Quantum Mechanics in Chemistry CHEM 3890 Honors Physical Chemistry I. Fall 2013 Bard 132 Monday, Wednesday, Friday 11:15am-12:05pm.

Size: px
Start display at page:

Download "Quantum Mechanics in Chemistry CHEM 3890 Honors Physical Chemistry I. Fall 2013 Bard 132 Monday, Wednesday, Friday 11:15am-12:05pm."

Transcription

1 Quantum Mechanics in Chemistry CHEM 3890 Honors Physical Chemistry I Quantum physics is mind-bending, but it is also one of the most successful scientific theories ever put forward. New Scientist Fall 013 Bard 13 Monday, Wednesday, Friday 11:15am-1:05pm Instructor: Office Hours: M. Luke McDermott Baker B38 Friday :30 pm and by request Teaching Assistants: TA#1 Office Hour Recitation Section TA# Office Hour Recitation Section Grading: Letter Grades Only, 4 credits I. Rationale: From the College: CHEM 3890 is an introduction to the quantum mechanics of atoms and molecules. The fundamental principles of quantum mechanics are introduced, and applications of the theory to atomic and molecular structure are covered in detail. CHEM 3900 is a continuation of CHEM 3890 and discusses the thermodynamic behavior of macroscopic systems in the context of quantum and statistical mechanics. After an introduction to the behavior of ensembles of quantum mechanical particles (statistical mechanics), kinetic theory and the laws of thermodynamics are covered in detail. Translation: CHEM 3890 provides the science student with a rigorous foundation for Physical Chemistry. More generally, CHEM 3890 allows students to understand why quantum mechanics matters, how the subject developed, and where they see it daily. Prerequisites: MATH 130 or MATH 310 or MATH 0; PHYS 08; CHEM 080 or CHEM 160 or permission of instructor. 1

2 II. Course Aims and Objectives: Aims By the end of this course, students will have: Presented why Quantum Mechanics was needed to supplement Classical Mechanics Described the development of Quantum mechanical theory through significant historical breakthroughs Solved Schrödinger s wave equation for constrained particles Explained the origin of general chemistry principles such as molecular orbitals Understood state-of-the-art Physical Chemistry research Specific Learning Objectives: Students will demonstrate a mastery of fundamental principles of Quantum Mechanics by learning vocabulary and mathematical methods, solving classic problems, diagramming historically significant experiments, and analyzing current scientific articles in Physical Chemistry. Specifically, students should be able to: Remember fundamental experiments and theories in quantum mechanics. Understand how quantum mechanics supplements classical mechanics. Apply Schrödinger s wave equation to classic problems: (1) the Particle in a Box; () The Harmonic Oscillator and the Rigid Rotor; (3) The Hydrogen Atom; and (4) Multielectron Atoms. Analyze complex problems related to the above classic problems and create paths to solving these complex problems. Evaluate modern research in quantum mechanics, especially molecular modeling. Create mathematical computer code to solve problems quantum mechanically. III. Format and Procedures: Class time is centered on finding answers. Students are expected to come to class ready to solve problems. To interact with the rest of the class, you will need a web-connected device (e.g. smartphone, tablet, laptop). If you do not have access to such a portable device, we can loan you one for each class. Using these devices to interact (see sidebar), class time will follow this cycle: Learning Catalytics Brain wave studies show that sitting passively in a lecture can induce as little brain activity as watching television. To counteract the passive nature of lectures, bring your web-connected device to class every day and log on to our LCatalytics.com class session. During class, we will have all kinds of interactive questions, where you will answer through the website. Then you will have a chance to work with your neighbors to convince each other who is right. Then put your new (or old) answer into the question again. With Learning Catalytics, we can give you instant feedback and find out where the class should go. Make a username now and log on with our course session ID: CHEM3890. Our session password is QMfall013.

3 1. I will explain a Concept. I will pose a Question on the Concept 3. You will each make an educated guess to Answer the Question on our Learning Catalytics website (learningcatalytics.com) 4. You will attempt to convince others around you of the correct answer 5. You will adjust your educated guess to Answer the Question 6. I will go over the correct Answer 7. I will review and summarize the Concept Other class activities, which you will produce in groups for class time (see Section VII.): Debates on quantum mechanics interpretations. Perspectives on historical scientists. IV. Time Commitment: Per week: 3 hours: Class time is your opportunity to interact with other students and me. 1-3 hours: Recitation and TA Office Hours are your greatest resource for having questions answered. TAs will lead recitations so that you will do problems in groups during the session and the TA will work with you as your group encounters problems. 1-3 hours: Group homework sessions are the best way to complete problem sets. Teaching and learning from peers is proven to help students learn more effectively than interaction with professors. V. My Assumptions Quantum Mechanics is taught in many fields, but in this course, you will learn the chemist s perspective. At the end of this syllabus, you will find an outline of what part of quantum mechanics history we will cover with this course, as well as how quantum mechanics relates to the rest of chemistry. Also attached is a formula sheet that will let you see all of the equations that you will know how to use at the end of the course. VI. Required Texts - Introduction to Quantum Mechanics, nd edition, by D.J. Griffiths This book is short, readable, and full of helpful equations and problems (Solution manuals can be purchased). - Physical Chemistry: A Molecular Approach, by D.A. McQuarrie & J.D. Simon (University Science Books). will need this book for Chem 3900 as well. VII. Assignments Problem Sets A large portion of the learning for this class will be done in the context of problem sets. The reality is that quantum mechanics is best understood and used as a rigorous, mathematical tool. 3

4 In modern research, scientists use the same equations as you to solve their research problems. When you see how the equations we discuss in class accurately describe molecular-level problems, the power of quantum mechanics will be clear to you. The goal of these problem sets is to empower you and help you are now able to calculate how chemistry works at the most fundamental level. The Final Exam The final exam is your opportunity to test the variety of your abilities at the end of this class. When you walk out of the exam, my hope is that you will feel excited by how much you are capable of. Group Presentations and Journal Article Review These assignments bring you into the historical and modern community of scientists. When scientists talk about breakthroughs, they often discuss it in the context of who made the breakthrough. Or scientists talk about how their own work in the context of how it relates to other scientists work. Your presentations and reviews will show you the history and community of quantum mechanics. VIII. Grading Procedures: 1. 7 Problem Sets (40%) These problems can be time-consuming, but collaborative work and computer coding can lead to memorable learning experiences. Above all: work together. One Final Exam (30%) The concepts tested by problem set will be tested again during the final exam. The problems will not be in exactly the same format, as no computers will be Research shows that practice tests are one of the most effective learning strategies. available during the exam, so take the practice exams that will be available. 3. Group Presentation (0%) You will be assigned to one of 1 groups. 10 groups will be assigned an important scientist in quantum mechanics. They will make a 0-minute presentation including his most significant work and an assessment of class understanding. Points will be awarded for completeness, creativity, and class understanding. Two groups will be assigned to take part in a 45-minute debate on a significant perspective on quantum mechanics. Points will be awarded for clarity and completeness. Bonus points are available for exceptional presentations. 4. Journal Article Review (10%) You will summarize two scientific journal articles, one of which must be a review article. Points will be awarded for connections drawn to course material. IX. Academic Integrity Each student in this course is expected to abide by the Cornell University Code of Academic Integrity. Any breach of academic integrity will receive a zero. 4

5 For this course, collaboration is allowed for all assignments. However, each character of mathematical code, each word of explanation, and all submitted work must be written by your own hands. However, this permissible cooperation should never involve one student having possession of a copy of all or part of work done by someone else, in the form of an attachment, file, or hard copy. X. Accommodations for students with disabilities In compliance with the Cornell University policy and equal access laws, I am available to discuss appropriate academic accommodations that may be required for student with disabilities. Requests for academic accommodations are to be made during the first three weeks of the semester, except for unusual circumstances, so arrangements can be made. Students are encouraged to register with Student Disability Services to verify their eligibility for appropriate accommodations. 5

6 XI. Tentative Course Schedule Lecture 1 Historical Development of Quantum Mechanics Lectures -4 Experimental Evidence for Quantum Mechanics Lectures 5-7 Machinery of Quantum Mechanics (Mathematics) Operators, Eigenvalues, Eigenfunctions Journal Article Review Due Lectures 6-1 The Wavefunction and the Schrödinger Equation Solving the Schrödinger Equation Particle in a Box Free Particle Planck s explanation of blackbody radiation Lectures Angular Momentum and Magnetic Fields Barrier Problems The Harmonic Oscillator The Hydrogen Atom Lectures 19-1 Presentations Lectures -5 Approximation Methods Variational Principle Perturbation Theory Lectures 6-30 Chemical Bonds Spectroscopy Lectures Presentations and Debate Lectures Final Exam Review Journal Article Review Due Final Exam Quantum Tunneling 6

7 XII. Quantum Mechanics Map Boltzmann, Maxwell, Hertz, Rydberg, Röntgen, Curie (1903 Nobel Prize), Rutherford Statistical Mechanics, Molecular Orbitals Planck, Lewis, Einstein, Rutherford, Taylor Energy Quantization, Multiple Bonds (Octet Rule), Photoelectric Effect, Wave-Particle Duality Millikan, Bohr Oil Drop Experiment, Avogadro constant, quantum atomic levels, Stern, Gerlach, de Broglie, Bose, Pauli, Hund, Heisenberg, Fermi, Dirac, Schrödinger, Neumann, Born, Raman, Spin, De Broglie Wavelength, Bosons, Fermions, Bose-Einstein statistics, Pauli exclusion principle, Hund s Rule, Heisenberg Uncertainty Principle, Fermi-Dirac statistics, wave equations, quantum mechanics in terms of Hermitian operators on Hilbert spaces, Copenhagen interpretation (probability and wavefunction collapse) 1930-now Not covered in detail! 7

8 Quantum Mechanics Formulas Constants h h π Expectation Values and Operators ˆp = i h De Broglie Einstein Relations E = hω p = hk Dispersion Relations ω light (k) = ck ω electron (k) = hk M Heisenberg Uncertainty Principle p x x h/ E t h/ x = x x Schroedinger Equation h Ψ(r, t) m Ψ(r, t) + V (r, t)ψ(r, t) = i h t Time-Independant SWE Ψ(r, t) = ψ(r)ϕ(t) h m ψ(r) + V (r)ψ(r) = Eψ(r) ϕ(t) = e iet/ h Probability Current Density Free Electron Beam j = i h m (Ψ Ψ Ψ Ψ ) ψ(x) = A 1 e ikx + A e ikx ; k = R = A A A 1 A 1 m e (E V 0 ) h Ê = i h t Ĥ = h m + V (r) ρ(r, t) = Ψ = Ψ (r, t)ψ(r, t) f = Ψ (r, t) ˆf Ψ(r, t) dv = Ψ ˆf Ψ V Harmonic Oscillator V (x) = 1 mω x ψ 0 (x) = mω 1/4 e x /L ψ 0 (Q) = 1 1/4e Q π h π h L = mω E 0 = hω ( E n = n + 1 ) h Q x/l ) ( d dq + Q ψ = E ψ = E ĥψ 0 â + 1 ( d dq + Q â 1 ( d dq + Q H n (Q) = QH n 1 (Q) (n 1)H n (Q) ) ) ψ n (Q) = A n H n (Q)e Q/ A n = A n 1 n [ ] n 1 ψ n (Q) = Qψ n 1 (Q) ψ n (Q) n 1

9 Hydrogen Atom e V (r) = 4πɛ 0 r E n = R n Quasi Classical Approximation Wave Packets ψ = e i/ h R p(x) dx T QC = e / h R b a p(x) dx = e / h Ψ(x, t) = 1 + a(k) exp[i(kx ωt)] dk π Ψ(x, t) = 1 + A(k, t)e ikx dk π A(k, t) = 1 + Ψ(x, t)e ikx dx π Φ(p, t) = 1 h A(k, t); p = hk Expansion Principle and Hilbert Space Ψ = a n = n Ψ, a n n n=1 Ĥ n = E n n Stationary Perturbation Theory Degenerate Ĥ = Ĥ(0) + Ŵ Ĥ (0) n = E n (0) n N ψ a n n n=1 H 11 H 1... H 1N a 1 a 1 H 1 H... H N a = E a.. H N1 H N... H NN a N a N H mn = m Ĥ n H 11 E H 1... H 1N H 1 H E... H N = 0 H N1 H N... H NN E Nondegenerate ψ = u + m u ψ = u + φ φ u = 0, ψ u = 1 E n = E n + n Ŵ n E = E u + u Ŵ φ m Ŵ n m E E m n ψ n m E E u + E () E () = m u m Ŵ u E u E m Ψ Ψ = a n = 1 n=1 A = n a n A n Ψ = n n = n n a 1 a. ˆP nn = ˆ1

Quantum Mechanics CHEM/ENCH 313

Quantum Mechanics CHEM/ENCH 313 Quantum Mechanics CHEM/ENCH 313 Instructor: Soran Jahangiri Instructor Contact Information Email: soran.jahangiri@chem.queensu.ca Office: Chernoff Hall, Room 313 Office Hours: Monday 2:30PM - 3:30PM, Tuesday

More information

Physics 321 Introduction to Modern Physics

Physics 321 Introduction to Modern Physics Physics 321 Introduction to Modern Physics Instructor: Gordon Emslie, Office TCCW 229, email: gordon.emslie@wku.edu Class Meetings: TR 12:45-2:05 PM, TCCW 236 Office Hours: by appointment Prerequisite(s):

More information

STATISTICAL AND THERMAL PHYSICS

STATISTICAL AND THERMAL PHYSICS Phys 362 Spring 2015 STATISTICAL AND THERMAL PHYSICS Phys 362 Spring 2015 Instructor: Office: Professor David Collins WS 228B Phone: 248-1787 email: Office Hours: dacollin@coloradomesa.edu M 9 10 am, 11

More information

Syllabus: Physics 241 Introduction to Modern Physics Professor Marshall Onellion (office)

Syllabus: Physics 241 Introduction to Modern Physics Professor Marshall Onellion (office) 1 Syllabus: Physics 241 Introduction to Modern Physics Professor Marshall Onellion (office) 263-6829 Office hours: onellion@wisc.edu MW: 10am- 1pm, F: 10am- noon, or by appointment Text: Kenneth Krane,

More information

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics.

Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours cannot be described by classical mechanics. A 10-MINUTE RATHER QUICK INTRODUCTION TO QUANTUM MECHANICS 1. What is quantum mechanics (as opposed to classical mechanics)? Quantum mechanics (QM) deals with systems on atomic scale level, whose behaviours

More information

P H Y M O D E R N P H Y S I C S. Introduction

P H Y M O D E R N P H Y S I C S. Introduction P H Y 3 2 0 M O D E R N P H Y S I C S SPRING 2010 INSTRUCTOR: Dr. Tracy M. Hodge OFFICE: Science 112 PHONE x3301 EMAIL tracy_hodge@berea.edu OFFICE HOURS: MWF 2:00-3:00 WF 10:00-11:00 Th 1:30-3:00 Text:

More information

CHEM 6343 Advanced Computational Chemistry. Elfi Kraka, 231 FOSC, ext ,

CHEM 6343 Advanced Computational Chemistry. Elfi Kraka, 231 FOSC, ext , CHEM 6343 Advanced Computational Chemistry Class location: Lectures, time and location: Lab times and location: Instructor: Elfi Kraka, 231 FOSC, ext 8-2480, ekraka@smu.edu http://smu.edu/catco/ Office

More information

Chemistry Physical Chemistry II Spring 2017

Chemistry Physical Chemistry II Spring 2017 Chemistry 310 - Physical Chemistry II Spring 2017 Instructor: Office Hours: Prerequisites: Texts: Required: Samuel A. Abrash 208C Gottwald Science Center Office: 289-8248 Home: 323-7363 Cell: 804-363-2597

More information

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS

QUANTUM MECHANICS SECOND EDITION G. ARULDHAS QUANTUM MECHANICS SECOND EDITION G. ARULDHAS Formerly, Professor and Head of Physics and Dean, Faculty of Science University of Kerala New Delhi-110001 2009 QUANTUM MECHANICS, 2nd Ed. G. Aruldhas 2009

More information

Department of Physics & Astronomy Trent University

Department of Physics & Astronomy Trent University Department of Physics & Astronomy Trent University PHYS 2610H : INTRODUCTORY QUANTUM PHYSICS 2017FA PETERBOROUGH Instructor: Balaji Subramanian Campus: Peterborough balajisubramanian@trentu.ca SC 322 15063375166

More information

PH 352-2G & PH 352L-T6: Modern Physics II Spring Semester 2014

PH 352-2G & PH 352L-T6: Modern Physics II Spring Semester 2014 PH 352-2G & PH 352L-T6: Modern Physics II Spring Semester 2014 Time and location: PH 351-2G (Lecture): Tuesdays & Thursdays 5:00 6:15 PM (CH 394) PH 351L-T6 (Lab): Mondays 5:45 8:35 PM (CH 470) Instructor

More information

Chemistry Physical Chemistry II Spring 2018

Chemistry Physical Chemistry II Spring 2018 Chemistry 310 - Physical Chemistry II Spring 2018 Instructor: Office Hours: Prerequisites: Texts: Required: Samuel A. Abrash 208C Gottwald Science Center Office: 289-8248 Home: 323-7363 Cell: 804-363-2597

More information

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti

Introduction to Quantum Mechanics PVK - Solutions. Nicolas Lanzetti Introduction to Quantum Mechanics PVK - Solutions Nicolas Lanzetti lnicolas@student.ethz.ch 1 Contents 1 The Wave Function and the Schrödinger Equation 3 1.1 Quick Checks......................................

More information

PHYS-UA 124: Quantum Mechanics II Course Information - Spring 2018

PHYS-UA 124: Quantum Mechanics II Course Information - Spring 2018 PHYS-UA 124: Quantum Mechanics II Course Information - Spring 2018 January 4, 2018 Instructor Daniel Stein E-mail daniel.stein@nyu.edu Office 726 Broadway, Room 981 Office Hours Monday, 3:00-4:00pm, Wednesday,

More information

Chemistry Physical Chemistry II Spring 2019

Chemistry Physical Chemistry II Spring 2019 Chemistry 310 - Physical Chemistry II Spring 2019 Instructor: Office Hours: Prerequisites: Texts: Required: Samuel A. Abrash 208C Gottwald Science Center Office: 289-8248 Home: 323-7363 Cell: 804-363-2597

More information

Physics 430IA Quantum Mechanics Spring 2011

Physics 430IA Quantum Mechanics Spring 2011 Physics 430IA Quantum Mechanics Spring 2011 Meeting Times: MWF 10:00-10:50 Classroom: SCI 361 Instructor: Dr. Todd Timberlake Office: SCI 338A Email: ttimberlake@berry.edu Phone: (706) 368-5622 Office

More information

PHY 6500 Thermal and Statistical Physics - Fall 2017

PHY 6500 Thermal and Statistical Physics - Fall 2017 PHY 6500 Thermal and Statistical Physics - Fall 2017 Time: M, F 12:30 PM 2:10 PM. From 08/30/17 to 12/19/17 Place: Room 185 Physics Research Building Lecturer: Boris Nadgorny E-mail: nadgorny@physics.wayne.edu

More information

Modern Physics (PHY 371)

Modern Physics (PHY 371) Modern Physics (PHY 371) Instructor: Paulo Bedaque, PSC, room 3147. My email is the best way to contact me in an emergency including absence from an exam. The best way to ask a physics question is trough

More information

QUANTUM PHYSICS. Lecture schedule and meeting hours

QUANTUM PHYSICS. Lecture schedule and meeting hours PH3520 QUANTUM PHYSICS January May 2013 Lecture schedule and meeting hours The course will consist of about 43 lectures, including about 8 10 tutorial sessions. However, note that there will be no separate

More information

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer Franz Schwabl QUANTUM MECHANICS Translated by Ronald Kates Second Revised Edition With 122Figures, 16Tables, Numerous Worked Examples, and 126 Problems ff Springer Contents 1. Historical and Experimental

More information

PHYSICS PHYSICS FOR SCIENTISTS AND ENGINEERS. Course Outline - Spring 2009

PHYSICS PHYSICS FOR SCIENTISTS AND ENGINEERS. Course Outline - Spring 2009 PHYSICS 2220 - PHYSICS FOR SCIENTISTS AND ENGINEERS Course Outline - Spring 2009 INSTRUCTOR: Dr. Bradley W. Carroll OFFICE: SL 211 TELEPHONE: 626-7921 E-MAIL: bcarroll@weber.edu HOMEPAGE: TEXTBOOK: http://physics.weber.edu/carroll/phys2220/

More information

Quantum Physics (PHY-4215)

Quantum Physics (PHY-4215) Quantum Physics (PHY-4215) Gabriele Travaglini March 31, 2012 1 From classical physics to quantum physics 1.1 Brief introduction to the course The end of classical physics: 1. Planck s quantum hypothesis

More information

Physics 112 for class and recitation WF 10:10 a.m. - 10:40 a.m. or by appointment

Physics 112 for class and recitation WF 10:10 a.m. - 10:40 a.m. or by appointment SYLLABUS (Subject to Modification) PHYS. 4310 Quantum Mechanics Dr. Sandra Quintanilla Office: Physics 309 Spring 2016 email: squintanilla@unt.edu Lecture: MWF 9:00 9:50 a.m. Phone: 565-4739 Recitation:

More information

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017. A. F. J. Levi 1 Engineering Quantum Mechanics. Fall 2017. TTh 9.00 a.m. 10.50 a.m., VHE 210. Web site: http://alevi.usc.edu Web site: http://classes.usc.edu/term-20173/classes/ee EE539: Abstract and Prerequisites

More information

AS GRS 713 Astronomical Spectroscopy

AS GRS 713 Astronomical Spectroscopy AS GRS 713 Astronomical Spectroscopy Prof. Clemens Fall 2012 Catalog Description: Spectroscopic processes in astrophysics. Energy levels in atoms and molecules. Atomic and molecular spectral lines. Excitation

More information

The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: Practical Physics 4 ( )

The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: Practical Physics 4 ( ) The University of Jordan Accreditation & Quality Assurance Center Course Syllabus Course Name: Practical Physics 4 (0352311) 1 Course title Practical Physics-4 2 Course number 0352311 3 Credit hours (theory,

More information

Chemistry 881 Lecture Topics Fall 2001

Chemistry 881 Lecture Topics Fall 2001 Chemistry 881 Lecture Topics Fall 2001 Texts PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon MATHEMATICS for PHYSICAL CHEMISTRY, Mortimer i. Mathematics Review (M, Chapters 1,2,3 & 4; M&S,

More information

Chem 103: Foundations of Physical Chemistry Fall 2011

Chem 103: Foundations of Physical Chemistry Fall 2011 Chem 103: Foundations of Physical Chemistry Fall 2011 Course Description: A study of foundational principles in chemical thermodynamics, kinetics, quantum mechanics, and spectroscopy. Topics include the

More information

PHY413 Quantum Mechanics B Duration: 2 hours 30 minutes

PHY413 Quantum Mechanics B Duration: 2 hours 30 minutes BSc/MSci Examination by Course Unit Thursday nd May 4 : - :3 PHY43 Quantum Mechanics B Duration: hours 3 minutes YOU ARE NOT PERMITTED TO READ THE CONTENTS OF THIS QUESTION PAPER UNTIL INSTRUCTED TO DO

More information

Chemistry 483 Lecture Topics Fall 2009

Chemistry 483 Lecture Topics Fall 2009 Chemistry 483 Lecture Topics Fall 2009 Text PHYSICAL CHEMISTRY A Molecular Approach McQuarrie and Simon A. Background (M&S,Chapter 1) Blackbody Radiation Photoelectric effect DeBroglie Wavelength Atomic

More information

Syllabus and Topics Statistical Mechanics Thermal Physics II Spring 2009

Syllabus and Topics Statistical Mechanics Thermal Physics II Spring 2009 Syllabus and Topics 33-765 Statistical Mechanics 33-342 Thermal Physics II Spring 2009 Robert F. Sekerka 6416 Wean Hall, Phone 412-268-2362 rs07@andrew.cmu.edu http://sekerkaweb.phys.cmu.edu January 12,

More information

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals Pre-Quantum Atomic Structure The existence of atoms and molecules had long been theorized, but never rigorously proven until the late 19

More information

Topics in General Chemistry Chemistry 103 Fall 2017

Topics in General Chemistry Chemistry 103 Fall 2017 Topics in General Chemistry Chemistry 103 Fall 2017 Instructor: Professor Oertel, N280 Science Center, 775-8989, catherine.oertel@oberlin.edu Class meeting: MWF 11-11:50 am, Science Center A255 Laboratory

More information

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline

ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline ESSEX COUNTY COLLEGE Mathematics and Physics Division PHY 203 General Physics III Course Outline Course Number & Name: PHY 203 General Physics III Credit Hours: 5.0 Contact Hours: 7.0 Lecture/Lab: 7.0

More information

Physics 343: Modern Physics Autumn 2015

Physics 343: Modern Physics Autumn 2015 Physics 343: Modern Physics Autumn 2015 Course Information Instructor: Dr. David A. Macaluso Office: C.H. Clapp Building, room 119 Telephone: (406) 243-6641 Email: david.macaluso@umontana.edu Lectures:

More information

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ;

Chemistry 4715/8715 Physical Inorganic Chemistry Fall :20 pm 1:10 pm MWF 121 Smith. Kent Mann; 668B Kolthoff; ; Chemistry 4715/8715 Physical Inorganic Chemistry Fall 2017 12:20 pm 1:10 pm MWF 121 Smith Instructor: Text: be made available). Kent Mann; 668B Kolthoff; 625-3563; krmann@umn.edu R.S. Drago, Physical Methods

More information

CHM Physical Chemistry II Winter 2015

CHM Physical Chemistry II Winter 2015 CHM5440 - Physical Chemistry II Winter 2015 Instructors: H. Bernhard Schlegel 375 Chemistry e-mail: hbs@chem.wayne.edu (313) 577-2562 G. Andrés Cisneros 333 Chemistry e-mail: andres@chem.wayne.edu (313)

More information

CHE 371: Kinetics and Thermodynamics Fall 2008

CHE 371: Kinetics and Thermodynamics Fall 2008 CHE 371: Kinetics and Thermodynamics Fall 2008 Class Meetings: Lecture: M, T, W, F 9:00 AM, Olin 103 Laboratory: T, W 1:30-5:20 PM, R 2:30-6:20 PM Instructor: Prof. Amanda Nienow, Nobel 106C, 933-7327,

More information

Ph2b Quiz - 2. Instructions

Ph2b Quiz - 2. Instructions Ph2b Quiz - 2 Instructions 1. Your solutions are due by Monday, February 26th, 2018 at 4pm in the quiz box outside 201 E. Bridge. 2. Late quizzes will not be accepted, except in very special circumstances.

More information

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010

HEAT AND THERMODYNAMICS PHY 522 Fall, 2010 HEAT AND THERMODYNAMICS PHY 522 Fall, 2010 I. INSTRUCTOR Professor Lance De Long Office: CP363 (257-4775) Labs: CP75, CP158 (257-8883), ASTeCC A041 Office Hours: M 10:30-11:30 a.m.; T 8:30-9:30 a.m. II.

More information

FACULTY OF SCIENCES SYLLABUS FOR. B.Sc. (Non-Medical) PHYSICS PART-II. (Semester: III, IV) Session: , MATA GUJRI COLLEGE

FACULTY OF SCIENCES SYLLABUS FOR. B.Sc. (Non-Medical) PHYSICS PART-II. (Semester: III, IV) Session: , MATA GUJRI COLLEGE FACULTY OF SCIENCES SYLLABUS FOR B.Sc. (Non-Medical) PHYSICS PART-II (Semester: III, IV) Session: 2017 2018, 2018-2019 MATA GUJRI COLLEGE FATEHGARH SAHIB-140406, PUNJAB ----------------------------------------------------------

More information

CONTENTS. vii. CHAPTER 2 Operators 15

CONTENTS. vii. CHAPTER 2 Operators 15 CHAPTER 1 Why Quantum Mechanics? 1 1.1 Newtonian Mechanics and Classical Electromagnetism 1 (a) Newtonian Mechanics 1 (b) Electromagnetism 2 1.2 Black Body Radiation 3 1.3 The Heat Capacity of Solids and

More information

Chemistry 401: Modern Inorganic Chemistry (3 credits) Fall 2017

Chemistry 401: Modern Inorganic Chemistry (3 credits) Fall 2017 Chemistry 401: Modern Inorganic Chemistry (3 credits) Fall 2017 Monday, Wednesday, Friday 9:10-10:00 am in Troy G5 Syllabus Instructor: Professor Qiang Zhang Office: Troy 220 Phone: 509-335-1269 Email:

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2008 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Charles

More information

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES

FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES i FYS-6306 QUANTUM THEORY OF MOLECULES AND NANOSTRUCTURES Credit units: 6 ECTS Lectures: 48 h Tapio Rantala, prof. Tue 10 12 SC203 SG219 8 10 SG312 FirstName.LastName@tut.fi http://www.tut.fi/~trantala/opetus/

More information

Quantum Physics in the Nanoworld

Quantum Physics in the Nanoworld Hans Lüth Quantum Physics in the Nanoworld Schrödinger's Cat and the Dwarfs 4) Springer Contents 1 Introduction 1 1.1 General and Historical Remarks 1 1.2 Importance for Science and Technology 3 1.3 Philosophical

More information

University of Wisconsin-Eau Claire CHEM 103: General Chemistry- Syllabus Spring 2014

University of Wisconsin-Eau Claire CHEM 103: General Chemistry- Syllabus Spring 2014 University of Wisconsin-Eau Claire CHEM 103: General Chemistry- Syllabus Spring 2014 Lecture (Section 003) T/R, 2:00 PM 3:15 PM, P 007 Instructor Lab (Sections 331/333) Lab (Sections 332/334) Dr. Sudeep

More information

Physics 141 Course Information

Physics 141 Course Information Physics 141 Course Information General Physics I - Mechanics Spring 2009 Instructors: Office Hours: Textbook: Online Homework: Disclaimer: Nikos Varelas 2134 SES (312) 996-3415 varelas@uic.edu Adrian Barkan

More information

Syllabus and Topics Thermal Physics I Fall 2007

Syllabus and Topics Thermal Physics I Fall 2007 Syllabus and Topics 33-341 Thermal Physics I Fall 2007 Robert F. Sekerka 6416 Wean Hall, Phone 412-268-2362 sekerka@cmu.edu http://sekerkaweb.phys.cmu.edu August 27, 2007 Class Schedule: This class is

More information

Chemistry 883 Computational Quantum Chemistry

Chemistry 883 Computational Quantum Chemistry Chemistry 883 Computational Quantum Chemistry Instructor Contact Information Professor Benjamin G. Levine levine@chemistry.msu.edu 215 Chemistry Building 517-353-1113 Office Hours Tuesday 9:00-11:00 am

More information

0703C101 General Chemistry I(With Lab)

0703C101 General Chemistry I(With Lab) Summer 2019 0703C101 General Chemistry I(With Lab) Instructor: Stefan Kautsch Time: Monday through Friday (June 17, 2019 - July 19, 2019) Office Hours: 2 hours (according to the teaching schedule) Contact

More information

ELECTROMAGNETIC THEORY

ELECTROMAGNETIC THEORY Phys 311 Fall 2014 ELECTROMAGNETIC THEORY Phys 311 Fall 2014 Instructor: Office: Professor David Collins WS 228B Phone: 248-1787 email: Office Hours: dacollin@coloradomesa.edu MT 9:00 9:50am, MWF 2:00

More information

Chemistry 218 Spring Molecular Structure

Chemistry 218 Spring Molecular Structure Chemistry 218 Spring 2015-2016 Molecular Structure R. Sultan COURSE SYLLABUS Email: rsultan@aub.edu.lb Homepage: http://staff.aub.edu.lb/~rsultan/ Lectures: 12:30-13:45 T, Th. 101 Chemistry Textbook: P.

More information

The Wave Function. Chapter The Harmonic Wave Function

The Wave Function. Chapter The Harmonic Wave Function Chapter 3 The Wave Function On the basis of the assumption that the de Broglie relations give the frequency and wavelength of some kind of wave to be associated with a particle, plus the assumption that

More information

FISQ - Quantum Physics

FISQ - Quantum Physics Coordinating unit: 230 - ETSETB - Barcelona School of Telecommunications Engineering Teaching unit: 748 - FIS - Department of Physics Academic year: Degree: 2018 BACHELOR'S DEGREE IN ENGINEERING PHYSICS

More information

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet

Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4. Wim Kloet Welcome to Physics 161 Elements of Physics Fall 2018, Sept 4 Wim Kloet 1 Lecture 1 TOPICS Administration - course web page - contact details Course materials - text book - iclicker - syllabus Course Components

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours.

Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. Quantum Physics III (8.06) Spring 2007 FINAL EXAMINATION Monday May 21, 9:00 am You have 3 hours. There are 10 problems, totalling 180 points. Do all problems. Answer all problems in the white books provided.

More information

Electronic Structure of Atoms. Chapter 6

Electronic Structure of Atoms. Chapter 6 Electronic Structure of Atoms Chapter 6 Electronic Structure of Atoms 1. The Wave Nature of Light All waves have: a) characteristic wavelength, λ b) amplitude, A Electronic Structure of Atoms 1. The Wave

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku

Lecture 6 Photons, electrons and other quanta. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Lecture 6 Photons, electrons and other quanta EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku From classical to quantum theory In the beginning of the 20 th century, experiments

More information

Times/Room Friday 9:00 pm 3:00 pm Room B225 (lecture and laboratory) Course Semester Credit Total Course hours (lecture & lab)

Times/Room Friday 9:00 pm 3:00 pm Room B225 (lecture and laboratory) Course Semester Credit Total Course hours (lecture & lab) HOUSTON COMMUNITY COLLEGE NORTHWEST (ALIEF CAMPUS) COURSE OUTLINE FOR CHEM 1411 GENERAL CHEMISTRY I Class Number 13095 / Spring 2017 Discipline/Program Course Level Course Title Chemistry First Year (Freshman)

More information

The Wave Function. Chapter The Harmonic Wave Function

The Wave Function. Chapter The Harmonic Wave Function Chapter 3 The Wave Function On the basis of the assumption that the de Broglie relations give the frequency and wavelength of some kind of wave to be associated with a particle, plus the assumption that

More information

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam I Key. September 19, ) This is a multiple choice exam. Circle the correct answer. D Chemistry 350/450 Exam I Key September 19, 003 1) This is a multiple choice exam. Circle the correct answer. ) There is one correct answer to every problem. There is no partial credit. 3) A table of

More information

Exercises : Questions

Exercises : Questions Exercises 18.05.2017: Questions Problem 1 where Calculate the following commutators: a) [ Ĥ, ˆp ], b) [ Ĥ, ˆr ], Ĥ = 1 2m ˆp2 + V ˆr), 1) ˆp 2 = ˆp 2 x + ˆp 2 y + ˆp 2 z and V ˆr) = V ˆx, ŷ, ẑ) is an arbitrary

More information

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Modern Physics for Scientists and Engineers International Edition, 4th Edition Modern Physics for Scientists and Engineers International Edition, 4th Edition http://optics.hanyang.ac.kr/~shsong Review: 1. THE BIRTH OF MODERN PHYSICS 2. SPECIAL THEORY OF RELATIVITY 3. THE EXPERIMENTAL

More information

Atomic Structure and the Periodic Table

Atomic Structure and the Periodic Table Atomic Structure and the Periodic Table The electronic structure of an atom determines its characteristics Studying atoms by analyzing light emissions/absorptions Spectroscopy: analysis of light emitted

More information

CHEC PHYSICAL CHEMISTRY AND APPLICATIONS II SPRING TERM, 2015

CHEC PHYSICAL CHEMISTRY AND APPLICATIONS II SPRING TERM, 2015 CHEC 352 - PHYSICAL CHEMISTRY AND APPLICATIONS II SPRING TERM, 2015 Instructor: Ed Thorne Office: Disque Hall, Room 316 (215) 895-1331 Email: thorneej@drexel.edu Office Hours: One hour before each class

More information

Chemistry 401 : Modern Inorganic Chemistry (3 credits) Fall 2014

Chemistry 401 : Modern Inorganic Chemistry (3 credits) Fall 2014 Chemistry 401 : Modern Inorganic Chemistry (3 credits) Fall 2014 Monday, Wednesday, Friday 10:10-11 am in Fulmer 225 Syllabus Instructor: Professor Zachariah Heiden Office: 40 Fulmer Hall Phone: 509-335-0936

More information

Quantum Physics II (8.05) Fall 2002 Outline

Quantum Physics II (8.05) Fall 2002 Outline Quantum Physics II (8.05) Fall 2002 Outline 1. General structure of quantum mechanics. 8.04 was based primarily on wave mechanics. We review that foundation with the intent to build a more formal basis

More information

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER. SYLLABUS Course: General Chemistry I: CHEM-1030-001 (call #11403) Lecture: 8:30-9:55 AM Tue.-Thur.; Room 6006 Recitation: 1 hour per week: Thur.; 12:00-1:00 Room 3066 Laboratory: 3 hours per week: Thur.;

More information

Syllabus and Topics Statistical Mechanics Spring 2010

Syllabus and Topics Statistical Mechanics Spring 2010 Syllabus and Topics 33-765 Statistical Mechanics Spring 2010 Robert F. Sekerka 6416 Wean Hall, Phone 412-268-2362 rs07@andrew.cmu.edu http://sekerkaweb.phys.cmu.edu January 10, 2010 Course and Credit:

More information

Mathematics of Chemistry: Techniques & Applications (CHEM-UA 140)

Mathematics of Chemistry: Techniques & Applications (CHEM-UA 140) Mathematics of Chemistry: Techniques & Applications (CHEM-UA 140) Professor Mark E. Tuckerman Office: 1166E Waverly Phone: 8-8471 Email: mark.tuckerman@nyu.edu Class Time & Location: Tuesday, Thursday:

More information

Advanced Engineering Mathematics Course Number: Math Spring, 2016

Advanced Engineering Mathematics Course Number: Math Spring, 2016 Advanced Engineering Mathematics Course Number: Math 401-501 Spring, 2016 Instructor: Dr. Prabir Daripa Office: Blocker 629D Email: daripa@math.tamu.edu Lecture: TTh 12:45 pm - 2:00 pm. Classroom: Blocker

More information

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER.

SAVE THIS SYLLABUS FOR REFERENCE DURING THE SEMESTER. SYLLABUS Course: General Chemistry I: (call #31437) Lecture: 8:30-10:00AM Mon.-Wed.; Room 6006 Recitation: 1 hour per week: Mon.; 12:00-1:00 Room 3066 Laboratory: 3 hours per week: Mon;1:00-4:00 Room 3066

More information

Syllabus for CH-3300 Introduction to Physical Chemistry

Syllabus for CH-3300 Introduction to Physical Chemistry Syllabus for CH-3300 Introduction to Physical Chemistry Overview: This class will introduce concepts of physical chemistry particularly relevant to the medicinal and life sciences. While developing the

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS GENERAL CHEMISTRY I CHEM 1110 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2014 Catalog Course Description: Modern atomic

More information

Physics 9, Introductory Physics II Fall 2011

Physics 9, Introductory Physics II Fall 2011 Physics 9 page 1/6 Physics 9, Introductory Physics II Fall 2011 - Course Description - Instructor: Dr. Derrick Kiley Office: AOB 177; Office Phone 209 228-3077 E-mail Address: dkiley@ucmerced.edu. Course

More information

Physics 9, Introductory Physics II Spring 2010

Physics 9, Introductory Physics II Spring 2010 Physics 9 page 1/6 Physics 9, Introductory Physics II Spring 2010 - Course Description - Instructor: Dr. Derrick Kiley Office: AOB 176; Office Phone 209 228-3076 E-mail Address: dkiley@ucmerced.edu. Course

More information

Course Prerequisites: PHYS 3313 and MATH 2326, or instructor s consent.

Course Prerequisites: PHYS 3313 and MATH 2326, or instructor s consent. 1 Course: PHYS 4315-001 Thermodynamics and Statistical Mechanics Semester, Year: Fall 2012 Days/Time: Tu, Th 2:00 3:20 pm Building, Room: Science Hall, Rm. 105 Instructor: Dr. R. S. Rubins Office: Science

More information

PHYS 202. Lecture 23 Professor Stephen Thornton April 20, 2006

PHYS 202. Lecture 23 Professor Stephen Thornton April 20, 2006 PHYS 202 Lecture 23 Professor Stephen Thornton April 20, 2006 Reading Quiz The noble gases (He, Ne, Ar, etc.) 1) are very reactive because they lack one electron of being in a closed shell. 2) are very

More information

EMA 3011 Fundamental Principles of Materials, Section 9765 Spring, 2014

EMA 3011 Fundamental Principles of Materials, Section 9765 Spring, 2014 EMA 3011 Fundamental Principles of Materials, Section 9765 Spring, 2014 1. Catalog Description: The fundamental principles of structure, reactivity and energies describing materials systems will be covered,

More information

MASTER OF PHYSICS. iii.) Compliance of the School of Graduate Studies and the Institute admission requirements.

MASTER OF PHYSICS. iii.) Compliance of the School of Graduate Studies and the Institute admission requirements. MASTER OF PHYSICS Rationale Consistent with the mandate of the Commission of Higher Education (CHED) as Center-of-Excellence (COE) of Physics outside of Luzon and as a DOST-PCASTRD accredited institution

More information

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world,

Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, Introduction to Quantum Mechanics (Prelude to Nuclear Shell Model) Heisenberg Uncertainty Principle In the microscopic world, x p h π If you try to specify/measure the exact position of a particle you

More information

MOLECULAR SPECTROSCOPY

MOLECULAR SPECTROSCOPY MOLECULAR SPECTROSCOPY First Edition Jeanne L. McHale University of Idaho PRENTICE HALL, Upper Saddle River, New Jersey 07458 CONTENTS PREFACE xiii 1 INTRODUCTION AND REVIEW 1 1.1 Historical Perspective

More information

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320

PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320 PELLISSIPPI STATE COMMUNITY COLLEGE MASTER SYLLABUS MECHANICS & HEAT W/ LAB II PHYS 1320 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Revised: Spring 2011 Catalog Course Description: A calculus-based

More information

Quantum Mechanics. Semester /2015. (Introduction)

Quantum Mechanics. Semester /2015. (Introduction) EMT 295/3 Quantum Mechanics Semester 1 2014/2015 (Introduction) EMT 295 Course Outcomes (COs): CO1: Ability to explain the concept and principles of modern physics, quantization and postulates of quantum

More information

Physics 18, Introductory Physics I for Biological Sciences Spring 2010

Physics 18, Introductory Physics I for Biological Sciences Spring 2010 Physics 18 page 1/6 Physics 18, Introductory Physics I for Biological Sciences Spring 2010 - Course Description - Instructor: Dr. Derrick Kiley Office: AOB 176; Office Phone 209 228-3076 E-mail Address:

More information

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems

Chm 331 Fall 2015, Exercise Set 4 NMR Review Problems Chm 331 Fall 015, Exercise Set 4 NMR Review Problems Mr. Linck Version.0. Compiled December 1, 015 at 11:04:44 4.1 Diagonal Matrix Elements for the nmr H 0 Find the diagonal matrix elements for H 0 (the

More information

Prerequisite: one year of high school chemistry and MATH 1314

Prerequisite: one year of high school chemistry and MATH 1314 Chemistry 1411 COURSE SYLLABUS CRN 70200, Fall 2015 Time: Tuesday & Thursday 12:00 PM~3:00 PM (08/24~12/13) Instructor: Dr. Sudha Rani (Available before/after the class by appointment) Phone: 716-560-5491

More information

PHYS304 Quantum Physics II (2005) Unit Outline

PHYS304 Quantum Physics II (2005) Unit Outline MACQUARIE UNIVERSITY Department of Physics Division of ICS PHYS304 Quantum Physics II (2005) Unit Outline This is a three credit point unit intended to further develop the study of quantum mechanics. The

More information

The Photoelectric Effect

The Photoelectric Effect The Photoelectric Effect Light can strike the surface of some metals causing an electron to be ejected No matter how brightly the light shines, electrons are ejected only if the light has sufficient energy

More information

PHYS F212X FE1+FE2+FE3

PHYS F212X FE1+FE2+FE3 Syllabus for PHYS F212X FE1+FE2+FE3 General Physics II College of Natural Science and Mathematics University of Alaska Fairbanks Fall 2016 (8/29/2016 to 12/14/2016) Course Information: PHYS F212X FE1+FE2+FE3

More information

CHEM 1420: Physical Chemistry 2 Thermodynamics, Statistical Mechanics, and Kinetics

CHEM 1420: Physical Chemistry 2 Thermodynamics, Statistical Mechanics, and Kinetics CHEM 1420: Physical Chemistry 2 Thermodynamics, Statistical Mechanics, and Kinetics Spring 2018 Term 2184 Lecture: TTh 9:30 10:45 228 Eberly Hall Recitation: T 4:00 4:50 pm 307 Eberly Sean Garrett-Roe

More information

Physics 162a Quantum Mechanics

Physics 162a Quantum Mechanics Physics 162a Quantum Mechanics 1 Introduction Syllabus for Fall 2009 This is essentially a standard first-year course in quantum mechanics, the basic language for describing physics at the atomic and subatomic

More information

PHYS 202. Lecture 23 Professor Stephen Thornton April 25, 2005

PHYS 202. Lecture 23 Professor Stephen Thornton April 25, 2005 PHYS 202 Lecture 23 Professor Stephen Thornton April 25, 2005 Reading Quiz The noble gases (He, Ne, Ar, etc.) 1) are very reactive because they lack one electron of being in a closed shell. 2) are very

More information

Physics 520 Introduction to Quantum Mechanics I Fall 2012 Syllabus Instructor: Wolfgang Korsch Office Address: CP 277 Email: korsch@pa.uky.edu Office Phone: 257-4083 Office hours: Mon. and Wed. 2 3 pm

More information

Quantum Mechanics for Scientists and Engineers

Quantum Mechanics for Scientists and Engineers Quantum Mechanics for Scientists and Engineers Syllabus and Textbook references All the main lessons (e.g., 1.1) and units (e.g., 1.1.1) for this class are listed below. Mostly, there are three lessons

More information

Physics 1410 Elementary Physics

Physics 1410 Elementary Physics Physics 1410 Elementary Physics Instructor David Hobbs Office: S117D Office Hours: MW 1:00 2:00 pm, TT 9:00 10:30 am, F 9:00 am 12:00 pm Phone: 806-716-2639 email: dhobbs@southplainscollege.edu Course

More information

Chemistry 451. Prerequisites: CHEM 013, MATH 141, PHYS 202 or PHYS 212. Prof. Mueller/Sykes Chemistry 451 Spring 2004 Lecture 1-1

Chemistry 451. Prerequisites: CHEM 013, MATH 141, PHYS 202 or PHYS 212. Prof. Mueller/Sykes Chemistry 451 Spring 2004 Lecture 1-1 Chemistry 451 CHEM 451 PHYSICAL CHEMISTRY ( 3 credits) Introduction to chemical principles, including properties of matter and fundamentals of chemical thermodynamics. Prerequisites: CHEM 013, MATH 141,

More information