCY SPACE DEBRIS COORDINATION COMMITTEE (IADC) SPACE DEBRIS ISSUES IN THE GEOSTATIONARY ORBIT AND THE GEOSTATIONARY TRANSFER ORBITS Presented to: 37-th Session of the SCIENTIFIC AND TECHNICAL

More information

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT AAS 16-366 AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT Jason A. Reiter * and David B. Spencer INTRODUCTION Collision avoidance maneuvers to prevent orbital

More information

GRACE Gravity Model GGM02

GRACE Gravity Model GGM02 GRACE Gravity Model GGM02 The GGM02S gravity model was estimated with 363 days (spanning April 2002 through December 2003) of GRACE K-band range-rate, attitude, and accelerometer data. No Kaula constraint,

More information

Formation flying in elliptic orbits with the J 2 perturbation

Formation flying in elliptic orbits with the J 2 perturbation Research in Astron. Astrophys. 2012 Vol. 12 No. 11, 1563 1575 http://www.raa-journal.org http://www.iop.org/journals/raa Research in Astronomy and Astrophysics Formation flying in elliptic orbits with

More information

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS

RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS (Preprint) AAS 12-202 RELATIVE NAVIGATION FOR SATELLITES IN CLOSE PROXIMITY USING ANGLES-ONLY OBSERVATIONS Hemanshu Patel 1, T. Alan Lovell 2, Ryan Russell 3, Andrew Sinclair 4 "Relative navigation using

More information

NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 T H ORDER EXACT ANALYTIC CONTINUATION ALGORITHM

NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 T H ORDER EXACT ANALYTIC CONTINUATION ALGORITHM (Preprint) AAS 12-638 NUMERICAL INTEGRATION OF CONSTRAINED MULTI-BODY DYNAMICAL SYSTEMS USING 5 T H ORDER EXACT ANALYTIC CONTINUATION ALGORITHM Ahmad Bani Younes, and James Turner Many numerical integration

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Space Surveillance with Star Trackers. Part II: Orbit Estimation

Space Surveillance with Star Trackers. Part II: Orbit Estimation AAS -3 Space Surveillance with Star Trackers. Part II: Orbit Estimation Ossama Abdelkhalik, Daniele Mortari, and John L. Junkins Texas A&M University, College Station, Texas 7783-3 Abstract The problem

More information

Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm

Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm Launch strategy for Indian lunar mission and precision injection to the Moon using genetic algorithm VAdimurthy, R V Ramanan, S R Tandon and C Ravikumar Aeronautics Entity, Vikram Sarabhai Space Centre,

More information

Analytical Non-Linear Uncertainty Propagation: Theory And Implementation

Analytical Non-Linear Uncertainty Propagation: Theory And Implementation Analytical Non-Linear Uncertainty Propagation: Theory And Implementation Kohei Fujimoto 1), Daniel J. Scheeres 2), and K. Terry Alfriend 1) May 13, 2013 1) Texas A&M University 2) The University of Colorado

More information

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT

MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT MAGNETIC NOZZLE PLASMA EXHAUST SIMULATION FOR THE VASIMR ADVANCED PROPULSION CONCEPT ABSTRACT A. G. Tarditi and J. V. Shebalin Advanced Space Propulsion Laboratory NASA Johnson Space Center Houston, TX

More information

Optimal Configuration of Tetrahedral Spacecraft Formations 1

Optimal Configuration of Tetrahedral Spacecraft Formations 1 The Journal of the Astronautical Sciences, Vol. 55, No 2, April June 2007, pp. 141 169 Optimal Configuration of Tetrahedral Spacecraft Formations 1 Geoffrey T. Huntington, 2 David Benson, 3 and Anil V.

More information

Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) EE 570: Location and Navigation Lecture Navigation Mathematics: Kinematics (Earth Surface & ) EE 570: Location and Navigation Lecture Notes Update on March 10, 2016 Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data Available online at www.sciencedirect.com Procedia Environmental Sciences 1 (1 ) 78 713 11 International Conference on Environmental Science and Engineering (ICESE 11) Calculation of Earth s Dynamic Ellipticity

More information

Lecture D30 - Orbit Transfers

Lecture D30 - Orbit Transfers J. Peraire 16.07 Dynamics Fall 004 Version 1.1 Lecture D30 - Orbit Transfers In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we

More information

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra Politecnico di Milano Department of Aerospace Engineering Milan, Italy Taylor Methods and Computer Assisted Proofs

More information

Solutions to Laplace s Equations- II

Solutions to Laplace s Equations- II Solutions to Laplace s Equations- II Lecture 15: Electromagnetic Theory Professor D. K. Ghosh, Physics Department, I.I.T., Bombay Laplace s Equation in Spherical Coordinates : In spherical coordinates

More information

A SYSTEMATIC STUDY ABOUT SUN PERTURBATIONS ON LOW ENERGY EARTH-TO-MOON TRANSFERS.

A SYSTEMATIC STUDY ABOUT SUN PERTURBATIONS ON LOW ENERGY EARTH-TO-MOON TRANSFERS. A YTATIC TUDY ABOUT UN RTURBATION ON LOW NRGY ARTH-TO-OON TRANFR andro da ilva Fernandes (1) and Cleverson aranhão orto arinho (2) (1) (2) Instituto Tecnológico de Aeronáutica, ão José dos Campos 12228-900

More information

when viewed from the top, the objects should move as if interacting gravitationally

when viewed from the top, the objects should move as if interacting gravitationally 2 Elastic Space 2 Elastic Space The dynamics and apparent interactions of massive balls rolling on a stretched horizontal membrane are often used to illustrate gravitation. Investigate the system further.

More information

An Analysis of N-Body Trajectory Propagation. Senior Project. In Partial Fulfillment. of the Requirements for the Degree

An Analysis of N-Body Trajectory Propagation. Senior Project. In Partial Fulfillment. of the Requirements for the Degree An Analysis of N-Body Trajectory Propagation Senior Project In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Aerospace Engineering by Emerson Frees June, 2011 An Analysis

More information

A Survey and Performance Analysis of Orbit Propagators for LEO, GEO, and Highly Elliptical Orbits

A Survey and Performance Analysis of Orbit Propagators for LEO, GEO, and Highly Elliptical Orbits Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 2017 A Survey and Performance Analysis of Orbit Propagators for LEO, GEO, and Highly Elliptical Orbits Simon

More information

Lunar Mission Analysis for a Wallops Flight Facility Launch

Lunar Mission Analysis for a Wallops Flight Facility Launch Lunar Mission Analysis for a Wallops Flight Facility Launch John M. Dolan III Thesis submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

We start by noting Kepler's observations (before Newton) regarding planetary motion.

We start by noting Kepler's observations (before Newton) regarding planetary motion. Phys 325 Lecture 8 Thursday 7 February, 2019 Announcements: HW4 is longer than the others, and is due Tuesday 2/19 Midterm I will be in-class on Thursday 2/21. Material covered will be lectures 1-10 and

More information

GRACE (CSR-GR-03-01) Gravity Recovery and Climate Experiment. Level-2 Gravity Field Product User Handbook

GRACE (CSR-GR-03-01) Gravity Recovery and Climate Experiment. Level-2 Gravity Field Product User Handbook GRACE 327-734 () Gravity Recovery and Climate Experiment Level-2 Gravity Field Product User Handbook (Rev 1.0, December 1, 2003 Draft) Srinivas Bettadpur Center for Space Research The University of Texas

More information

CELESTIAL MECHANICS. Part I. Mathematical Preambles

CELESTIAL MECHANICS. Part I. Mathematical Preambles Chapter 1. Numerical Methods CELESTIAL MECHANICS Part I. Mathematical Preambles 1.1 Introduction 1.2 Numerical Integration 1.3 Quadratic Equations 1.4 The Solution of f(x) = 0 1.5 The Solution of Polynomial

More information

Further Ordinary Differential Equations

Further Ordinary Differential Equations Advanced Higher Notes (Unit ) Prerequisites: Standard integrals; integration by substitution; integration by parts; finding a constant of integration; solving quadratic equations (with possibly complex

More information

Extending the Patched-Conic Approximation to the Restricted Four-Body Problem

Extending the Patched-Conic Approximation to the Restricted Four-Body Problem Monografías de la Real Academia de Ciencias de Zaragoza 3, 133 146, (6). Extending the Patched-Conic Approximation to the Restricted Four-Body Problem Thomas R. Reppert Department of Aerospace and Ocean

More information

NUMERICAL INTEGRATION OF A SATELLITE ORBIT WITH KS TRANSFORMATION

NUMERICAL INTEGRATION OF A SATELLITE ORBIT WITH KS TRANSFORMATION NUMERICAL INTEGRATION OF A SATELLITE ORBIT WITH KS TRANSFORMATION Jhonathan Murcia Piñeros 1 Maxime Koffi 1 Helio Koiti Kuga 1, 2 jhonathan.pineros@inpe.br koffi.maxime@yahoo.com helio.kuga@inpe.br 1 INPE

More information

9 th AAS/AIAA Astrodynamics Specialist Conference Breckenridge, CO February 7 10, 1999

9 th AAS/AIAA Astrodynamics Specialist Conference Breckenridge, CO February 7 10, 1999 AAS 99-139 American Institute of Aeronautics and Astronautics MATLAB TOOLBOX FOR RIGID BODY KINEMATICS Hanspeter Schaub and John L. Junkins 9 th AAS/AIAA Astrodynamics Specialist Conference Breckenridge,

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Chapter 5.3: Series solution near an ordinary point

Chapter 5.3: Series solution near an ordinary point Chapter 5.3: Series solution near an ordinary point We continue to study ODE s with polynomial coefficients of the form: P (x)y + Q(x)y + R(x)y = 0. Recall that x 0 is an ordinary point if P (x 0 ) 0.

More information

Bandlimited Implicit Runge-Kutta Integration for Astrodynamics

Bandlimited Implicit Runge-Kutta Integration for Astrodynamics Celestial Mechanics and Dynamical Astronomy manuscript No. (will be inserted by the editor) Bandlimited Implicit Runge-Kutta Integration for Astrodynamics Ben K. Bradley Brandon A. Jones Gregory Beylkin

More information

A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network

A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network A Fast Method for Embattling Optimization of Ground-Based Radar Surveillance Network JIANG Hai University of Chinese Academy of Sciences National Astronomical Observatories, Chinese Academy of Sciences

More information

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA

MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA MULTI PURPOSE MISSION ANALYSIS DEVELOPMENT FRAMEWORK MUPUMA Felipe Jiménez (1), Francisco Javier Atapuerca (2), José María de Juana (3) (1) GMV AD., Isaac Newton 11, 28760 Tres Cantos, Spain, e-mail: fjimenez@gmv.com

More information

GLOBAL POINT MASCON MODELS FOR SIMPLE, ACCURATE AND PARALLEL GEOPOTENTIAL COMPUTATION *

GLOBAL POINT MASCON MODELS FOR SIMPLE, ACCURATE AND PARALLEL GEOPOTENTIAL COMPUTATION * AAS 11-158 GLOBAL POINT MASCON MODELS FOR SIMPLE, ACCURATE AND PARALLEL GEOPOTENTIAL COMPUTATION * Ryan P. Russell and Nitin Arora High-fidelity geopotential calculation using spherical harmonics (SH)

More information

HYPER Industrial Feasibility Study Final Presentation Orbit Selection

HYPER Industrial Feasibility Study Final Presentation Orbit Selection Industrial Feasibility Study Final Presentation Orbit Selection Steve Kemble Astrium Ltd. 6 March 2003 Mission Analysis Lense Thiring effect and orbit requirements Orbital environment Gravity Atmospheric

More information

EE 570: Location and Navigation

EE 570: Location and Navigation EE 570: Location and Navigation Navigation Mathematics: Kinematics (Earth Surface & Gravity Models) Aly El-Osery Kevin Wedeward Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

More information

Mars 2020 Atmospheric Modeling for Flight Mechanics Simulations

Mars 2020 Atmospheric Modeling for Flight Mechanics Simulations Mars 2020 Atmospheric Modeling for Flight Mechanics Simulations Soumyo Dutta, David Way, and Carlie Zumwalt NASA Langley Research Center Gregorio Villar Jet Propulsion Laboratory International Planetary

More information

MEETING ORBIT DETERMINATION REQUIREMENTS FOR A SMALL SATELLITE MISSION

MEETING ORBIT DETERMINATION REQUIREMENTS FOR A SMALL SATELLITE MISSION MEETING ORBIT DETERMINATION REQUIREMENTS FOR A SMALL SATELLITE MISSION Adonis Pimienta-Peñalver, Richard Linares, and John L. Crassidis University at Buffalo, State University of New York, Amherst, NY,

More information

CHAPTER 6 SOLID EARTH TIDES

CHAPTER 6 SOLID EARTH TIDES CHAPTER 6 SOLID EARTH TIDES The solid Earth tide model is based on an abbreviated form of the Wahr model (Wahr, 98) using the Earth model 66A of Gilbert and Dziewonski (975). The Love numbers for the induced

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION

ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION AAS 11-499 ADVANCED NAVIGATION STRATEGIES FOR AN ASTEROID SAMPLE RETURN MISSION J. Bauman,* K. Getzandanner, B. Williams,* K. Williams* The proximity operations phases of a sample return mission to an

More information

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime Section 13 Orbit Perturbation Orbit Perturbation A satellite s orbit around the Earth is affected by o Asphericity of the Earth s gravitational potential : Most significant o Atmospheric drag : Orbital

More information

The first high-precision gravimetric geoid of Hungary: HGG2013

The first high-precision gravimetric geoid of Hungary: HGG2013 Server on Geodesy, Seismology and Environmental Sciences Published Online 2013 (http://airy.ual.es/) The first high-precision gravimetric geoid of Hungary: HGG2013 Abstract V. Corchete Higher Polytechnic

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

Chapter 2: Orbits and Launching Methods

Chapter 2: Orbits and Launching Methods 9/20/ Chapter 2: Orbits and Launching Methods Prepared by Dr. Mohammed Taha El Astal EELE 6335 Telecom. System Part I: Satellite Communic ations Winter Content Kepler s First, Second, and Third Law Definitions

More information

Seminar: Measurement of Stellar Parameters with Asteroseismology

Seminar: Measurement of Stellar Parameters with Asteroseismology Seminar: Measurement of Stellar Parameters with Asteroseismology Author: Gal Kranjc Kušlan Mentor: dr. Andrej Prša Ljubljana, December 2017 Abstract In this seminar I introduce asteroseismology, which

More information

NOBLE HATTEN. W. R. Woolrich Laboratories, 210 E. 24th Street, Stop C0600 Austin, TX (512)

NOBLE HATTEN. W. R. Woolrich Laboratories, 210 E. 24th Street, Stop C0600 Austin, TX (512) NOBLE HATTEN W. R. Woolrich Laboratories, 210 E. 24th Street, Stop C0600 78712 RESEARCH INTERESTS (512) 471 3681 noble.hatten@utexas.edu Space mission design; space domain awareness; optimization and estimation

More information

RADAR-OPTICAL OBSERVATION MIX

RADAR-OPTICAL OBSERVATION MIX RADAR-OPTICAL OBSERVATION MIX Felix R. Hoots + Deep space satellites, having a period greater than or equal to 225 minutes, can be tracked by either radar or optical sensors. However, in the US Space Surveillance

More information

COUPLED OPTIMIZATION OF LAUNCHER AND ALL-ELECTRIC SATELLITE TRAJECTORIES

COUPLED OPTIMIZATION OF LAUNCHER AND ALL-ELECTRIC SATELLITE TRAJECTORIES COUPLED OPTIMIZATION OF LAUNCHER AND ALL-ELECTRIC SATELLITE TRAJECTORIES M. Verlet (1), B. Slama (1), S. Reynaud (1), and M. Cerf (1) (1) Airbus Defence and Space, 66 Route de Verneuil, 78133 Les Mureaux,

More information

STATISTICAL APPROACHES TO INCREASE EFFICIENCY OF LARGE-SCALE MONTE-CARLO SIMULATIONS

STATISTICAL APPROACHES TO INCREASE EFFICIENCY OF LARGE-SCALE MONTE-CARLO SIMULATIONS STATISTICAL APPROACHES TO INCREASE EFFICIENCY OF LARGE-SCALE MONTE-CARLO SIMULATIONS David Shteinman, * Thibaud Teil, Scott Dorrington, Jaslene Lin, INTRODUCTION Hanspeter Schaub, ** John Carrico, and

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details

More information

Novel Techniques for Creating Nearly Uniform Star Catalog

Novel Techniques for Creating Nearly Uniform Star Catalog Paper AAS 3-69 Novel Techniques for Creating Nearly Uniform Star Catalog Malak A. Samaan 1, Christian Bruccoleri 2, Daniele Mortari 3, and John L. Junkins 4 Department of Aerospace Engineering, Texas A&M

More information