Plasma Traps for Space-Charge Studies : Status and Perspectives. Hiromi Okamoto (Hiroshima Univ.)

Size: px
Start display at page:

Download "Plasma Traps for Space-Charge Studies : Status and Perspectives. Hiromi Okamoto (Hiroshima Univ.)"

Transcription

1 Plasma Traps for Space-Charge Studies : Status and Perspectives Hiromi Okamoto (Hiroshima Univ.)

2 Acknowlegements Past and Present Contributors to the S-POD Project Hiroshima University Hiroyuki Higaki, Kiyokazu Ito (Students) M. Endo, S. Fujimoto, M. Fujioka, K. Fukata, K. Fukushima, H. Hitomi, K. Homma, M. Kano, Y. Mizuno, K. Moriya, K. Nakayama, S. Ohtsubo, K. Okabe, S. Sakao, H. Sugimoto, H. Takeuchi, K. Tanaka, R. Takai, G. Uchimura, S. Yamaguchi Kyoto University Akihiro Mohri Osaka University Kenji Toyoda LBNL & LLNL Steven M. Lund, Andrew M. Sessler, Peter Seidl, David Grote, Jean-Luc Vay 2

3 Purpose Systematic experimental studies of various space-charge effects in high-intensity and high-brightness hadron beams Use of non-neutral plasmas physically equivalent to charged-particle beams in periodic AG channels At Hiroshima University, compact non-neutral plasma trap systems have been developed solely for beam physics purposes. The tabletop experimental tool for space-charge studies are called S-POD ( Simulator for Particle Orbit Dynamics ). Three Paul ion traps and a Penning electron trap are now employed to explore the collective behaviors of intense hadron beams systematically. 3

4 Principle of S-POD Experiments Charged-particle beams in an AG focusing channel Charged-particle Non-neutral plasmas beams in an in AG a trap focusing system channel beam = 1 2 (p 2 x + p 2 y ) K q H Q(x 2 y ) + mγ 3 (βc) plasma = 1 2 (p 2 q x + p 2 y ) K RF (x 2 y 2 ) + q mγ mc φ 3 (βc) φ H = 1 2 plasma 2 (p x 2 H beam = 1 2 (p 2 x + p 2 y ) K Q (x2 y 2 ) + Non-neutral plasmas in a trap system 2 + p 2 y ) K RF (x2 y 2 ) + q mc φ 2 Both interacting many-body systems obey the following equations: Poisson equation Δφ = q ε 0 f (r,p;t)d 3 p Vlasov equation f t + [ f, H ] = 0 Two systems are physically equivalent if governed by similar Hamiltonians. Use this simple fact to study various collective effects in space-charge-dominated beams! 4

5 Why Traps? Very compact Low cost Table-top size (Our Paul traps are shorter than ~20 cm in axial length.) We have several traps of different designs, each of which costs a few k$. Extremely wide parameter range Easy control of tunes and tune depression (and even lattice structures) High resolution & precision measurements MCPs, Faraday cups, and laser-induced fluorescence (LIF) diagnostics No radio-activation No machine damage from any large particle losses 5

6 Present Status 6

7 RF Ion Trap Linear Paul Trap * Operating frequency : 1 MHz * Particle species : Ar +, Ca +, N +, etc. * Plasma lifetime : order of seconds (dependent on plasma conditions) * Tune depression : < 0.8 (without cooling) * Cost : a few thousand USD! Transverse confinement : rf quadrupole Longitudinal confinement : rf or electrostatic potential 7

8 Magnetic Trap Penning Trap with Multi-Ring Electrodes * Particle species : e - Transverse confinement : axial magnetic field Longitudinal confinement : electrostatic potential (+ magnetic mirror) 8 * Field strength : < 500 G

9 S-POD S-POD I AC / DC power sources S-POD II MCP or FC RF trap RF trap Paul trap PC control system Doppler laser cooling Coulomb crystals Ultralow emittance beams S-POD III CCD camera Doppler laser cooling Vacuum system e-gun Lattice-dependent effects Collective resonances S-POD IV atomic oven Magnetic trap RF trap Doppler laser cooler Collective resonances Resonance crossing 9 Halo formation Bunch compression S-POD I

10 Control System Power Supplies All experimental procedures are automated. Lattice input panel Output power PC control panel INPUT PARAMETERS (initial tune, final tune, plasma storage time, number of measurement points, ionization time, end plate voltages, etc.) 10

11 Ultimate Control of Tune Depression S-POD I S-POD I and End-plate spacing = 6 mm II are equipped with End-plate spacing = 60 mm the Doppler laser cooling system for 40Ca+. Space-charge limit (where tune depression = 0) can be reached experimentally! 7.7ns 397nm laser 13:1 866nm laser 0.7s LIF Cooling transition of 40Ca+ 11

12 Recent S-POD Experiments Collective resonance excitation ( Ar + ) Lattice dependence of stop bands ( Ar + ) Resonance crossing ( Ar + ) Halo formation ( e - ) Ultralow-emittance beam stability ( Ca + ) 12

13 Stop Bands in Doublets WARP Filling Factor : ξ Collective (l + l )/L Resonance Condition F D Drift Ratio : k ν ζ g /(L g 0 C l l m Δν P ) F D 2m For P = 1, η = 0.9 Linear(m = 2) : ν 0 C 2 Δν 1 4 Third-order (m = 3) : ν 0 C 3 Δν 1 6, 2 6 S-POD n = 1(primary)+ n = 3, 5, 7 n = 1(primary)+ n = 2, 3, 4 13

14 Stop-Band Splitting : S-POD Experiments When ν 0 x ν 0 y, all stop bands split! Tune Diagram Linear stop band Relative ion number δν ν 0 x ν 0 y 14

15 Resonance Crossing : S-POD Experiments Crossing Speed u δ / n rf δ : tune-sweep width n rf : rf period for tune sweep 15

16 Effect of Lattice Superperiodicity S-POD experiments Emittance growth 2D Warp simulations 16

17 Halo Formation by Sudden External Disturbance e-gun Multi-Ring Electrodes (MREs) Typical e - Plasma Injection & Extraction Scheme FC or MCP with Phosphor screen NO DISTURBANCE DISTURBED V z (maintained V z (40 V at 60V) 50V) 40 V) 17

18 Summary and Near-Future Plans 18

19 Present Status What we have now are : Three electric S-PODs based on Paul traps One magnetic S-POD based on a Penning trap 20% space-charge-induced tune shift available without any particular plasma cooling Ar + or Ca + ion plasmas for the Paul traps & pure electron plasmas for the Penning trap What we can do now are : Collective resonance excitation Arbitrary lattice emulation (but mostly the sinusoidal-wave model employed so far) Forward and backward resonance crossing Mismatch-driven halo formation Coulomb crystal generation 19

20 Possible Near-Future Plans Construction of a new Penning trap Dipole resonance excitation More experiments on longitudinal dynamics Synchrotron resonances Synchro-betatron resonances Longitudinal bunch compression Space-charge effects on bunch aspect ratio and exact lattice structures Detailed study of halo formation Experiment proposals, suggestions, and comments very welcomed! Full-range control of tune depression (from 0 to 1) Plasma stacking scheme RF power generator improvement New cold ion-beam source Fast pulse magnetic-field generator New diagnostic system development Compact emittance monitors Laser-induced fluorescence diagnostics Technical Issues 20

BEAM DYNAMICS STUDIES WITH NON-NEUTRAL PLASMA TRAPS*

BEAM DYNAMICS STUDIES WITH NON-NEUTRAL PLASMA TRAPS* BEAM DYNAMICS STUDIES WITH NON-NEUTRAL PLASMA TRAPS* H. Okamoto #, K. Fukushima, H. Higaki, D. Ishikawa, K. Ito, T. Iwai, K. Moriya, T. Okano, K. Osaki, M. Yamaguchi, AdSM, Hiroshima University, Higashi-Hiroshima

More information

Coulomb crystal extraction from an ion trap for application to nano-beam source"

Coulomb crystal extraction from an ion trap for application to nano-beam source Coulomb crystal extraction from an ion trap for application to nano-beam source" K. Ito, K. Izawa, H. Higaki and H. Okamoto,! Aadvanced Sciences of Matter, Hiroshima University,! 1-3-1 Kagamiyama, Higashi-Hiroshima,

More information

arxiv: v1 [physics.acc-ph] 10 Dec 2018

arxiv: v1 [physics.acc-ph] 10 Dec 2018 arxiv:1812.03761v1 [physics.acc-ph] 10 Dec 2018 A study of coherent and incoherent resonances in high intensity beams using a linear Paul trap L K Martin 1, S Machida 2, D J Kelliher 2 and S L Sheehy 1

More information

ELECTRON COOLING EXPERIMENTS AT S-LSR

ELECTRON COOLING EXPERIMENTS AT S-LSR ELECTRON COOLING EXPERIMENTS AT S-LSR T. Shirai #, S. Fujimoto, M. Ikegami, H. Tongu, M. Tanabe, H. Souda, A. Noda ICR, Kyoto-U, Uji, Kyoto, Japan, K. Noda, NIRS, Anagawa, Inage, Chiba, Japan, T. Fujimoto,

More information

Stability analysis of non-neutral ion plasma in a linear Paul trap and its application to particle beam dynamics

Stability analysis of non-neutral ion plasma in a linear Paul trap and its application to particle beam dynamics Stability analysis of non-neutral ion plasma in a linear Paul trap and its application to particle beam dynamics 216 3 1. Stability analysis of non-neutral ion plasma in a linear Paul trap and its application

More information

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI)

Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI) Beam Diagnostics and Instrumentation JUAS, Archamps Peter Forck Gesellschaft für Schwerionenforschnung (GSI), 2003, A dedicated proton accelerator for 1p-physics at the future GSI Demands facilities for

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

Status of the ESR And Future Options

Status of the ESR And Future Options Status of the ESR And Future Options M. Steck for the Storage Ring Division (C. Dimopoulou, A. Dolinskii, S. Litvinov, F. Nolden, P. Petri, U. Popp, I. Schurig) Outline 1) New Old ESR 2) Slow (Resonant)

More information

Beam halo formation in high-intensity beams

Beam halo formation in high-intensity beams Beam halo formation in high-intensity beams Alexei V. Fedotov,1,2 Brookhaven National Laboratory, Upton, NY 11973, USA Abstract Studies of beam halo became an unavoidable feature of high-intensity machines

More information

The IBEX Paul Trap: Studying accelerator physics without the accelerator

The IBEX Paul Trap: Studying accelerator physics without the accelerator The IBEX Paul Trap: Studying accelerator physics without the accelerator JAI Introducing Seminar 21/5/2015 Dr. Suzie Sheehy John Adams Institute for Accelerator Science & STFC/ASTeC Intense Beams Group

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

RECENT STATUS OF BEAM COOLING AT S-LSR*

RECENT STATUS OF BEAM COOLING AT S-LSR* Proceedings of COOL 11, Alushta, Ukraine MOIO06 RECENT STATUS OF BEAM COOLING AT S-LSR* A. Noda, M. Nakao, H. Souda, H. Tongu, ICR, Kyoto U., Kyoto, Japan, K. Jimbo, IAE, Kyoto U., Kyoto, Japan, T. Fujimoto,

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

Beam dynamics studies of H-beam chopping in a LEBT for project X

Beam dynamics studies of H-beam chopping in a LEBT for project X Beam dynamics studies of H-beam chopping in a LEBT for project X Qing Ji, David Grote, John Staples, Thomas Schenkel, Andrew Lambert, and Derun Li Lawrence Berkeley National Laboratory, 1 Cyclotron Road,

More information

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling

A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling G.A. Westenskow, D.P. Grote; LLNL J.W. Kwan, F. Bieniosek; LBNL PAC07 - FRYAB01 Albuquerque, New Mexico June 29, 2007 This work has

More information

Crystalline beam emulations in a pulse-excited linear Paul trap

Crystalline beam emulations in a pulse-excited linear Paul trap PHYSICS OF PLASMAS VOLUME 8, NUMBER 4 APRIL 200 Crystalline beam emulations in a pulse-excited linear Paul trap Niels Kjærgaard a) and Michael Drewsen Institute of Physics and Astronomy, Aarhus University,

More information

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI

Beam Diagnostics Lecture 3. Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Beam Diagnostics Lecture 3 Measuring Complex Accelerator Parameters Uli Raich CERN AB-BI Contents of lecture 3 Some examples of measurements done with the instruments explained during the last 2 lectures

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005

RFQ Status. Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 RFQ Status & Testing of the RFQ Mathew Smith: UBC/TRIUMF TITAN Collaboration meeting June 10th 2005 Overview TITAN Background

More information

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses

Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses Optimization of the SIS100 Lattice and a Dedicated Collimation System for Ionisation Losses P. Spiller, K. Blasche, B. Franczak, J. Stadlmann, and C. Omet GSI Darmstadt, D-64291 Darmstadt, Germany Abstract:

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop

Measuring very low emittances using betatron radiation. Nathan Majernik October 19, 2017 FACET-II Science Workshop Measuring very low emittances using betatron radiation Nathan Majernik October 19, 2017 FACET-II Science Workshop Plasma photocathode injection Trojan horse High and low ionization threshold gases Blowout

More information

Self-consistent simulations of highintensity beams and electron-clouds.

Self-consistent simulations of highintensity beams and electron-clouds. Self-consistent simulations of highintensity beams and electron-clouds. Jean-Luc Vay Heavy Ion Fusion Science Virtual National Laboratory Lawrence Berkeley National Laboratory Many thanks to collaborators

More information

Overview of JLEIC beam physics simulations. Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab

Overview of JLEIC beam physics simulations. Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab Overview of JLEIC beam physics simulations Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab Overview Machine specifications CEBAF machine as an electron injector Electron

More information

Suppression of Radiation Excitation in Focusing Environment * Abstract

Suppression of Radiation Excitation in Focusing Environment * Abstract SLAC PUB 7369 December 996 Suppression of Radiation Excitation in Focusing Environment * Zhirong Huang and Ronald D. Ruth Stanford Linear Accelerator Center Stanford University Stanford, CA 94309 Abstract

More information

The 10th International Workshop on Accelerator Alignment, KEK, Tsukuba, February 2008 ALIGNMENT OF S-LSR

The 10th International Workshop on Accelerator Alignment, KEK, Tsukuba, February 2008 ALIGNMENT OF S-LSR ALIGNMENT OF S-LSR H Souda, M Ikegami, T Ishikawa, A Noda, T Shirai, M Tanabe, H Tongu Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan T Takeuchi Accelerator Engineering Corporation,

More information

!"#$%$!&'()$"('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS

!#$%$!&'()$('*+,-')'+-$#..+/+,0)&,$%.1&&/$ LONGITUDINAL BEAM DYNAMICS LONGITUDINAL BEAM DYNAMICS Elias Métral BE Department CERN The present transparencies are inherited from Frank Tecker (CERN-BE), who gave this course last year and who inherited them from Roberto Corsini

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

CERN LIBRARIES, GENEVA CM-P Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences. Preprint

CERN LIBRARIES, GENEVA CM-P Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences. Preprint CERN LIBRARIES, GENEVA CM-P00100512 Nuclear Physics Institute, Siberian Branch of the USSR Academy of Sciences Preprint Experimental Study of Charge Exchange Injection of Protons into Accelerator and Storage

More information

Issues of Electron Cooling

Issues of Electron Cooling Issues of Electron Cooling Yaroslav Derbenev derbenev@jlab.org JLEIC Spring 2016 Collaboration Meeting JLab, March 29-31, 2016 Outline Friction force Magnetized cooling Misalignment impact Cooling rates

More information

BEAM DYNAMICS ISSUES IN THE SNS LINAC

BEAM DYNAMICS ISSUES IN THE SNS LINAC BEAM DYNAMICS ISSUES IN THE SNS LINAC A. Shishlo # on behalf of the SNS Accelerator Group, ORNL, Oak Ridge, TN 37831, U.S.A. Abstract A review of the Spallation Neutron Source (SNS) linac beam dynamics

More information

HIGH INTENSITY BEAM PHYSICS AT UMER

HIGH INTENSITY BEAM PHYSICS AT UMER HIGH INTENSITY BEAM PHYSICS AT UMER B. L. Beaudoin, S. Bernal, M. Cornacchia, K. Fiuza, I. Haber, R.A. Kishek, T.W. Koeth, M. Reiser, D.F. Sutter, H. Zhang, and P.G. O Shea, Institute for Research in Electronics

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG

ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG ACCELERATION, DECELERATION AND BUNCHING OF STORED AND COOLED ION BEAMS AT THE TSR, HEIDELBERG M. Grieser, R. Bastert, K. Blaum, H. Buhr, R. von Hahn, M. B. Mendes, R. Repnow, A. Wolf Max-Planck-Institut

More information

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons)

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons) Statusreport Status of the GSI accelerators for FRS operation Jens Stadlmann (FAIR Synchrotrons) Overview Intensities reached and "candidates" for experiments. Uranium? Upgrade program New developments:

More information

Overview of Heavy Ion Fusion Accelerator Research in the U.S. Virtual National Laboratory

Overview of Heavy Ion Fusion Accelerator Research in the U.S. Virtual National Laboratory Overview of Heavy Ion Fusion Accelerator Research in the U.S. Virtual National Laboratory J. J. Barnard 1, D. Baca 2, F. M. Bieniosek 2, C. M. Celata 2, R. C. Davidson 3, A. Friedman 1, D. P. Grote 1,

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Cornell Injector Performance

Cornell Injector Performance Cornell Injector Performance Adam Bartnik 1 Cornell Injector Performance as an ERL injector 2 Cornell Injector Performance as an ERL injector as an FEL injector (e.g. LCLS-II) as an injector for EIC applications

More information

THE HIGH CURRENT TRANSPORT EXPERIMENT FOR HEAVY ION INERTIAL FUSION*

THE HIGH CURRENT TRANSPORT EXPERIMENT FOR HEAVY ION INERTIAL FUSION* THE HIGH CURRENT TRANSPORT EXPERIMENT FOR HEAVY ION INERTIAL FUSION* P.A. Seidl, D. Baca, F. M. Bieniosek, C.M. Celata, A. Faltens, L. R. Prost, G. Sabbi, W. L. Waldron, Lawrence Berkeley National Laboratory,

More information

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks

Ion traps. Trapping of charged particles in electromagnetic. Laser cooling, sympathetic cooling, optical clocks Ion traps Trapping of charged particles in electromagnetic fields Dynamics of trapped ions Applications to nuclear physics and QED The Paul trap Laser cooling, sympathetic cooling, optical clocks Coulomb

More information

Confinement of toroidal non-neutral plasma in Proto-RT

Confinement of toroidal non-neutral plasma in Proto-RT Workshop on Physics with Ultra Slow Antiproton Beams, RIKEN, March 15, 2005 Confinement of toroidal non-neutral plasma in Proto-RT H. Saitoh, Z. Yoshida, and S. Watanabe Graduate School of Frontier Sciences,

More information

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ

Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ Time resolved transverse and longitudinal phase space measurements at the high brightness photo injector PITZ 1. Motivation 2. Transverse deflecting structure 3. Longitudinal phase space tomography 4.

More information

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE*

SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* SRF GUN CHARACTERIZATION - PHASE SPACE AND DARK CURRENT MEASUREMENTS AT ELBE* E. Panofski #, A. Jankowiak, T. Kamps, Helmholtz-Zentrum Berlin, Berlin, Germany P.N. Lu, J. Teichert, Helmholtz-Zentrum Dresden-Rossendorf,

More information

Dynamics of Ions in an Electrostatic Ion Beam Trap

Dynamics of Ions in an Electrostatic Ion Beam Trap Dynamics of Ions in an Electrostatic Ion Beam Trap Daniel Zajfman Dept. of Particle Physics Weizmann Institute of Science Israel and Max-Planck Institute for Nuclear Physics Heidelberg, Germany Charles

More information

Production of HCI with an electron beam ion trap

Production of HCI with an electron beam ion trap Production of HCI with an electron beam ion trap I=450 ma E= 5 kev axially: electrodes radially: electron beam space charge total trap potential U trap 200 V (U trap ion charge) 10000 ev 15000 A/cm 2 n

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

Alignment of S-LSR. H. Souda, M. Tanabe, T. Ishikawa, M. Ikegami, T. Takeuchi*, H. Tongu, T. Shirai, A. Noda

Alignment of S-LSR. H. Souda, M. Tanabe, T. Ishikawa, M. Ikegami, T. Takeuchi*, H. Tongu, T. Shirai, A. Noda H. Souda, M. Tanabe, T. Ishikawa, M. Ikegami, T. Takeuchi*, H. Tongu, T. Shirai, A. Noda ICR, Kyoto University *Accelerator Engineering Corporation Contents 1. Introduction of S-LSR Purpose and specification

More information

UMER : The University of Maryland Electron Storage Ring

UMER : The University of Maryland Electron Storage Ring UMER : The University of Maryland Electron Storage Ring Rami A. Kishek on behalf of UMER collaboration Institute for Research in Electronics & Applied Physics University of Maryland, College Park, MD Research

More information

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer

Huashun Zhang. Ion Sources. With 187 Figures and 26 Tables Э SCIENCE PRESS. Springer Huashun Zhang Ion Sources With 187 Figures and 26 Tables Э SCIENCE PRESS Springer XI Contents 1 INTRODUCTION 1 1.1 Major Applications and Requirements 1 1.2 Performances and Research Subjects 1 1.3 Historical

More information

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title High current density beamlets from RF Argon source for heavy ion fusion applications Permalink https://escholarship.org/uc/item/6zh6c50m

More information

Comparison of hollow cathode and Penning discharges for metastable He production

Comparison of hollow cathode and Penning discharges for metastable He production INSTITUTE OF PHYSICS PUBLISHING Plasma Sources Sci. Technol. 11 (2002) 426 430 Comparison of hollow cathode and Penning discharges for metastable He production PLASMA SOURCES SCIENCE AND TECHNOLOGY PII:

More information

Expansion and Equilibration of Ultracold Neutral Plasmas

Expansion and Equilibration of Ultracold Neutral Plasmas Expansion and Equilibration of Ultracold Neutral Plasmas Thomas C. Killian Department of Physics and Astronomy 9 th NNP Conference, Columbia University Access Ultracold Temperatures with Laser Cooled Strontium

More information

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation

S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation S1: Particle Equations of Motion S1A: Introduction: The Lorentz Force Equation The Lorentz force equation of a charged particle is given by (MKS Units):... particle mass, charge... particle coordinate...

More information

Chemistry Instrumental Analysis Lecture 35. Chem 4631

Chemistry Instrumental Analysis Lecture 35. Chem 4631 Chemistry 4631 Instrumental Analysis Lecture 35 Principle components: Inlet Ion source Mass analyzer Ion transducer Pumps Signal processor Mass analyzers Quadrupole Time of Flight Double Focusing Ion

More information

FLSR - Frankfurt Low-Energy Storage Ring

FLSR - Frankfurt Low-Energy Storage Ring FLSR - Frankfurt Low-Energy Storage Ring A fully electrostatic storage ring for ions of energies up to 50keV trap for dynamic ions (atoms/molecules): K.E. Stiebing, V. Alexandrov, R. Dörner, S. Enz, N.

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP012505 TITLE: Coulomb Crystals in a Pulse-Excited Linear Paul Trap DISTRIBUTION: Approved for public release, distribution unlimited

More information

Ion trap quantum processor

Ion trap quantum processor Ion trap quantum processor Laser pulses manipulate individual ions row of qubits in a linear Paul trap forms a quantum register Effective ion-ion interaction induced by laser pulses that excite the ion`s

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Intro. Lecture 05: Diagnostics

Intro. Lecture 05: Diagnostics Intro. Lecture 05: Diagnostics * Prof. Steven M. Lund Physics and Astronomy Department Facility for Rare Isotope Beams (FRIB) Michigan State University (MSU) US Particle Accelerator School (USPAS) Lectures

More information

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1

D. Brandt, CERN. CAS Frascati 2008 Accelerators for Newcomers D. Brandt 1 Accelerators for Newcomers D. Brandt, CERN D. Brandt 1 Why this Introduction? During this school, you will learn about beam dynamics in a rigorous way but some of you are completely new to the field of

More information

Figure-8 Storage RingF8SRNon Neutral Plasma Confinement in Curvilinear Guiding Fields

Figure-8 Storage RingF8SRNon Neutral Plasma Confinement in Curvilinear Guiding Fields Figure-8 Storage Ring F8SR Non Neutral Plasma Confinement in Curvilinear Guiding Fields Joschka F. Wagner Institute of Applied Physics (IAP) Workgroup Prof. Ulrich Ratzinger Non Neutral Plasma-Group (NNP)

More information

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator

Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator Beam Shaping and Permanent Magnet Quadrupole Focusing with Applications to the Plasma Wakefield Accelerator R. Joel England J. B. Rosenzweig, G. Travish, A. Doyuran, O. Williams, B. O Shea UCLA Department

More information

Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence

Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence Assessment of the Azimuthal Homogeneity of the Neutral Gas in a Hall Effect Thruster using Electron Beam Fluorescence IEPC-2015-91059 / ISTS-2015-b-91059 Presented at Joint Conference of 30th International

More information

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011

S.Y. Lee Bloomington, Indiana, U.S.A. June 10, 2011 Preface Accelerator science took off in the 20th century. Accelerator scientists invent many innovative technologies to produce and manipulate high energy and high quality beams that are instrumental to

More information

Longitudinal Momentum Mining of Beam Particles in a Storage Ring

Longitudinal Momentum Mining of Beam Particles in a Storage Ring Longitudinal Momentum Mining of Beam Particles in a Storage Ring C. M. Bhat Fermi National Accelerator Laboratory, P.O.Box 5, Batavia, IL 651, USA (Submitted for publications) I describe a new scheme for

More information

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation

More information

High Pressure, High Gradient RF Cavities for Muon Beam Cooling

High Pressure, High Gradient RF Cavities for Muon Beam Cooling High Pressure, High Gradient RF Cavities for Muon Beam Cooling R. P. Johnson, R. E. Hartline, M. Kuchnir, T. J. Roberts Muons, Inc. C. M. Ankenbrandt, A. Moretti, M. Popovic Fermilab D. M. Kaplan, K. Yonehara

More information

Low Emittance Machines

Low Emittance Machines CERN Accelerator School Advanced Accelerator Physics Course Trondheim, Norway, August 2013 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and

More information

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University Small Isochronous Ring (SIR) project at NSCL, MSU Eduard Pozdeyev NSCL, Michigan Sate University Talk Outline Isochronous regime in accelerators, application to Isochronous Cyclotrons Space charge effects

More information

LCLS Injector Prototyping at the GTF

LCLS Injector Prototyping at the GTF LCLS Injector Prototyping at at the GTF John John Schmerge, SLAC SLAC November 3, 3, 23 23 GTF GTF Description Summary of of Previous Measurements Longitudinal Emittance Transverse Emittance Active LCLS

More information

IFMIF mini-workshop on Beam Instrumentation. Ciemat, Madrid (Spain) 2-3 July 2007

IFMIF mini-workshop on Beam Instrumentation. Ciemat, Madrid (Spain) 2-3 July 2007 IFMIF BIW Agenda IFMIF mini-workshop on Beam Instrumentation Ciemat, Madrid (Spain) 2-3 July 2007 Monday, 2 july 2007 9:00 J. Sanchez Welcome message Today 9:10 A. Mosnier (CEA-Saclay) Instrumentation

More information

Low energy electron storage ring with tunable compaction factor

Low energy electron storage ring with tunable compaction factor REVIEW OF SCIENTIFIC INSTRUMENTS 78, 075107 2007 Low energy electron storage ring with tunable compaction factor S. Y. Lee, J. Kolski, Z. Liu, X. Pang, C. Park, W. Tam, and F. Wang Department of Physics,

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

POSITRON ACCUMULATOR SCHEME for AEGIS

POSITRON ACCUMULATOR SCHEME for AEGIS POSITRON ACCUMULATOR SCHEME for AEGIS A. S. Belov, S. N. Gninenko INR RAS, Moscow 1 What positron beam is requiered for AEGIS? Number of antihydrogen atoms produced with AEGIS scheme: N Hbar ~ ce n H-

More information

Colliding Crystalline Beams

Colliding Crystalline Beams BNL-65137 Colliding Crystalline Beams J. Wei BNL A.M. Sessler LBNL June 1998 RHIC Project Brookhaven National Laboratory Operated by Brookhaven Science Associates Upton NY 11973 Under Contract with the

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI

STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI STATUS REPORT ON STORAGE RING REALIGNMENT AT SLRI S. Srichan #, A. Kwankasem, S. Boonsuya, B. Boonwanna, V. Sooksrimuang, P. Klysubun Synchrotron Light Research Institute, 111 University Ave, Muang District,

More information

ULTRALOW EMITTANCE BEAM PRODUCTION BASED ON DOPPLER LASER COOLING AND COUPLING RESONANCE *

ULTRALOW EMITTANCE BEAM PRODUCTION BASED ON DOPPLER LASER COOLING AND COUPLING RESONANCE * ULTRALOW EMITTANCE BEAM PRODUCTION BASED ON DOPPLER LASER COOLING AND COUPLING RESONANCE * A. Noda #, M. Nakao, NIRS, Chiba-city, Japan H. Okamoto, K. Osaki, HU/AdSM, Higashi-Hiroshima, Japan Y. Yuri,

More information

Mass Spectrometry. What is Mass Spectrometry?

Mass Spectrometry. What is Mass Spectrometry? Mass Spectrometry What is Mass Spectrometry? Mass Spectrometry (MS): The generation of gaseous ions from a sample, separation of these ions by mass-to-charge ratio, and measurement of relative abundance

More information

Accelerator Physics Homework #3 P470 (Problems: 1-5)

Accelerator Physics Homework #3 P470 (Problems: 1-5) Accelerator Physics Homework #3 P470 (Problems: -5). Particle motion in the presence of magnetic field errors is (Sect. II.2) y + K(s)y = B Bρ, where y stands for either x or z. Here B = B z for x motion,

More information

BEAM DYNAMICS IN HEAVY ION FUSION

BEAM DYNAMICS IN HEAVY ION FUSION 1996 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or

More information

Low Emittance Machines

Low Emittance Machines Advanced Accelerator Physics Course RHUL, Egham, UK September 2017 Low Emittance Machines Part 1: Beam Dynamics with Synchrotron Radiation Andy Wolski The Cockcroft Institute, and the University of Liverpool,

More information

Space Charge Studies on the ISIS Ring

Space Charge Studies on the ISIS Ring Space Charge Studies on the ISIS Ring C M Warsop, D J Adams, B Jones, S J Payne, B G Pine, H V Smith, C C Wilcox, R E Williamson, ISIS, RAL, UK with contributions from S Machida, C R Prior, G H Rees &

More information

Physics 598ACC Accelerators: Theory and Applications

Physics 598ACC Accelerators: Theory and Applications Physics 598ACC Accelerators: Theory and Instructors: Fred Mills, Deborah Errede Lecture 6: Collective Effects 1 Summary A. Transverse space charge defocusing effects B. Longitudinal space charge effects

More information

Bernhard Holzer, CERN-LHC

Bernhard Holzer, CERN-LHC Bernhard Holzer, CERN-LHC * Bernhard Holzer, CERN CAS Prague 2014 x Liouville: in reasonable storage rings area in phase space is constant. A = π*ε=const x ε beam emittance = woozilycity of the particle

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

High-Intensity Ion Beam Neutralization and Drift Compression Experiments

High-Intensity Ion Beam Neutralization and Drift Compression Experiments 1 / 37 High-Intensity Ion Beam Neutralization and Drift Compression Experiments Prabir K. Roy 1 1 Lawrence Berkeley National Laboratory (LBNL) Berkeley, CA 94720 March 08, 2010 (with S. S. Yu, P.A. Seidl,

More information

1. Introduction. 2. New approaches

1. Introduction. 2. New approaches New Approaches To An Indium Ion Optical Frequency Standard Kazuhiro HAYASAKA National Institute of Information and Communications Technology(NICT) e-mail:hayasaka@nict.go.jp ECTI200 . Introduction Outline

More information

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock

Direct identification of the elusive 229m. Th isomer: Milestone towards a Nuclear Clock Direct identification of the elusive 229m Th isomer: Milestone towards a Nuclear Clock P.G. Thirolf, LMU München 229m Th properties and prospects Experimental approach & setup Measurements on 229m Th:

More information

ELECTRON COOLING OF PB54+ IONS IN LEIR

ELECTRON COOLING OF PB54+ IONS IN LEIR ELECTRON COOLING OF PB+ IONS IN LEIR G. Tranquille, CERN, Geneva, Switzerland Abstract Electron cooling is central in the preparation of dense bunches of lead beams for the LHC. Ion beam pulses from the

More information

Part II Effect of Insertion Devices on the Electron Beam

Part II Effect of Insertion Devices on the Electron Beam Part II Effect of Insertion Devices on the Electron Beam Pascal ELLEAUME European Synchrotron Radiation Facility, Grenoble II, 1/14, P. Elleaume, CAS, Brunnen July -9, 3. Effect of an Insertion Device

More information

University of Huddersfield Repository

University of Huddersfield Repository University of Huddersfield Repository Edgecock, R. Commissioning of the EMMA Non-Scaling FFAG Original Citation Edgecock, R. (2010) Commissioning of the EMMA Non-Scaling FFAG. In: Proceedings of the 1st

More information

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004

Beam Dynamics. Gennady Stupakov. DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Gennady Stupakov DOE High Energy Physics Review June 2-4, 2004 Beam Dynamics Research in ARDA Broad expertise in many areas: lattice design, collective effects, electron cloud, beam-beam

More information

Low Energy RHIC electron Cooling (LEReC)

Low Energy RHIC electron Cooling (LEReC) Low Energy RHIC electron Cooling (LEReC) LEReC overview: project goal and cooling approach Alexei Fedotov MEIC Collaboration Meeting 30 31 LEReC Project Mission/Purpose The purpose of the LEReC is to provide

More information

TITAN EBIT MCP Detector Assembly. Cecilia Leung Undergrad summer student 2007

TITAN EBIT MCP Detector Assembly. Cecilia Leung Undergrad summer student 2007 TITAN EBIT MCP Detector Assembly Cecilia Leung Undergrad summer student 2007 TRIUMF Summer Student Symposium Tuesday, July 31 2007 TITAN Facility at TRIUMF EBIT (& its role) DETECTOR SYSTEM Requirements

More information

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman

Accelerator. Physics of PEP-I1. Lecture #7. March 13,1998. Dr. John Seeman Accelerator Physics of PEP-1 Lecture #7 March 13,1998 Dr. John Seeman Accelerator Physics of PEPJ John Seeman March 13,1998 1) What is PEP-? Lecture 1 2) 3) Beam parameters for an luminosity of 3~1~~/cm~/sec

More information