DELTA METHOD and RESERVING

Size: px
Start display at page:

Download "DELTA METHOD and RESERVING"

Transcription

1 XXXVI th ASTIN COLLOQUIUM Zurich, 4 6 September 2005 DELTA METHOD and RESERVING C.PARTRAT, Lyon 1 university (ISFA) N.PEY, AXA Canada J.SCHILLING, GIE AXA

2 Introduction Presentation of methods based on reserve s moments allowing: Estimating: - predictive distribution, - moments, percentiles (VaR) and their function With estimation risk measure, confidence interval Within the GLM approach (including Log-Poisson) 2

3 I.Notations For a given line of business, claims are assumed to be closed in (n + 1) years. GLM approach is based on incremental payments r.v: assumed to be independent ( 1) 2 X, i, j = 0,..., n n+ Among the X r. v. inside the run-off triangle those located in the upper triangle have been observed 3

4 I.Notations Payments delays O r i g i n y e a r s 0 i n n+k 0.. j. n. n+k X 4

5 I.Notations Reserve for the i th origin year Total reserve R i R n = h= n i+ 1 n = i= 1 X R i ih Remark: To analyze future annual cash flows by integrating new business, cash flows for the accident year ( n+ k) : n X i+ j= n+ k 5

6 II. Parameters 2.1. Interest Parameters Interest parameters are linked to the d.f. : F R Π ( ) F R Indicators depending on moments of R : mean, dispersion (variance, standard deviation), margins such : ER ( ) + γ σ ( R) Other indicators: (tail) VaR (percentiles),tailvar, probability of insufficiency, F R Need : estimation of d.f. directly or by inversion of m.g.f. R ( ) ( R = ) M s E s 6

7 II. Parameters 2.2. Estimation ( ) Π=Π ˆ ˆ Π ( ) For an estimator X of uncertainty related i + j n to this estimation will be measured by: F R asymptotic variance: Vas ( Π ˆ ) standard deviation : se.. ( ˆ ) ( ˆ as Π = Vas Π ) se.. as (ˆ Π) Πˆ In addition, a level 95% asymptotic confidence interval for is { ( ) ( ) ( ) } R 0,95 i+ j n i+ j n P A X F B X Π ( ) F R 7

8 III.GLM models 3.1. Random component independent «responses» : with exponential type dist. (, = 0,..., ) X i j n - θ : natural parameters - φ> 0 : dispersion parameter. - b, c specific functions, b being regular Ex. : Poisson, Normal, Gamma, IG, Tweedie dist { } ( ; θ, φ ) = exp θ ( θ ) φ+ (, φ) f x x b c x Moments: E( X ) b' ( ) ( ) = φ ( θ ) =φ ( µ ) µ = = θ V X b V With V variance function 8

9 III.GLM models 3.1. Random component Third moment: µ φ θ µ µ ( ) 2 '''( ) ( ) ( ) 3 X = b = V V Skewness : µ 3( X ) b'''( θ ) V ( µ ) γ1( X ) = = φ = φ V( X ) ''( ) V ( ) b θ µ m.g.f. and cumulant g.f: 1 1 M X ( s) = exp b( θ ) ( ), ( ) log ( ) ( ) ( ) + sφ b θ CX s = M X s = b θ + sφ b θ φ φ moments of X functions of ( θ, φ ), then of ( µ, φ) : κ φ θ r 1 ( r) r( X) = b ( ) 9

10 III.GLM models 3.2. Systematic Component, link function.. Origin Year 0 i Delay 0 j n Calendar year i+j β ( β = 0) j 0 regression parameters : n µ µ i+ j = ( ) ( ) ξ= µ, αi, β i= 1,, n j j= 1,, n α i ( α = 0) 0 10

11 III.GLM models 3.2. Systematic Component, link function systematic component : (, 0,..., ) η =µ+α i +β j i j = n link function : monotone and derivable real function g : ( ) 1 g ( ) η = g µ µ = η Identity link : η = µ = µ + αi + β j Log link : µ+α +β e i j η = log µ µ = 11

12 IV. Estimation based on: - upper triangle likelihood - and Wedderburn equations L ( x ) ( i ) ( j ) i+ j n δlog L = 0 δξ ; µ, α, β, φ As: m.l.e of $ µ, ( α ), ( ) i βj ( ˆ ) ( ˆ ) i j ξ= µ ˆ, α, β ξ= 1 η ˆ ˆ ˆ ˆ, ˆ ( ˆ =µ+α i +β j µ = g η ) η, µ = E ( X ) ( ) R= X E R = µ i+ jfn i+ jfn ER ( ) = µ ˆ i+ jfn E( R) 12

13 IV.Estimation 4.1. Estimation risk (Delta method) m.l.e.: - $ξ AN ξ, Σ ( $ ξ ) 1 as Σas ( ξ ) = I ( ξ) $ - $ η = ( $ η ) AN η, Σ ( $ as η) Σ ( $ η) = J Σ ( $ ξ ) J as η as η J η jacobian matrix of η : ξ η( ξ) = ( η ) η η 1 k = i η 1 l = j = 1, = if, = if µ αk 0 k i βl 0 l j - µ = ( µ ) AN µ, Σas ( µ ) Σ ( µ ) = DΣ ( $ η) D as as D Jacobian matrix (diagonal) of = 13 1 ( η ) g ( η ) µ

14 IV.Estimation 4.1. Estimation risk (Delta method) Then AN [ ER ( ) ], { ( ) } i Σ ER i= 1,..., n as i ER ( i ) i= 1,..., n { } With - { ( ) } ( ) Σ as ERi = Jµ Σas µ J µ J µ ( µ ) [ ER ( )] - Jacobian matrix of i And { } 2 ER ( ) AN E( R), σ as E( R) With: - - (1,1,...,1) Jacobian matrix of { } 2 σ as ER ( ) = JR Σ as ER ( i ) J R J R = [ ERi ] i 1,..., = n ( ) ER ( ) Asymptotic s.e. and confidence interval for ER ( ) using only products of matrix (spreadsheet) 14

15 IV.Estimation 4.2. Extensions Same approach could be applied to: - variance: n V( R) = V( X ) = φ V( µ ) i= 1 jfn i i= 1 jfn i n - more generally, to cumulants: n κ( R) κ( X ) = i= 1 jfn i - Then to any regular function of moments of R Giving only a variance function and dispersion parameter by quasi-likelihood V ( µ ) f 0, φ Ex. : over-dispersed Poisson 15

16 V.Predictive distribution 5.1. Inversion of the m.g.f m.g.f: n n n 1 MR s MX s b b g s b b g i 1 i j n φ = + f i= 1 j= n + i 1 ( ) ( ) { = = exp ( ( η )) + φ ( ( η )) } ( $ ) η with for m.l.e. Inversion by F.F.T. if no standard m.g.f. 16

17 V.Predictive distribution 5.2. Approximated distributions using moments n n = i= 1 j= n i+ 1 µ n n From R X and independence of X, moments of R are functions of ( ): µ ER ( ) µ = = i= 1 j= n i+ 1 n n n n ( ) ( ) ( ) 2 σ = V R = V X = φ V µ i= 1 j= n + i 1 i= 1 j= n + i 1 n n n n 2 3 = 3( R) = 3( X ) = V ( ) V( ) i= 1 j= n i+ 1 i= 1 j= n i+ 1 µ µ µ φ µ µ µ 3 γ1 = γ1( R) = 3 σ µ (m.l.e. with ) 17

18 V.Predictive distribution 5.2. Approximated distributions using moments Using : - NP-approximation, - Gamma approximations (Translated, Bowers), based on m.l.e. of ( µ, σγ, 1) For instance F x F x x µ γ γ γ σ ( NP) R ( ) ( ) =Φ γ q µ σ q q 6 ( NP) η = + 1 η + 1 η 1 We obtain m.l.e. of approximations of d.f., VaR, enhanced by their asymptotic s.e. and confidence interval 18

19 VI.Example incremental claims amounts for some line of Marine business Years chain ladder reserve : Comparing models by extended quasi-likelihood : 1. Log / Gamma 2/.Log / overdispersed Poisson 19

20 VI.Example Overdispersed Poisson model Estimation of Φ : Deviance Estimation of Φ : Pearson residuals Bootstrap (1000 samples) Estimates Estimates of Estimates of of E(R i ) se(r i )/R i E(R i ) se(r i )/R i E(R i ) se(r i )/R i % % % % % % % % % % % % % % % % % % % % % Total % % % 20

21 VI.Example Estimates of the percentiles of R directly and using Normal Power approximation Gamma approximations not available ( γ 1 = 0.075) q$1 ( R) η ( NP) q$ 1 η ( R)

22 VI.Example Estimation of Φ : maximisation of the likelihood Estimates Gamma Model Estimation of Φ : Deviance Estimates Estimation of Φ : Pearson Estimates of E(R i ) se(r i )/R i of E(R i ) se(r i )/R i of E(R i ) se(r i )/R i Total % % % % % % % % % % % % % % % % % % % % % % % % 22

23 VI.Example Estimates of the percentiles of R by Normal Power and Gamma approx. 1 η ( NP) q1 η ( R) ( GT ) q1 η ( R)

24 Conclusion 24

Bootstrapping the triangles

Bootstrapping the triangles Bootstrapping the triangles Prečo, kedy a ako (NE)bootstrapovat v trojuholníkoch? Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Actuarial Seminar, Prague 19 October 01 Overview

More information

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI

Analytics Software. Beyond deterministic chain ladder reserves. Neil Covington Director of Solutions Management GI Analytics Software Beyond deterministic chain ladder reserves Neil Covington Director of Solutions Management GI Objectives 2 Contents 01 Background 02 Formulaic Stochastic Reserving Methods 03 Bootstrapping

More information

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory

On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory On the Importance of Dispersion Modeling for Claims Reserving: Application of the Double GLM Theory Danaïl Davidov under the supervision of Jean-Philippe Boucher Département de mathématiques Université

More information

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited

Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited Prediction Uncertainty in the Bornhuetter-Ferguson Claims Reserving Method: Revisited Daniel H. Alai 1 Michael Merz 2 Mario V. Wüthrich 3 Department of Mathematics, ETH Zurich, 8092 Zurich, Switzerland

More information

Claims Reserving under Solvency II

Claims Reserving under Solvency II Claims Reserving under Solvency II Mario V. Wüthrich RiskLab, ETH Zurich Swiss Finance Institute Professor joint work with Michael Merz (University of Hamburg) April 21, 2016 European Congress of Actuaries,

More information

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1

Parametric Modelling of Over-dispersed Count Data. Part III / MMath (Applied Statistics) 1 Parametric Modelling of Over-dispersed Count Data Part III / MMath (Applied Statistics) 1 Introduction Poisson regression is the de facto approach for handling count data What happens then when Poisson

More information

Calendar Year Dependence Modeling in Run-Off Triangles

Calendar Year Dependence Modeling in Run-Off Triangles Calendar Year Dependence Modeling in Run-Off Triangles Mario V. Wüthrich RiskLab, ETH Zurich May 21-24, 2013 ASTIN Colloquium The Hague www.math.ethz.ch/ wueth Claims reserves at time I = 2010 accident

More information

Chain ladder with random effects

Chain ladder with random effects Greg Fry Consulting Actuaries Sydney Australia Astin Colloquium, The Hague 21-24 May 2013 Overview Fixed effects models Families of chain ladder models Maximum likelihood estimators Random effects models

More information

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1

if n is large, Z i are weakly dependent 0-1-variables, p i = P(Z i = 1) small, and Then n approx i=1 i=1 n i=1 Count models A classical, theoretical argument for the Poisson distribution is the approximation Binom(n, p) Pois(λ) for large n and small p and λ = np. This can be extended considerably to n approx Z

More information

Standard Error of Technical Cost Incorporating Parameter Uncertainty

Standard Error of Technical Cost Incorporating Parameter Uncertainty Standard Error of Technical Cost Incorporating Parameter Uncertainty Christopher Morton Insurance Australia Group This presentation has been prepared for the Actuaries Institute 2012 General Insurance

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models Generalized Linear Models - part II Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs.

More information

SPRING 2007 EXAM C SOLUTIONS

SPRING 2007 EXAM C SOLUTIONS SPRING 007 EXAM C SOLUTIONS Question #1 The data are already shifted (have had the policy limit and the deductible of 50 applied). The two 350 payments are censored. Thus the likelihood function is L =

More information

Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business

Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Conditional Least Squares and Copulae in Claims Reserving for a Single Line of Business Michal Pešta Charles University in Prague Faculty of Mathematics and Physics Ostap Okhrin Dresden University of Technology

More information

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown.

Now consider the case where E(Y) = µ = Xβ and V (Y) = σ 2 G, where G is diagonal, but unknown. Weighting We have seen that if E(Y) = Xβ and V (Y) = σ 2 G, where G is known, the model can be rewritten as a linear model. This is known as generalized least squares or, if G is diagonal, with trace(g)

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION GENERALIZED LINEAR MODELS BEYOND THE EXPONENTIAL FAMILY WITH LOSS RESERVE APPLICATIONS* BY GARY G. VENTER ABSTRACT The formulation of generalized linear models in Klugman, Panjer and Willmot (2004) is

More information

11. Generalized Linear Models: An Introduction

11. Generalized Linear Models: An Introduction Sociology 740 John Fox Lecture Notes 11. Generalized Linear Models: An Introduction Copyright 2014 by John Fox Generalized Linear Models: An Introduction 1 1. Introduction I A synthesis due to Nelder and

More information

GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA

GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA DISCUSSION OF THE MEAN SQUARE ERROR OF PREDICTION IN THE CHAIN LADDER RESERVING METHOD BY GARY G. VENTER 1. CHAIN LADDER VARIANCE FORMULA For a dozen or so years the chain ladder models of Murphy and Mack

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

A Loss Reserving Method for Incomplete Claim Data

A Loss Reserving Method for Incomplete Claim Data A Loss Reserving Method for Incomplete Claim Data René Dahms Bâloise, Aeschengraben 21, CH-4002 Basel renedahms@baloisech June 11, 2008 Abstract A stochastic model of an additive loss reserving method

More information

Generalized Linear Models. Kurt Hornik

Generalized Linear Models. Kurt Hornik Generalized Linear Models Kurt Hornik Motivation Assuming normality, the linear model y = Xβ + e has y = β + ε, ε N(0, σ 2 ) such that y N(μ, σ 2 ), E(y ) = μ = β. Various generalizations, including general

More information

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER

New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER New Statistical Methods That Improve on MLE and GLM Including for Reserve Modeling GARY G VENTER MLE Going the Way of the Buggy Whip Used to be gold standard of statistical estimation Minimum variance

More information

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III)

Lattice Data. Tonglin Zhang. Spatial Statistics for Point and Lattice Data (Part III) Title: Spatial Statistics for Point Processes and Lattice Data (Part III) Lattice Data Tonglin Zhang Outline Description Research Problems Global Clustering and Local Clusters Permutation Test Spatial

More information

GB2 Regression with Insurance Claim Severities

GB2 Regression with Insurance Claim Severities GB2 Regression with Insurance Claim Severities Mitchell Wills, University of New South Wales Emiliano A. Valdez, University of New South Wales Edward W. (Jed) Frees, University of Wisconsin - Madison UNSW

More information

Statistics of Contingency Tables - Extension to I x J. stat 557 Heike Hofmann

Statistics of Contingency Tables - Extension to I x J. stat 557 Heike Hofmann Statistics of Contingency Tables - Extension to I x J stat 557 Heike Hofmann Outline Testing Independence Local Odds Ratios Concordance & Discordance Intro to GLMs Simpson s paradox Simpson s paradox:

More information

Notes on Random Vectors and Multivariate Normal

Notes on Random Vectors and Multivariate Normal MATH 590 Spring 06 Notes on Random Vectors and Multivariate Normal Properties of Random Vectors If X,, X n are random variables, then X = X,, X n ) is a random vector, with the cumulative distribution

More information

Generalized Linear Models: An Introduction

Generalized Linear Models: An Introduction Applied Statistics With R Generalized Linear Models: An Introduction John Fox WU Wien May/June 2006 2006 by John Fox Generalized Linear Models: An Introduction 1 A synthesis due to Nelder and Wedderburn,

More information

Stat 710: Mathematical Statistics Lecture 12

Stat 710: Mathematical Statistics Lecture 12 Stat 710: Mathematical Statistics Lecture 12 Jun Shao Department of Statistics University of Wisconsin Madison, WI 53706, USA Jun Shao (UW-Madison) Stat 710, Lecture 12 Feb 18, 2009 1 / 11 Lecture 12:

More information

Various Extensions Based on Munich Chain Ladder Method

Various Extensions Based on Munich Chain Ladder Method Various Extensions Based on Munich Chain Ladder Method etr Jedlička Charles University, Department of Statistics 20th June 2007, 50th Anniversary ASTIN Colloquium etr Jedlička (UK MFF) Various Extensions

More information

Stochastic Incremental Approach for Modelling the Claims Reserves

Stochastic Incremental Approach for Modelling the Claims Reserves International Mathematical Forum, Vol. 8, 2013, no. 17, 807-828 HIKARI Ltd, www.m-hikari.com Stochastic Incremental Approach for Modelling the Claims Reserves Ilyes Chorfi Department of Mathematics University

More information

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Statistics - Lecture One. Outline. Charlotte Wickham  1. Basic ideas about estimation Statistics - Lecture One Charlotte Wickham wickham@stat.berkeley.edu http://www.stat.berkeley.edu/~wickham/ Outline 1. Basic ideas about estimation 2. Method of Moments 3. Maximum Likelihood 4. Confidence

More information

Non-Life Insurance: Mathematics and Statistics

Non-Life Insurance: Mathematics and Statistics Exercise sheet 1 Exercise 1.1 Discrete Distribution Suppose the random variable N follows a geometric distribution with parameter p œ (0, 1), i.e. ; (1 p) P[N = k] = k 1 p if k œ N \{0}, 0 else. (a) Show

More information

On the Distribution of Discounted Loss Reserves Using Generalized Linear Models

On the Distribution of Discounted Loss Reserves Using Generalized Linear Models On the Distribution of Discounted Loss Reserves Using Generalized Linear Models Tom Hoedemakers Jan Beirlant Marc J. Goovaerts Jan Dhaene Abstract Renshaw and Verrall (1994 specified the generalized linear

More information

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses*

Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Using R in Undergraduate and Graduate Probability and Mathematical Statistics Courses* Amy G. Froelich Michael D. Larsen Iowa State University *The work presented in this talk was partially supported by

More information

A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS

A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS A HOMOTOPY CLASS OF SEMI-RECURSIVE CHAIN LADDER MODELS Greg Taylor Taylor Fry Consulting Actuaries Level, 55 Clarence Street Sydney NSW 2000 Australia Professorial Associate Centre for Actuarial Studies

More information

Homework 1 Solutions

Homework 1 Solutions 36-720 Homework 1 Solutions Problem 3.4 (a) X 2 79.43 and G 2 90.33. We should compare each to a χ 2 distribution with (2 1)(3 1) 2 degrees of freedom. For each, the p-value is so small that S-plus reports

More information

Greg Taylor. Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales. CAS Spring meeting Phoenix Arizona May 2012

Greg Taylor. Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales. CAS Spring meeting Phoenix Arizona May 2012 Chain ladder correlations Greg Taylor Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales CAS Spring meeting Phoenix Arizona 0-3 May 0 Overview The chain ladder produces

More information

Dependence structures with applications to actuarial science

Dependence structures with applications to actuarial science with applications to actuarial science Department of Statistics, ITAM, Mexico Recent Advances in Actuarial Mathematics, OAX, MEX October 26, 2015 Contents Order-1 process Application in survival analysis

More information

Subject CS1 Actuarial Statistics 1 Core Principles

Subject CS1 Actuarial Statistics 1 Core Principles Institute of Actuaries of India Subject CS1 Actuarial Statistics 1 Core Principles For 2019 Examinations Aim The aim of the Actuarial Statistics 1 subject is to provide a grounding in mathematical and

More information

Chapter 5: Generalized Linear Models

Chapter 5: Generalized Linear Models w w w. I C A 0 1 4. o r g Chapter 5: Generalized Linear Models b Curtis Gar Dean, FCAS, MAAA, CFA Ball State Universit: Center for Actuarial Science and Risk Management M Interest in Predictive Modeling

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models

SCHOOL OF MATHEMATICS AND STATISTICS. Linear and Generalised Linear Models SCHOOL OF MATHEMATICS AND STATISTICS Linear and Generalised Linear Models Autumn Semester 2017 18 2 hours Attempt all the questions. The allocation of marks is shown in brackets. RESTRICTED OPEN BOOK EXAMINATION

More information

The LmB Conferences on Multivariate Count Analysis

The LmB Conferences on Multivariate Count Analysis The LmB Conferences on Multivariate Count Analysis Title: On Poisson-exponential-Tweedie regression models for ultra-overdispersed count data Rahma ABID, C.C. Kokonendji & A. Masmoudi Email Address: rahma.abid.ch@gmail.com

More information

Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data

Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data Reparametrization of COM-Poisson Regression Models with Applications in the Analysis of Experimental Count Data Eduardo Elias Ribeiro Junior 1 2 Walmes Marques Zeviani 1 Wagner Hugo Bonat 1 Clarice Garcia

More information

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio

Estimation of reliability parameters from Experimental data (Parte 2) Prof. Enrico Zio Estimation of reliability parameters from Experimental data (Parte 2) This lecture Life test (t 1,t 2,...,t n ) Estimate θ of f T t θ For example: λ of f T (t)= λe - λt Classical approach (frequentist

More information

Lecture 8. Poisson models for counts

Lecture 8. Poisson models for counts Lecture 8. Poisson models for counts Jesper Rydén Department of Mathematics, Uppsala University jesper.ryden@math.uu.se Statistical Risk Analysis Spring 2014 Absolute risks The failure intensity λ(t) describes

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability and Mathematical Statistics For 2018 Examinations Subject CT3 Probability and Mathematical Statistics Core Technical Syllabus 1 June 2017 Aim The

More information

Foundations of Statistical Inference

Foundations of Statistical Inference Foundations of Statistical Inference Jonathan Marchini Department of Statistics University of Oxford MT 2013 Jonathan Marchini (University of Oxford) BS2a MT 2013 1 / 27 Course arrangements Lectures M.2

More information

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples

ST3241 Categorical Data Analysis I Generalized Linear Models. Introduction and Some Examples ST3241 Categorical Data Analysis I Generalized Linear Models Introduction and Some Examples 1 Introduction We have discussed methods for analyzing associations in two-way and three-way tables. Now we will

More information

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

Generalized Linear Models

Generalized Linear Models Generalized Linear Models 1/37 The Kelp Data FRONDS 0 20 40 60 20 40 60 80 100 HLD_DIAM FRONDS are a count variable, cannot be < 0 2/37 Nonlinear Fits! FRONDS 0 20 40 60 log NLS 20 40 60 80 100 HLD_DIAM

More information

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A. 1. Let P be a probability measure on a collection of sets A. (a) For each n N, let H n be a set in A such that H n H n+1. Show that P (H n ) monotonically converges to P ( k=1 H k) as n. (b) For each n

More information

Mathematical statistics

Mathematical statistics October 4 th, 2018 Lecture 12: Information Where are we? Week 1 Week 2 Week 4 Week 7 Week 10 Week 14 Probability reviews Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter

More information

A polynomial expansion to approximate ruin probabilities

A polynomial expansion to approximate ruin probabilities A polynomial expansion to approximate ruin probabilities P.O. Goffard 1 X. Guerrault 2 S. Loisel 3 D. Pommerêt 4 1 Axa France - Institut de mathématiques de Luminy Université de Aix-Marseille 2 Axa France

More information

Additional Problems Additional Problem 1 Like the http://www.stat.umn.edu/geyer/5102/examp/rlike.html#lmax example of maximum likelihood done by computer except instead of the gamma shape model, we will

More information

A Practitioner s Guide to Generalized Linear Models

A Practitioner s Guide to Generalized Linear Models A Practitioners Guide to Generalized Linear Models Background The classical linear models and most of the minimum bias procedures are special cases of generalized linear models (GLMs). GLMs are more technically

More information

Outline of GLMs. Definitions

Outline of GLMs. Definitions Outline of GLMs Definitions This is a short outline of GLM details, adapted from the book Nonparametric Regression and Generalized Linear Models, by Green and Silverman. The responses Y i have density

More information

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:

Zwiers FW and Kharin VV Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11: Statistical Analysis of EXTREMES in GEOPHYSICS Zwiers FW and Kharin VV. 1998. Changes in the extremes of the climate simulated by CCC GCM2 under CO 2 doubling. J. Climate 11:2200 2222. http://www.ral.ucar.edu/staff/ericg/readinggroup.html

More information

Generalized Linear Models 1

Generalized Linear Models 1 Generalized Linear Models 1 STA 2101/442: Fall 2012 1 See last slide for copyright information. 1 / 24 Suggested Reading: Davison s Statistical models Exponential families of distributions Sec. 5.2 Chapter

More information

Generalized Linear Models

Generalized Linear Models York SPIDA John Fox Notes Generalized Linear Models Copyright 2010 by John Fox Generalized Linear Models 1 1. Topics I The structure of generalized linear models I Poisson and other generalized linear

More information

Generalized Linear Models (GLZ)

Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) Generalized Linear Models (GLZ) are an extension of the linear modeling process that allows models to be fit to data that follow probability distributions other than the

More information

Generalized Linear Models I

Generalized Linear Models I Statistics 203: Introduction to Regression and Analysis of Variance Generalized Linear Models I Jonathan Taylor - p. 1/16 Today s class Poisson regression. Residuals for diagnostics. Exponential families.

More information

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00

Two Hours. Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER. 26 May :00 16:00 Two Hours MATH38052 Mathematical formula books and statistical tables are to be provided THE UNIVERSITY OF MANCHESTER GENERALISED LINEAR MODELS 26 May 2016 14:00 16:00 Answer ALL TWO questions in Section

More information

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches

1. Hypothesis testing through analysis of deviance. 3. Model & variable selection - stepwise aproaches Sta 216, Lecture 4 Last Time: Logistic regression example, existence/uniqueness of MLEs Today s Class: 1. Hypothesis testing through analysis of deviance 2. Standard errors & confidence intervals 3. Model

More information

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods

Theory and Methods of Statistical Inference. PART I Frequentist likelihood methods PhD School in Statistics XXV cycle, 2010 Theory and Methods of Statistical Inference PART I Frequentist likelihood methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

Central Limit Theorem ( 5.3)

Central Limit Theorem ( 5.3) Central Limit Theorem ( 5.3) Let X 1, X 2,... be a sequence of independent random variables, each having n mean µ and variance σ 2. Then the distribution of the partial sum S n = X i i=1 becomes approximately

More information

Analysis of 2 n Factorial Experiments with Exponentially Distributed Response Variable

Analysis of 2 n Factorial Experiments with Exponentially Distributed Response Variable Applied Mathematical Sciences, Vol. 5, 2011, no. 10, 459-476 Analysis of 2 n Factorial Experiments with Exponentially Distributed Response Variable S. C. Patil (Birajdar) Department of Statistics, Padmashree

More information

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing

STAT 135 Lab 5 Bootstrapping and Hypothesis Testing STAT 135 Lab 5 Bootstrapping and Hypothesis Testing Rebecca Barter March 2, 2015 The Bootstrap Bootstrap Suppose that we are interested in estimating a parameter θ from some population with members x 1,...,

More information

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III

Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY. SECOND YEAR B.Sc. SEMESTER - III Deccan Education Society s FERGUSSON COLLEGE, PUNE (AUTONOMOUS) SYLLABUS UNDER AUTOMONY SECOND YEAR B.Sc. SEMESTER - III SYLLABUS FOR S. Y. B. Sc. STATISTICS Academic Year 07-8 S.Y. B.Sc. (Statistics)

More information

Non-linear least squares

Non-linear least squares Non-linear least squares Concept of non-linear least squares We have extensively studied linear least squares or linear regression. We see that there is a unique regression line that can be determined

More information

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1

Chapter 4 HOMEWORK ASSIGNMENTS. 4.1 Homework #1 Chapter 4 HOMEWORK ASSIGNMENTS These homeworks may be modified as the semester progresses. It is your responsibility to keep up to date with the correctly assigned homeworks. There may be some errors in

More information

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University

Tweedie s Formula and Selection Bias. Bradley Efron Stanford University Tweedie s Formula and Selection Bias Bradley Efron Stanford University Selection Bias Observe z i N(µ i, 1) for i = 1, 2,..., N Select the m biggest ones: z (1) > z (2) > z (3) > > z (m) Question: µ values?

More information

ABC methods for phase-type distributions with applications in insurance risk problems

ABC methods for phase-type distributions with applications in insurance risk problems ABC methods for phase-type with applications problems Concepcion Ausin, Department of Statistics, Universidad Carlos III de Madrid Joint work with: Pedro Galeano, Universidad Carlos III de Madrid Simon

More information

CHAIN LADDER FORECAST EFFICIENCY

CHAIN LADDER FORECAST EFFICIENCY CHAIN LADDER FORECAST EFFICIENCY Greg Taylor Taylor Fry Consulting Actuaries Level 8, 30 Clarence Street Sydney NSW 2000 Australia Professorial Associate, Centre for Actuarial Studies Faculty of Economics

More information

Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting

Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting Construction of an Informative Hierarchical Prior Distribution: Application to Electricity Load Forecasting Anne Philippe Laboratoire de Mathématiques Jean Leray Université de Nantes Workshop EDF-INRIA,

More information

Some worked exercises from Ch 4: Ex 10 p 151

Some worked exercises from Ch 4: Ex 10 p 151 Some worked exercises from Ch 4: Ex 0 p 5 a) It looks like this density depends on two parameters how are we going to plot it for general k and θ? But note that we can re-write the density as a constant

More information

The joint posterior distribution of the unknown parameters and hidden variables, given the

The joint posterior distribution of the unknown parameters and hidden variables, given the DERIVATIONS OF THE FULLY CONDITIONAL POSTERIOR DENSITIES The joint posterior distribution of the unknown parameters and hidden variables, given the data, is proportional to the product of the joint prior

More information

Synchronous bootstrapping of loss reserves

Synchronous bootstrapping of loss reserves Synchronous bootstrapping of loss reserves Greg Taylor Taylor Fry Consulting Actuaries University of Melbourne University of New South Wales Gráinne McGuire Taylor Fry Consulting Actuaries ASTIN Colloquium

More information

Lecture 28: Asymptotic confidence sets

Lecture 28: Asymptotic confidence sets Lecture 28: Asymptotic confidence sets 1 α asymptotic confidence sets Similar to testing hypotheses, in many situations it is difficult to find a confidence set with a given confidence coefficient or level

More information

STA216: Generalized Linear Models. Lecture 1. Review and Introduction

STA216: Generalized Linear Models. Lecture 1. Review and Introduction STA216: Generalized Linear Models Lecture 1. Review and Introduction Let y 1,..., y n denote n independent observations on a response Treat y i as a realization of a random variable Y i In the general

More information

Stat 5101 Lecture Notes

Stat 5101 Lecture Notes Stat 5101 Lecture Notes Charles J. Geyer Copyright 1998, 1999, 2000, 2001 by Charles J. Geyer May 7, 2001 ii Stat 5101 (Geyer) Course Notes Contents 1 Random Variables and Change of Variables 1 1.1 Random

More information

STAT 512 sp 2018 Summary Sheet

STAT 512 sp 2018 Summary Sheet STAT 5 sp 08 Summary Sheet Karl B. Gregory Spring 08. Transformations of a random variable Let X be a rv with support X and let g be a function mapping X to Y with inverse mapping g (A = {x X : g(x A}

More information

Non-Life Insurance: Mathematics and Statistics

Non-Life Insurance: Mathematics and Statistics ETH Zürich, D-MATH HS 08 Prof. Dr. Mario V. Wüthrich Coordinator Andrea Gabrielli Non-Life Insurance: Mathematics and Statistics Solution sheet 9 Solution 9. Utility Indifference Price (a) Suppose that

More information

Individual loss reserving with the Multivariate Skew Normal framework

Individual loss reserving with the Multivariate Skew Normal framework May 22 2013, K. Antonio, KU Leuven and University of Amsterdam 1 / 31 Individual loss reserving with the Multivariate Skew Normal framework Mathieu Pigeon, Katrien Antonio, Michel Denuit ASTIN Colloquium

More information

Exam C Solutions Spring 2005

Exam C Solutions Spring 2005 Exam C Solutions Spring 005 Question # The CDF is F( x) = 4 ( + x) Observation (x) F(x) compare to: Maximum difference 0. 0.58 0, 0. 0.58 0.7 0.880 0., 0.4 0.680 0.9 0.93 0.4, 0.6 0.53. 0.949 0.6, 0.8

More information

Introduction to Rare Event Simulation

Introduction to Rare Event Simulation Introduction to Rare Event Simulation Brown University: Summer School on Rare Event Simulation Jose Blanchet Columbia University. Department of Statistics, Department of IEOR. Blanchet (Columbia) 1 / 31

More information

PL-2 The Matrix Inverted: A Primer in GLM Theory

PL-2 The Matrix Inverted: A Primer in GLM Theory PL-2 The Matrix Inverted: A Primer in GLM Theory 2005 CAS Seminar on Ratemaking Claudine Modlin, FCAS Watson Wyatt Insurance & Financial Services, Inc W W W. W A T S O N W Y A T T. C O M / I N S U R A

More information

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011

Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Copula Regression RAHUL A. PARSA DRAKE UNIVERSITY & STUART A. KLUGMAN SOCIETY OF ACTUARIES CASUALTY ACTUARIAL SOCIETY MAY 18,2011 Outline Ordinary Least Squares (OLS) Regression Generalized Linear Models

More information

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1

M(t) = 1 t. (1 t), 6 M (0) = 20 P (95. X i 110) i=1 Math 66/566 - Midterm Solutions NOTE: These solutions are for both the 66 and 566 exam. The problems are the same until questions and 5. 1. The moment generating function of a random variable X is M(t)

More information

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45

Two hours. To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER. 21 June :45 11:45 Two hours MATH20802 To be supplied by the Examinations Office: Mathematical Formula Tables THE UNIVERSITY OF MANCHESTER STATISTICAL METHODS 21 June 2010 9:45 11:45 Answer any FOUR of the questions. University-approved

More information

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis

Review. Timothy Hanson. Department of Statistics, University of South Carolina. Stat 770: Categorical Data Analysis Review Timothy Hanson Department of Statistics, University of South Carolina Stat 770: Categorical Data Analysis 1 / 22 Chapter 1: background Nominal, ordinal, interval data. Distributions: Poisson, binomial,

More information

11. Generalized Linear Models: An Introduction

11. Generalized Linear Models: An Introduction Sociolog 740 John Fox Lecture Notes 11. Generalized Linear Models: An Introduction Generalized Linear Models: An Introduction 1 1. Introduction I A snthesis due to Nelder and Wedderburn, generalized linear

More information

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods

Theory and Methods of Statistical Inference. PART I Frequentist theory and methods PhD School in Statistics cycle XXVI, 2011 Theory and Methods of Statistical Inference PART I Frequentist theory and methods (A. Salvan, N. Sartori, L. Pace) Syllabus Some prerequisites: Empirical distribution

More information

GLM I An Introduction to Generalized Linear Models

GLM I An Introduction to Generalized Linear Models GLM I An Introduction to Generalized Linear Models CAS Ratemaking and Product Management Seminar March Presented by: Tanya D. Havlicek, ACAS, MAAA ANTITRUST Notice The Casualty Actuarial Society is committed

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 00 MODULE : Statistical Inference Time Allowed: Three Hours Candidates should answer FIVE questions. All questions carry equal marks. The

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

The formal relationship between analytic and bootstrap approaches to parametric inference

The formal relationship between analytic and bootstrap approaches to parametric inference The formal relationship between analytic and bootstrap approaches to parametric inference T.J. DiCiccio Cornell University, Ithaca, NY 14853, U.S.A. T.A. Kuffner Washington University in St. Louis, St.

More information

. D CR Nomenclature D 1

. D CR Nomenclature D 1 . D CR Nomenclature D 1 Appendix D: CR NOMENCLATURE D 2 The notation used by different investigators working in CR formulations has not coalesced, since the topic is in flux. This Appendix identifies the

More information

Statistics & Data Sciences: First Year Prelim Exam May 2018

Statistics & Data Sciences: First Year Prelim Exam May 2018 Statistics & Data Sciences: First Year Prelim Exam May 2018 Instructions: 1. Do not turn this page until instructed to do so. 2. Start each new question on a new sheet of paper. 3. This is a closed book

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Tail negative dependence and its applications for aggregate loss modeling

Tail negative dependence and its applications for aggregate loss modeling Tail negative dependence and its applications for aggregate loss modeling Lei Hua Division of Statistics Oct 20, 2014, ISU L. Hua (NIU) 1/35 1 Motivation 2 Tail order Elliptical copula Extreme value copula

More information

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F).

STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis. 1. Indicate whether each of the following is true (T) or false (F). STA 4504/5503 Sample Exam 1 Spring 2011 Categorical Data Analysis 1. Indicate whether each of the following is true (T) or false (F). (a) T In 2 2 tables, statistical independence is equivalent to a population

More information