Fast Approximate k-way Similarity Search. Anshumali Shrivastava. Ping Li

Size: px
Start display at page:

Download "Fast Approximate k-way Similarity Search. Anshumali Shrivastava. Ping Li"

Transcription

1 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Fast Approximate k-way Similarity Search Anshumali Shrivastava Dept. of Computer Science Cornell University Ping Li Dept. of Statistics & Biostatistics Dept. of Computer Science Rutgers University

2 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS The 3-way Resemblance Standard Jaccard or 2-way resemblance is one of the widely used similarity measures over set representations (e.gs 1,S 2 ) of documents defined as R = Sim(S 1,S 2 ) = S 1 S 2 S 1 S 2 3-way resemblance is a natural extension defined over 3 sets as: R 3way = Sim(S 1,S 2,S 3 ) = S 1 S 2 S 3 S 1 S 2 S 3 Can also be thought of as normalized co-occurrence.

3 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS A Simple Experiment with Google Sets Problem: Given two (or a set of words)w 1 andw 2, complete the set by finding more words representing the set (or words that are semantically similar). Competing Methods: Google: The original Google s algorithm available via Google spreadsheet. 3-way resemblance (3-way): Use 3-way resemblance w 1 w 2 w w 1 w 2 w every wordw and report top 5 words. to rank Sum Resemblance (SR) : Use the sum of pairwise resemblance w 1 w w 1 w + w 2 w w 2 w and report top 5 words based on this similarity. Pairwise Intersection (PI): Retrieve top 100 words based on pairwise resemblance for eachw 1 andw 2 independently. Report the common words. In our experiments, all methods except Google use binary term-document representation generated from 1M wikipedia documents collected from Wikidump.

4 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Google Sets: Results JAGUAR AND TIGER GOOGLE 3-WAY SR PI MILKY AND WAY GOOGLE 3-WAY SR PI LION LEOPARD CAT dance GALAXY even LEOPARD CHEETAH LEOPARD STARS STARS another CHEETAH LION litre SPACE EARTH still CAT PANTHER bmw the LIGHT back DOG CAT chasis UNIVERSE SPACE TIME

5 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Improving Retrieval Problem: Refine search in presence of more than one representative query. Scenarios: Pairwise: Just one queryq, rank elementebased on resemblance q e q e. 3-way NNbor: Two representative queriesq 1 andq 2, rank based on 3-way resemblance q 1 q 2 e q 1 q 2 e. 4-way NNbor: Three representative queriesq 1,q 2 andq 3, rank based on 4-way resemblance q 1 q 2 q 3 e q 1 q 2 q 3 e.

6 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Improving Retrieval: Results Table 1: Percentage of top candidates with the same labels as that of query (queries) retrieved using various similarity criteria. Higher value indicates better retrieval quality. TOP PAIRWISE 3-WAY 4-WAY MNIST WEBSPAM

7 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Why 3-way Resemblance? SR PI 3-way Custom Quality? Efficient? Poor Poor Looks Good No Yes Yes (this work) Say Good? Note: Linear run time is not acceptable in applications like search.

8 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS way Search Problems and c-approximate Versions Given two setss 1 ands 2, finds 3 C maximizing S 1 S 2 S 3 S 1 S 2 S 3. O(n) c-approximate Version (3-wayc-NN): Given two query setss 1 ands 2, if there exists 3 C withsim(s 1,S 2,S 3 ) R 0, then we report some S 3 C so that S 1 S 2 S 3 S 1 S 2 S 3 cr 0 with probability 1 δ. Given sets 1, find setss 2,S 3 C maximizing S 1 S 2 S 3 S 1 S 2 S 3. O(n2 ) c-approximate Version (3-wayc-CP): Given a query sets 1, if there exist a pair of sets 2,S 3 C withsim(s 1,S 2,S 3 ) R 0, then we report sets S 2,S 3 C so that S 1 S 2 S 3 S 1 S 2 S 3 cr 0 with probability 1 δ. FindS 1,S 2,S 3 C maximizing S 1 S 2 S 3 S 1 S 2 S 3. O(n3 ) c-approximate Version (3-wayc-BC): If there exist setss 1,S 2,S 3 C withsim(s 1,S 2,S 3 ) R 0, then we report setss 1,S 2,S 3 C so that S 1 S 2 S 3 S 1 S 2 S 3 cr 0 with probability 1 δ.

9 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Key Ideas: Probabilistic Indexing Given three setss 1,S 2,S 3 Ω and an independent random permutation π : Ω Ω, we have the following: Pr(min(π(S 1 ))=min(π(s 2 ))=min(π(s 3 ))) = R 3way. This estimator leads to an efficient indexing scheme. If we map every elements C to the hash bucket indexed by B(S) = [minπ(s);minπ(s)], given querys 1,S 2 we probe only the bucketb (S 1,S 2 ) = [minπ(s 1 );minπ(s 2 )] and we do better than random! This idea can be converted into a provably fast algorithm forc-nn search by adding two more handles K and L to control the probability.

10 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Main Algorithmic Results Theorem 1 ForR 3way c-nn one can construct a data structure with O(n ρ log 1/cR0 n) query time ando(n 1+ρ ) space. Theorem 2 ForR 3way c-cp one can construct a data structure with O(n 2ρ log 1/cR0 n) query time ando(n 1+2ρ ) space. Theorem 3 ForR 3way c-bc there exist an algorithm with running time O(n 1+2ρ log 1/cR0 n). ρ R 0 = R 0 = c Figure 1: log 1/c log1/c+log1/r 0 Plot of ρ = 1 < 1 values with respect to c for various thresholdsr 0

11 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Are there more k-way similarities which are efficient? Theorem 4 Any PGF transformation on3-way resemblancer 3way admits efficient c-nn search. wherepgf(s) = i=1 p is i with allp i 0 satisfying i=1 p i = 1 Corollary 1 e R3way 1 admits efficientc-nn search. Theorem 5 Weighted 3-way resemblance, defined as Sim(x,y,z) = min{x i,y i,z i } i max{x i,y i,z i }, naturally enjoys all efficiently guarantees of 3-way resemblance using consistent weighted sampling instead of Minhash.

12 Beyond Pairwise: Provably Fast Algorithms for Approximate k-way Similarity Search NIPS Conclusions 3-way (and higher) resemblance seems a natural choice for many interesting search problems, and at the same time it admits efficient search algorithms. The idea of probabilistic hashing can reduce the computational requirements significantly. More Possibilities Joint Recommendations: Users A and B would like to watch a movie together. Profile of each person represented as a binary sparse vector over a giant universe of attributes. For example: actors, actresses, genres, directors, etc, which she/he likes. Represent movie M as binary vectors over the same universe. A natural measure to maximize is A B M A B M.

Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment

Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment Asymmetric Minwise Hashing for Indexing Binary Inner Products and Set Containment Anshumali Shrivastava and Ping Li Cornell University and Rutgers University WWW 25 Florence, Italy May 2st 25 Will Join

More information

Algorithms for Data Science: Lecture on Finding Similar Items

Algorithms for Data Science: Lecture on Finding Similar Items Algorithms for Data Science: Lecture on Finding Similar Items Barna Saha 1 Finding Similar Items Finding similar items is a fundamental data mining task. We may want to find whether two documents are similar

More information

PROBABILISTIC HASHING TECHNIQUES FOR BIG DATA

PROBABILISTIC HASHING TECHNIQUES FOR BIG DATA PROBABILISTIC HASHING TECHNIQUES FOR BIG DATA A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of

More information

Recommendation Systems

Recommendation Systems Recommendation Systems Popularity Recommendation Systems Predicting user responses to options Offering news articles based on users interests Offering suggestions on what the user might like to buy/consume

More information

Probabilistic Hashing for Efficient Search and Learning

Probabilistic Hashing for Efficient Search and Learning Ping Li Probabilistic Hashing for Efficient Search and Learning July 12, 2012 MMDS2012 1 Probabilistic Hashing for Efficient Search and Learning Ping Li Department of Statistical Science Faculty of omputing

More information

Similarity Search. Stony Brook University CSE545, Fall 2016

Similarity Search. Stony Brook University CSE545, Fall 2016 Similarity Search Stony Brook University CSE545, Fall 20 Finding Similar Items Applications Document Similarity: Mirrored web-pages Plagiarism; Similar News Recommendations: Online purchases Movie ratings

More information

DATA MINING LECTURE 6. Similarity and Distance Sketching, Locality Sensitive Hashing

DATA MINING LECTURE 6. Similarity and Distance Sketching, Locality Sensitive Hashing DATA MINING LECTURE 6 Similarity and Distance Sketching, Locality Sensitive Hashing SIMILARITY AND DISTANCE Thanks to: Tan, Steinbach, and Kumar, Introduction to Data Mining Rajaraman and Ullman, Mining

More information

Efficient Data Reduction and Summarization

Efficient Data Reduction and Summarization Ping Li Efficient Data Reduction and Summarization December 8, 2011 FODAVA Review 1 Efficient Data Reduction and Summarization Ping Li Department of Statistical Science Faculty of omputing and Information

More information

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from

COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from COMPUTING SIMILARITY BETWEEN DOCUMENTS (OR ITEMS) This part is to a large extent based on slides obtained from http://www.mmds.org Distance Measures For finding similar documents, we consider the Jaccard

More information

Large-scale Collaborative Ranking in Near-Linear Time

Large-scale Collaborative Ranking in Near-Linear Time Large-scale Collaborative Ranking in Near-Linear Time Liwei Wu Depts of Statistics and Computer Science UC Davis KDD 17, Halifax, Canada August 13-17, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

Decoupled Collaborative Ranking

Decoupled Collaborative Ranking Decoupled Collaborative Ranking Jun Hu, Ping Li April 24, 2017 Jun Hu, Ping Li WWW2017 April 24, 2017 1 / 36 Recommender Systems Recommendation system is an information filtering technique, which provides

More information

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) =

CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14. For random numbers X which only take on nonnegative integer values, E(X) = CS 125 Section #12 (More) Probability and Randomized Algorithms 11/24/14 1 Probability First, recall a couple useful facts from last time about probability: Linearity of expectation: E(aX + by ) = ae(x)

More information

From Non-Negative Matrix Factorization to Deep Learning

From Non-Negative Matrix Factorization to Deep Learning The Math!! From Non-Negative Matrix Factorization to Deep Learning Intuitions and some Math too! luissarmento@gmailcom https://wwwlinkedincom/in/luissarmento/ October 18, 2017 The Math!! Introduction Disclaimer

More information

Relational Database: Identities of Relational Algebra; Example of Query Optimization

Relational Database: Identities of Relational Algebra; Example of Query Optimization Relational Database: Identities of Relational Algebra; Example of Query Optimization Greg Plaxton Theory in Programming Practice, Fall 2005 Department of Computer Science University of Texas at Austin

More information

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data

2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data 2017 Fall ECE 692/599: Binary Representation Learning for Large Scale Visual Data Liu Liu Instructor: Dr. Hairong Qi University of Tennessee, Knoxville lliu25@vols.utk.edu September 21, 2017 Liu Liu (UTK)

More information

Finding Similar Sets. Applications Shingling Minhashing Locality-Sensitive Hashing Distance Measures. Modified from Jeff Ullman

Finding Similar Sets. Applications Shingling Minhashing Locality-Sensitive Hashing Distance Measures. Modified from Jeff Ullman Finding Similar Sets Applications Shingling Minhashing Locality-Sensitive Hashing Distance Measures Modified from Jeff Ullman Goals Many Web-mining problems can be expressed as finding similar sets:. Pages

More information

Slides credits: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University

Slides credits: Mining of Massive Datasets Jure Leskovec, Anand Rajaraman, Jeff Ullman Stanford University Note to other teachers and users of these slides: We would be delighted if you found this our material useful in giving your own lectures. Feel free to use these slides verbatim, or to modify them to fit

More information

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD

DATA MINING LECTURE 8. Dimensionality Reduction PCA -- SVD DATA MINING LECTURE 8 Dimensionality Reduction PCA -- SVD The curse of dimensionality Real data usually have thousands, or millions of dimensions E.g., web documents, where the dimensionality is the vocabulary

More information

Reductionist View: A Priori Algorithm and Vector-Space Text Retrieval. Sargur Srihari University at Buffalo The State University of New York

Reductionist View: A Priori Algorithm and Vector-Space Text Retrieval. Sargur Srihari University at Buffalo The State University of New York Reductionist View: A Priori Algorithm and Vector-Space Text Retrieval Sargur Srihari University at Buffalo The State University of New York 1 A Priori Algorithm for Association Rule Learning Association

More information

A New Space for Comparing Graphs

A New Space for Comparing Graphs A New Space for Comparing Graphs Anshumali Shrivastava and Ping Li Cornell University and Rutgers University August 18th 2014 Anshumali Shrivastava and Ping Li ASONAM 2014 August 18th 2014 1 / 38 Main

More information

B490 Mining the Big Data

B490 Mining the Big Data B490 Mining the Big Data 1 Finding Similar Items Qin Zhang 1-1 Motivations Finding similar documents/webpages/images (Approximate) mirror sites. Application: Don t want to show both when Google. 2-1 Motivations

More information

Personalized Social Recommendations Accurate or Private

Personalized Social Recommendations Accurate or Private Personalized Social Recommendations Accurate or Private Presented by: Lurye Jenny Paper by: Ashwin Machanavajjhala, Aleksandra Korolova, Atish Das Sarma Outline Introduction Motivation The model General

More information

CS246 Final Exam, Winter 2011

CS246 Final Exam, Winter 2011 CS246 Final Exam, Winter 2011 1. Your name and student ID. Name:... Student ID:... 2. I agree to comply with Stanford Honor Code. Signature:... 3. There should be 17 numbered pages in this exam (including

More information

SQL-Rank: A Listwise Approach to Collaborative Ranking

SQL-Rank: A Listwise Approach to Collaborative Ranking SQL-Rank: A Listwise Approach to Collaborative Ranking Liwei Wu Depts of Statistics and Computer Science UC Davis ICML 18, Stockholm, Sweden July 10-15, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

Click Models for Web Search

Click Models for Web Search Click Models for Web Search Lecture 1 Aleksandr Chuklin, Ilya Markov Maarten de Rijke a.chuklin@uva.nl i.markov@uva.nl derijke@uva.nl University of Amsterdam Google Research Europe AC IM MdR Click Models

More information

Lecture 12: Link Analysis for Web Retrieval

Lecture 12: Link Analysis for Web Retrieval Lecture 12: Link Analysis for Web Retrieval Trevor Cohn COMP90042, 2015, Semester 1 What we ll learn in this lecture The web as a graph Page-rank method for deriving the importance of pages Hubs and authorities

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval Lecture 11: Probabilistic Information Retrieval 1 Outline Basic Probability Theory Probability Ranking Principle Extensions 2 Basic Probability Theory For events A

More information

IR Models: The Probabilistic Model. Lecture 8

IR Models: The Probabilistic Model. Lecture 8 IR Models: The Probabilistic Model Lecture 8 ' * ) ( % $ $ +#! "#! '& & Probability of Relevance? ' ', IR is an uncertain process Information need to query Documents to index terms Query terms and index

More information

arxiv: v2 [stat.ml] 13 Nov 2014

arxiv: v2 [stat.ml] 13 Nov 2014 Improved Asymmetric Locality Sensitive Hashing (ALSH) for Maximum Inner Product Search (MIPS) arxiv:4.4v [stat.ml] 3 Nov 4 Anshumali Shrivastava Department of Computer Science Computing and Information

More information

arxiv: v1 [stat.me] 18 Jun 2014

arxiv: v1 [stat.me] 18 Jun 2014 roved Densification of One Permutation Hashing arxiv:406.4784v [stat.me] 8 Jun 204 Anshumali Shrivastava Department of Computer Science Computing and Information Science Cornell University Ithaca, NY 4853,

More information

High Dimensional Search Min- Hashing Locality Sensi6ve Hashing

High Dimensional Search Min- Hashing Locality Sensi6ve Hashing High Dimensional Search Min- Hashing Locality Sensi6ve Hashing Debapriyo Majumdar Data Mining Fall 2014 Indian Statistical Institute Kolkata September 8 and 11, 2014 High Support Rules vs Correla6on of

More information

1 Finding Similar Items

1 Finding Similar Items 1 Finding Similar Items This chapter discusses the various measures of distance used to find out similarity between items in a given set. After introducing the basic similarity measures, we look at how

More information

Information Retrieval and Organisation

Information Retrieval and Organisation Information Retrieval and Organisation Chapter 13 Text Classification and Naïve Bayes Dell Zhang Birkbeck, University of London Motivation Relevance Feedback revisited The user marks a number of documents

More information

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model

Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Introduction to Information Retrieval (Manning, Raghavan, Schutze) Chapter 6 Scoring term weighting and the vector space model Ranked retrieval Thus far, our queries have all been Boolean. Documents either

More information

vector space retrieval many slides courtesy James Amherst

vector space retrieval many slides courtesy James Amherst vector space retrieval many slides courtesy James Allan@umass Amherst 1 what is a retrieval model? Model is an idealization or abstraction of an actual process Mathematical models are used to study the

More information

Clustering bi-partite networks using collapsed latent block models

Clustering bi-partite networks using collapsed latent block models Clustering bi-partite networks using collapsed latent block models Jason Wyse, Nial Friel & Pierre Latouche Insight at UCD Laboratoire SAMM, Université Paris 1 Mail: jason.wyse@ucd.ie Insight Latent Space

More information

2. Probability. Chris Piech and Mehran Sahami. Oct 2017

2. Probability. Chris Piech and Mehran Sahami. Oct 2017 2. Probability Chris Piech and Mehran Sahami Oct 2017 1 Introduction It is that time in the quarter (it is still week one) when we get to talk about probability. Again we are going to build up from first

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Recommendation. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Recommendation Tobias Scheffer Recommendation Engines Recommendation of products, music, contacts,.. Based on user features, item

More information

Modern Information Retrieval

Modern Information Retrieval Modern Information Retrieval Chapter 3 Modeling Introduction to IR Models Basic Concepts The Boolean Model Term Weighting The Vector Model Probabilistic Model Retrieval Evaluation, Modern Information Retrieval,

More information

arxiv: v1 [cs.it] 16 Aug 2017

arxiv: v1 [cs.it] 16 Aug 2017 Efficient Compression Technique for Sparse Sets Rameshwar Pratap rameshwar.pratap@gmail.com Ishan Sohony PICT, Pune ishangalbatorix@gmail.com Raghav Kulkarni Chennai Mathematical Institute kulraghav@gmail.com

More information

CS425: Algorithms for Web Scale Data

CS425: Algorithms for Web Scale Data CS: Algorithms for Web Scale Data Most of the slides are from the Mining of Massive Datasets book. These slides have been modified for CS. The original slides can be accessed at: www.mmds.org Customer

More information

Finding similar items

Finding similar items Finding similar items CSE 344, section 10 June 2, 2011 In this section, we ll go through some examples of finding similar item sets. We ll directly compare all pairs of sets being considered using the

More information

MATH 556: PROBABILITY PRIMER

MATH 556: PROBABILITY PRIMER MATH 6: PROBABILITY PRIMER 1 DEFINITIONS, TERMINOLOGY, NOTATION 1.1 EVENTS AND THE SAMPLE SPACE Definition 1.1 An experiment is a one-off or repeatable process or procedure for which (a there is a well-defined

More information

Lecture Notes to Big Data Management and Analytics Winter Term 2017/2018 Text Processing and High-Dimensional Data

Lecture Notes to Big Data Management and Analytics Winter Term 2017/2018 Text Processing and High-Dimensional Data Lecture Notes to Winter Term 2017/2018 Text Processing and High-Dimensional Data Matthias Schubert, Matthias Renz, Felix Borutta, Evgeniy Faerman, Christian Frey, Klaus Arthur Schmid, Daniyal Kazempour,

More information

Bloom Filters and Locality-Sensitive Hashing

Bloom Filters and Locality-Sensitive Hashing Randomized Algorithms, Summer 2016 Bloom Filters and Locality-Sensitive Hashing Instructor: Thomas Kesselheim and Kurt Mehlhorn 1 Notation Lecture 4 (6 pages) When e talk about the probability of an event,

More information

6.854 Advanced Algorithms

6.854 Advanced Algorithms 6.854 Advanced Algorithms Homework Solutions Hashing Bashing. Solution:. O(log U ) for the first level and for each of the O(n) second level functions, giving a total of O(n log U ) 2. Suppose we are using

More information

Algorithms for Nearest Neighbors

Algorithms for Nearest Neighbors Algorithms for Nearest Neighbors Background and Two Challenges Yury Lifshits Steklov Institute of Mathematics at St.Petersburg http://logic.pdmi.ras.ru/~yura McGill University, July 2007 1 / 29 Outline

More information

ECEN 689 Special Topics in Data Science for Communications Networks

ECEN 689 Special Topics in Data Science for Communications Networks ECEN 689 Special Topics in Data Science for Communications Networks Nick Duffield Department of Electrical & Computer Engineering Texas A&M University Lecture 8 Random Walks, Matrices and PageRank Graphs

More information

arxiv: v1 [cs.db] 2 Sep 2014

arxiv: v1 [cs.db] 2 Sep 2014 An LSH Index for Computing Kendall s Tau over Top-k Lists Koninika Pal Saarland University Saarbrücken, Germany kpal@mmci.uni-saarland.de Sebastian Michel Saarland University Saarbrücken, Germany smichel@mmci.uni-saarland.de

More information

On Symmetric and Asymmetric LSHs for Inner Product Search

On Symmetric and Asymmetric LSHs for Inner Product Search Behnam Neyshabur Nathan Srebro Toyota Technological Institute at Chicago, Chicago, IL 6637, USA BNEYSHABUR@TTIC.EDU NATI@TTIC.EDU Abstract We consider the problem of designing locality sensitive hashes

More information

Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm

Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm Some Formal Analysis of Rocchio s Similarity-Based Relevance Feedback Algorithm Zhixiang Chen (chen@cs.panam.edu) Department of Computer Science, University of Texas-Pan American, 1201 West University

More information

Replicated Softmax: an Undirected Topic Model. Stephen Turner

Replicated Softmax: an Undirected Topic Model. Stephen Turner Replicated Softmax: an Undirected Topic Model Stephen Turner 1. Introduction 2. Replicated Softmax: A Generative Model of Word Counts 3. Evaluating Replicated Softmax as a Generative Model 4. Experimental

More information

Relevance Aggregation Projections for Image Retrieval

Relevance Aggregation Projections for Image Retrieval Relevance Aggregation Projections for Image Retrieval CIVR 2008 Wei Liu Wei Jiang Shih-Fu Chang wliu@ee.columbia.edu Syllabus Motivations and Formulation Our Approach: Relevance Aggregation Projections

More information

CS168: The Modern Algorithmic Toolbox Lecture #4: Dimensionality Reduction

CS168: The Modern Algorithmic Toolbox Lecture #4: Dimensionality Reduction CS168: The Modern Algorithmic Toolbox Lecture #4: Dimensionality Reduction Tim Roughgarden & Gregory Valiant April 12, 2017 1 The Curse of Dimensionality in the Nearest Neighbor Problem Lectures #1 and

More information

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013.

The University of Texas at Austin Department of Electrical and Computer Engineering. EE381V: Large Scale Learning Spring 2013. The University of Texas at Austin Department of Electrical and Computer Engineering EE381V: Large Scale Learning Spring 2013 Assignment 1 Caramanis/Sanghavi Due: Thursday, Feb. 7, 2013. (Problems 1 and

More information

CS249: ADVANCED DATA MINING

CS249: ADVANCED DATA MINING CS249: ADVANCED DATA MINING Recommender Systems Instructor: Yizhou Sun yzsun@cs.ucla.edu May 17, 2017 Methods Learnt: Last Lecture Classification Clustering Vector Data Text Data Recommender System Decision

More information

Do Neural Network Cross-Modal Mappings Really Bridge Modalities?

Do Neural Network Cross-Modal Mappings Really Bridge Modalities? Do Neural Network Cross-Modal Mappings Really Bridge Modalities? Language Intelligence and Information Retrieval group (LIIR) Department of Computer Science Story Collell, G., Zhang, T., Moens, M.F. (2017)

More information

COMPSCI 514: Algorithms for Data Science

COMPSCI 514: Algorithms for Data Science COMPSCI 514: Algorithms for Data Science Arya Mazumdar University of Massachusetts at Amherst Fall 2018 Lecture 9 Similarity Queries Few words about the exam The exam is Thursday (Oct 4) in two days In

More information

CS246 Final Exam. March 16, :30AM - 11:30AM

CS246 Final Exam. March 16, :30AM - 11:30AM CS246 Final Exam March 16, 2016 8:30AM - 11:30AM Name : SUID : I acknowledge and accept the Stanford Honor Code. I have neither given nor received unpermitted help on this examination. (signed) Directions

More information

Ontology-Based News Recommendation

Ontology-Based News Recommendation Ontology-Based News Recommendation Wouter IJntema Frank Goossen Flavius Frasincar Frederik Hogenboom Erasmus University Rotterdam, the Netherlands frasincar@ese.eur.nl Outline Introduction Hermes: News

More information

Semi Supervised Distance Metric Learning

Semi Supervised Distance Metric Learning Semi Supervised Distance Metric Learning wliu@ee.columbia.edu Outline Background Related Work Learning Framework Collaborative Image Retrieval Future Research Background Euclidean distance d( x, x ) =

More information

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS

RETRIEVAL MODELS. Dr. Gjergji Kasneci Introduction to Information Retrieval WS RETRIEVAL MODELS Dr. Gjergji Kasneci Introduction to Information Retrieval WS 2012-13 1 Outline Intro Basics of probability and information theory Retrieval models Boolean model Vector space model Probabilistic

More information

Generative Models. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University

Generative Models. CS4780/5780 Machine Learning Fall Thorsten Joachims Cornell University Generative Models CS4780/5780 Machine Learning Fall 2012 Thorsten Joachims Cornell University Reading: Mitchell, Chapter 6.9-6.10 Duda, Hart & Stork, Pages 20-39 Bayes decision rule Bayes theorem Generative

More information

Counterfactual Evaluation and Learning

Counterfactual Evaluation and Learning SIGIR 26 Tutorial Counterfactual Evaluation and Learning Adith Swaminathan, Thorsten Joachims Department of Computer Science & Department of Information Science Cornell University Website: http://www.cs.cornell.edu/~adith/cfactsigir26/

More information

Information Retrieval

Information Retrieval Introduction to Information Retrieval CS276: Information Retrieval and Web Search Christopher Manning and Prabhakar Raghavan Lecture 6: Scoring, Term Weighting and the Vector Space Model This lecture;

More information

CS 584 Data Mining. Association Rule Mining 2

CS 584 Data Mining. Association Rule Mining 2 CS 584 Data Mining Association Rule Mining 2 Recall from last time: Frequent Itemset Generation Strategies Reduce the number of candidates (M) Complete search: M=2 d Use pruning techniques to reduce M

More information

Axiomatizing Conditional Independence and Inclusion Dependencies

Axiomatizing Conditional Independence and Inclusion Dependencies Axiomatizing Conditional Independence and Inclusion Dependencies Miika Hannula University of Helsinki 6.3.2014 Miika Hannula (University of Helsinki) Axiomatizing Conditional Independence and Inclusion

More information

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev

CS4705. Probability Review and Naïve Bayes. Slides from Dragomir Radev CS4705 Probability Review and Naïve Bayes Slides from Dragomir Radev Classification using a Generative Approach Previously on NLP discriminative models P C D here is a line with all the social media posts

More information

Relational Stacked Denoising Autoencoder for Tag Recommendation. Hao Wang

Relational Stacked Denoising Autoencoder for Tag Recommendation. Hao Wang Relational Stacked Denoising Autoencoder for Tag Recommendation Hao Wang Dept. of Computer Science and Engineering Hong Kong University of Science and Technology Joint work with Xingjian Shi and Dit-Yan

More information

Graph Helmholtzian and Rank Learning

Graph Helmholtzian and Rank Learning Graph Helmholtzian and Rank Learning Lek-Heng Lim NIPS Workshop on Algebraic Methods in Machine Learning December 2, 2008 (Joint work with Xiaoye Jiang, Yuan Yao, and Yinyu Ye) L.-H. Lim (NIPS 2008) Graph

More information

Knowledge Compilation and Machine Learning A New Frontier Adnan Darwiche Computer Science Department UCLA with Arthur Choi and Guy Van den Broeck

Knowledge Compilation and Machine Learning A New Frontier Adnan Darwiche Computer Science Department UCLA with Arthur Choi and Guy Van den Broeck Knowledge Compilation and Machine Learning A New Frontier Adnan Darwiche Computer Science Department UCLA with Arthur Choi and Guy Van den Broeck The Problem Logic (L) Knowledge Representation (K) Probability

More information

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York CS 250/251 Discrete Structures I and II Section 005 Fall/Winter 2013-2014 Professor York Practice Quiz March 10, 2014 CALCULATORS ALLOWED, SHOW ALL YOUR WORK 1. Construct the power set of the set A = {1,2,3}

More information

High-Dimensional Indexing by Distributed Aggregation

High-Dimensional Indexing by Distributed Aggregation High-Dimensional Indexing by Distributed Aggregation Yufei Tao ITEE University of Queensland In this lecture, we will learn a new approach for indexing high-dimensional points. The approach borrows ideas

More information

Learning by constraints and SVMs (2)

Learning by constraints and SVMs (2) Statistical Techniques in Robotics (16-831, F12) Lecture#14 (Wednesday ctober 17) Learning by constraints and SVMs (2) Lecturer: Drew Bagnell Scribe: Albert Wu 1 1 Support Vector Ranking Machine pening

More information

Deep Convolutional Neural Networks for Pairwise Causality

Deep Convolutional Neural Networks for Pairwise Causality Deep Convolutional Neural Networks for Pairwise Causality Karamjit Singh, Garima Gupta, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal TCS Research, Delhi Tata Consultancy Services Ltd. {karamjit.singh,

More information

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model

Vector Space Model. Yufei Tao KAIST. March 5, Y. Tao, March 5, 2013 Vector Space Model Vector Space Model Yufei Tao KAIST March 5, 2013 In this lecture, we will study a problem that is (very) fundamental in information retrieval, and must be tackled by all search engines. Let S be a set

More information

CSE 5243 INTRO. TO DATA MINING

CSE 5243 INTRO. TO DATA MINING CSE 5243 INTRO. TO DATA MINING Advanced Frequent Pattern Mining & Locality Sensitivity Hashing Huan Sun, CSE@The Ohio State University /7/27 Slides adapted from Prof. Jiawei Han @UIUC, Prof. Srinivasan

More information

Information Retrieval Basic IR models. Luca Bondi

Information Retrieval Basic IR models. Luca Bondi Basic IR models Luca Bondi Previously on IR 2 d j q i IRM SC q i, d j IRM D, Q, R q i, d j d j = w 1,j, w 2,j,, w M,j T w i,j = 0 if term t i does not appear in document d j w i,j and w i:1,j assumed to

More information

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties

ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties ELEC6910Q Analytics and Systems for Social Media and Big Data Applications Lecture 3 Centrality, Similarity, and Strength Ties Prof. James She james.she@ust.hk 1 Last lecture 2 Selected works from Tutorial

More information

CSE 258, Winter 2017: Midterm

CSE 258, Winter 2017: Midterm CSE 258, Winter 2017: Midterm Name: Student ID: Instructions The test will start at 6:40pm. Hand in your solution at or before 7:40pm. Answers should be written directly in the spaces provided. Do not

More information

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin)

Information Retrieval and Topic Models. Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Information Retrieval and Topic Models Mausam (Based on slides of W. Arms, Dan Jurafsky, Thomas Hofmann, Ata Kaban, Chris Manning, Melanie Martin) Sec. 1.1 Unstructured data in 1620 Which plays of Shakespeare

More information

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms

Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms Probabilistic Low-Rank Matrix Completion with Adaptive Spectral Regularization Algorithms François Caron Department of Statistics, Oxford STATLEARN 2014, Paris April 7, 2014 Joint work with Adrien Todeschini,

More information

Generative Models for Classification

Generative Models for Classification Generative Models for Classification CS4780/5780 Machine Learning Fall 2014 Thorsten Joachims Cornell University Reading: Mitchell, Chapter 6.9-6.10 Duda, Hart & Stork, Pages 20-39 Generative vs. Discriminative

More information

Counterfactual Model for Learning Systems

Counterfactual Model for Learning Systems Counterfactual Model for Learning Systems CS 7792 - Fall 28 Thorsten Joachims Department of Computer Science & Department of Information Science Cornell University Imbens, Rubin, Causal Inference for Statistical

More information

Data Analytics Beyond OLAP. Prof. Yanlei Diao

Data Analytics Beyond OLAP. Prof. Yanlei Diao Data Analytics Beyond OLAP Prof. Yanlei Diao OPERATIONAL DBs DB 1 DB 2 DB 3 EXTRACT TRANSFORM LOAD (ETL) METADATA STORE DATA WAREHOUSE SUPPORTS OLAP DATA MINING INTERACTIVE DATA EXPLORATION Overview of

More information

One Permutation Hashing for Efficient Search and Learning

One Permutation Hashing for Efficient Search and Learning One Permutation Hashing for Efficient Search and Learning Ping Li Dept. of Statistical Science ornell University Ithaca, NY 43 pingli@cornell.edu Art Owen Dept. of Statistics Stanford University Stanford,

More information

Greedy Maximization Framework for Graph-based Influence Functions

Greedy Maximization Framework for Graph-based Influence Functions Greedy Maximization Framework for Graph-based Influence Functions Edith Cohen Google Research Tel Aviv University HotWeb '16 1 Large Graphs Model relations/interactions (edges) between entities (nodes)

More information

Piazza Recitation session: Review of linear algebra Location: Thursday, April 11, from 3:30-5:20 pm in SIG 134 (here)

Piazza Recitation session: Review of linear algebra Location: Thursday, April 11, from 3:30-5:20 pm in SIG 134 (here) 4/0/9 Tim Althoff, UW CS547: Machine Learning for Big Data, http://www.cs.washington.edu/cse547 Piazza Recitation session: Review of linear algebra Location: Thursday, April, from 3:30-5:20 pm in SIG 34

More information

Strongly regular graphs constructed from groups

Strongly regular graphs constructed from groups Strongly regular graphs constructed from groups Dean Crnković Department of Mathematics University of Rijeka Croatia Symmetry vs Regularity Pilsen, Czech Republic, July 2018 This work has been fully supported

More information

Cleaning Interval Graphs

Cleaning Interval Graphs Cleaning Interval Graphs Dániel Marx and Ildikó Schlotter Department of Computer Science and Information Theory, Budapest University of Technology and Economics, H-1521 Budapest, Hungary. {dmarx,ildi}@cs.bme.hu

More information

ClasSi: Measuring Ranking Quality in the Presence of Object Classes with Similarity Information

ClasSi: Measuring Ranking Quality in the Presence of Object Classes with Similarity Information ClasSi: Measuring Ranking Quality in the Presence of Object Classes with Similarity Information Anca Maria Ivanescu, Marc Wichterich, and Thomas Seidl Data Management and Data Exploration Group Informatik

More information

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged.

PageRank algorithm Hubs and Authorities. Data mining. Web Data Mining PageRank, Hubs and Authorities. University of Szeged. Web Data Mining PageRank, University of Szeged Why ranking web pages is useful? We are starving for knowledge It earns Google a bunch of money. How? How does the Web looks like? Big strongly connected

More information

Behavioral Data Mining. Lecture 2

Behavioral Data Mining. Lecture 2 Behavioral Data Mining Lecture 2 Autonomy Corp Bayes Theorem Bayes Theorem P(A B) = probability of A given that B is true. P(A B) = P(B A)P(A) P(B) In practice we are most interested in dealing with events

More information

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan

Term Weighting and the Vector Space Model. borrowing from: Pandu Nayak and Prabhakar Raghavan Term Weighting and the Vector Space Model borrowing from: Pandu Nayak and Prabhakar Raghavan IIR Sections 6.2 6.4.3 Ranked retrieval Scoring documents Term frequency Collection statistics Weighting schemes

More information

DATA MINING LECTURE 4. Similarity and Distance Sketching, Locality Sensitive Hashing

DATA MINING LECTURE 4. Similarity and Distance Sketching, Locality Sensitive Hashing DATA MINING LECTURE 4 Similarity and Distance Sketching, Locality Sensitive Hashing SIMILARITY AND DISTANCE Thanks to: Tan, Steinbach, and Kumar, Introduction to Data Mining Rajaraman and Ullman, Mining

More information

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang

Deep Learning Basics Lecture 7: Factor Analysis. Princeton University COS 495 Instructor: Yingyu Liang Deep Learning Basics Lecture 7: Factor Analysis Princeton University COS 495 Instructor: Yingyu Liang Supervised v.s. Unsupervised Math formulation for supervised learning Given training data x i, y i

More information

Collaborative Filtering. Radek Pelánek

Collaborative Filtering. Radek Pelánek Collaborative Filtering Radek Pelánek 2017 Notes on Lecture the most technical lecture of the course includes some scary looking math, but typically with intuitive interpretation use of standard machine

More information

Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science

Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science Extended IR Models. Johan Bollen Old Dominion University Department of Computer Science jbollen@cs.odu.edu http://www.cs.odu.edu/ jbollen January 20, 2004 Page 1 UserTask Retrieval Classic Model Boolean

More information

Natural Language Processing. Topics in Information Retrieval. Updated 5/10

Natural Language Processing. Topics in Information Retrieval. Updated 5/10 Natural Language Processing Topics in Information Retrieval Updated 5/10 Outline Introduction to IR Design features of IR systems Evaluation measures The vector space model Latent semantic indexing Background

More information

Linear Classifiers IV

Linear Classifiers IV Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers IV Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information