Space Charge Studies on the ISIS Ring

Size: px
Start display at page:

Download "Space Charge Studies on the ISIS Ring"

Transcription

1 Space Charge Studies on the ISIS Ring C M Warsop, D J Adams, B Jones, S J Payne, B G Pine, H V Smith, C C Wilcox, R E Williamson, ISIS, RAL, UK with contributions from S Machida, C R Prior, G H Rees & members of ASTeC/IB, RAL, UK V Kornilov, GSI, Germany Space Charge 15, Oxford University, UK, March 2015

2 Contents 1. Introduction to ISIS 2. Reasons for Space Charge Study Developments and Upgrades 3. What we can learn from ISIS 4. Present Space Charge R&D Topics 5. Summary 6. Acknowledgements 7. ISIS tour

3 1. The ISIS Facility Outline of ISIS The ISIS Facility Injector H - Penning Ion Source 665 kev RFQ 70 MeV DTL Linac Ring MeV RCS Target Stations TS1 40 Hz TS2 10 Hz Mean beam power ~ 200 kw

4 1. The ISIS Synchrotron Intensity and Loss Through Cycle Injection 2.8 x10 13 ppp Circumference: 163 m Energy Range: MeV Rep Rate: 50 Hz Intensity: x10 13 ppp Beam Power: kw Losses: Inj: 2%, Trap: <3%, Acc/Ext <0.5% Injection: 130 turn, H - charge-exchange Acceptances: Collimated ~350 π mm mr RF System: h=2, f 2 = MHz, V 2 ~160kV/turn (2 bunches) h=4, f 4 = MHz, V 4 ~80 kv/turn Extraction: Single turn, vertical Tunes: (Q x, Q y )=(4.31, 3.83) (programmable) Extraction

5 2. Reasons for Space Charge Study 2 Why do we care about space charge at ISIS? To identify the best upgrade routes and development ideas More specifically studies for: Improved operations Increase running intensity from 210 μa to consistent 240 μa Upgrades to the existing machine ~ 0.5 MW Upgrade injector from 70 to 180 MeV Develop next generation short pulse spallation source ~ 10 MW ISIS II idea: A flexible 1-10 MW, multi target design Main schemes presently based on RCS, FFAG accelerators

6 2. Reasons for Space Charge Study 2.1 Upgrades to the existing ISIS machine Main route: New 180 MeV injector Injects into existing 800 MeV ring 0.5 MW New injection system ~ 8E13 ppp, 50 Hz New 180 MeV Linac Existing 70 MeV Linac Injection Upgrade Design Study Intensity limits losses Space charge, instabilities Related, smaller, piece-wise upgrades also possible Ideas: superconducting linac section, injection upgrades,

7 2. Reasons for Space Charge Study 2.1 Upgrades to the existing ISIS machine Main route: New 180 MeV injector Injects into existing 800 MeV ring 0.5 MW New injection system ~ 8E13 ppp, 50 Hz New 180 MeV Linac Injection Upgrade Design Study Intensity limits losses Space charge, instabilities Related, smaller, piece-wise upgrades also possible Ideas: superconducting linac section, injection upgrades, New Target?

8 2. Reasons for Space Charge Study D J Adams, R E Williamson, G H Rees, C R Prior, C M Warsop, et al GeV RCS cavities 2.2 ISIS II: 1-10 MW machine RCS route Starting point: 5 MW RCS (G H Rees) Beginning detailed simulation study Beam dynamics of painting, capture triplet triplet cavities collimators cavities dipoles 8 dipole cavities dipoles extraction to 2 MW target GeV RCS 5 Super Period, 370 m, RF (h=4) Optimised for low loss multi turn H - injection Operation at 30 Hz, ppp (2MW), Upgrade to 50 Hz, (5 MW) Two stacked produce 10 MW. H, Hˉ beams 800 MeV Hˉ Initial injection simulations (ORBIT) (1.3E13 ppp, h=4, 30 Hz) Intensity limits losses Injection, 3D painting, Space charge, instabilities Injection region Trial painting scheme

9 2. Reasons for Space Charge Study GeV FFAG 2.3 ISIS II: 1-10 MW machine - FFAG route FFAGs now a serious option Studies of ASTeC/IB at RAL Designs now being developed EG G H Rees GeV FFAG design Intensity limits losses? New R&D into intensity limits of FFAG Experimental work KURRI with ASTeC/IB SPOD at RAL (plasma trap) Ideas for new research ring on FETS Understand relative merits FFAG & RCS Important overlap in RCS-FFAG studies KURRI FFAG D Kelliher, S Machida, C R Prior, G H Rees, S Sheehy, et al ASTeC/IB

10 3. ISIS contribution to studies 3.1 What can the ISIS ring teach us? Generally Rare combination of high space charge & low loss Large tune shifts ( Q~0.5) low loss fast cycle Can also reconfigure beam to study different effects (e.g. SRM) The challenge to understand real operational loss Complicated 3D process not a convenient idealised case Detailed empirical optimisation required for operations What potential is there for better understanding and control? Is improved beam control the route to higher intensity? ISIS Tune Footprint (Q x, Q y ) ORBIT, I= 2.8E13 ppp Maintain links between key R&D and operational machines SPOD at RAL, high intensity FFAG s,

11 4.1.1 Space charge image studies Effects of Images in vacuum vessels ISIS vessels are rectangular and conformal May provide additional driving terms for loss Loss driven by orbit errors? (G H Rees, C R Prior) Developing Set code to model effects Aim to model realistic process 2.5D PIC model Essential to look at simpler models, understand effects Recent work studying details of image terms Use FFT and FEA solvers compare theory E field for KV beam No boundary Square boundary Difference: image effect ISIS vacuum vessels Electric field for KV beam Meshes for FFT, FEA solvers B G Pine

12 4.1.2 Space charge image studies Useful expansion for parallel plates (R Baartman) Good basis for understanding intensity dependent driving terms What is effect of transition parallel plate rectangular? Detailed simulation studies Different for ~ square aperture Give effective driving terms e.g. closed orbit driven terms Model to explain simulations Can include 2D coupling Image terms ε 1, ξ 1, κ 30 vs aspect ratio Image terms κ 12, κ 21, κ 03, vs aspect ratio Parallel plate values Parallel plate values B G Pine

13 4.1.3 Space charge image studies Simulations now under way Initial results promising Next steps Intensity x 1.0E14 Simpler simulations: smooth focusing 2D PIC with closed orbit errors Extend to AG case, then 3D PIC with longitudinal motion Compare effects of different geometries (e.g. circular) Identify some experimentally observable behaviour Will give key information on ISIS losses Relative merits of different vacuum vessel geometries Sextupole Amplitude Sextupole Frequency Previous results: coherent sextupole resonance probably due to images Sextupole Amplitude Sextupole strength Intensity x 1.0E14 (Y,Y ) B G Pine

14 4.2.1 Half integer resonance with space charge Key loss mechanism Can we understand, predict evolution of halo, loss? Experimental studies 2D coasting beam RF off, DC field, inject small beam εε xx = εε yy εε rrrrrr 20 π mm mr, 2Q y =7 driving term, Q y =3.6 Ramp intensity (1E13 ppp), push onto resonance Study evolution of profile Observations agree with ORBIT models Clear formation of core and lobes ORBIT results Loss & Tune vs time (intensity) Transverse profile Measured over 400 μs

15 4.2.2 Half integer resonance Previous work: agreement measurement-simulation Rotation of half integer lobes Control with driving term Δk(θ)=k 0 cos(2q y θ+φ) Dependence on driving term phase Measured ORBIT Expected motion around ring at half integer resonance (illustrative example) Phase ϕ 1 (Y, Y') s Phase ϕ 2 (Y, Y')

16 4.2.3 Half integer resonance Recent work: agreement measurement-simulation Measure as a function of tune and driving term Dependence on tune Dependence on driving term Measured ORBIT Measured ORBIT Q 1 =3.71 DT 1 =0.02 Q 2 =3.67 DT 2 =0.03 Q 3 =3.63 DT 3 =0.06

17 Recent work: Observation of stationary distributions Slower accumulation of beam formation of stable lobes Short lived lobes ~50 turns (I inj =22 ma) Half integer resonance Measured transverse profiles over 1 ms Long lived lobes ~500 turns (I inj =11 ma) Initial experiments on stable halo (profiles now shown as colour contour) (i) Constant (as above) (ii) Ramp Q down (iii) Ramp Q down/up (iv) Rotate phase

18 Speculation & work in progress! Models to explain observations? Coherent model limited: coherent limit Approach from incoherent direction? Simplest 1D single particle model Observation Half integer resonance Total radial force Focussing + space charge Radial force (Y, Y ) Here have space charge potential 1 st guess usually KV model Linear motion: cannot describe growth 2 nd guess WB model (non-stationary) Non-linear motion: predict halo? Radial force circular KV (Y, Y ) Radial force circular WB Rough example! Simple simulations Driving term, fixed potential Non-linear motion ~ edge of core Complicated ~ still studying Incoherent model of halo? Next add coherent motion? RMS envelope modify halo Coherent model of halo? May be a useful idea Different KV-WB coherent motion?

19 D J Adams, B Jones, V Kornilov, R E Williamson, C M Warsop, et al Head-tail instability: ops Limits operational intensity With dual harmonic RF upgrade Previously cured with Q y ramp Driven by resistive-wall Operational observations Symmetric bunches unstable Plots show effect of θ variation Normal beam Low loss 1RF = 108 kv, 2RF = 52.8 kv Δ = 0.489, δθ = 0 o Normal beam + Θ shift Large loss! 1RF = 108 kv, 2RF = 52.8 kv Δ = 0.489, δθ = -10 o ISIS Beam Bunches at ~ 2 ms Sum signal Difference signal Damper in development R&D under way See below Beam Loss vs Time 0-5 ms Loss!

20 4.3.2 Head tail experiments: lower intensity Measurements: Monitor sum/difference Aim to understand simpler case Minimise effects of space charge Study single harmonic RF, low intensity Simpler case, compare simulations & theory Experiments: mode m=1; code and theory m=2 Measured growth rates faster than theory Clearly not understood yet Plans Better model of beam impedances (Measurements and simulations) Explore limits of Sacherer theory (G H Rees) Build kicker/damper system HEADTAIL Simulation: Mode motion and growth V Kornilov, R E Williamson, D J Adams, B Jones, C M Warsop, et al

21 4.3.3 Head tail experiments: high intensity Aim to study effects of space charge Effects of space charge and images Vladimir Kornilov talk on Wednesday two threshold behaviour Beam stabilises at higher intensity Landau damped: space charge + images Qualitative agreement: simulation, theory, experiment Plans Build up detailed simulations of process Improve measurements (bunched SRM) Better model of beam impedances (again!) V Kornilov, R E Williamson, D J Adams, B Jones, C M Warsop, et al

22 4.3.4 Head-tail work outline plans at RAL Simulation work Investigation of HEADTAIL code (in progress) Investigation of TRANFT* code (in progress) Development of RAL code (next) Possibly adapt Set 3D PIC Impedance modelling Experimental work Beam based impedance measurements Measurements of emittance at instability Bunched beam, storage ring mode TRANFT* Simulation: Mode motion and growth Measurement Difference Signal 150 turns horizontally along bunch vertically (frequency sweep removed) Collaboration Continue to compare results and ideas with GSI colleagues *M Blaskiewicz R E Williamson, C M Warsop, D J Adams, B Jones, et al

23 Loss Through ISIS Cycle 4.4 Understanding real operational loss R&D above studies single loss mechanisms What are real loss mechanisms for ISIS trapping? 3D trapping process complicated many effects? Longitudinal loss (non-adiabatic capture) Transverse loss (half-integer crossing?) Tune Footprint (Q x, Q y ) ORBIT ORBIT Results: (x, x') (y, y') (x, y) ( E, ϕ) 2.8E13 ppp 0.5 ms How can we find out? ORBIT models give ~ agreement on loss vs time How do we know what processes are acting? Working to improve understanding of models Effect of transverse in/coherent motion, driving terms Loss vs Time ORBIT & Measurement

24 C C Wilcox, R E Williamson, S J Payne, C M Warsop, et al 4.5 R&D for transverse profile measurements Good transverse profile measurements essential Detailed models of ISIS residual gas ionisation monitors CST fields solvers and in-house code tracks ion trajectories Allow for non-linearities and space charge. Recent results checking halo measurements Input distributions predicted by ORBIT Check behaviour as function of drift field and intensity Simulation of Ion tracks Intensity Drift field 15 kv Drift field 30 kv 0e13ppp 1e13ppp 2e13ppp Input profile Predicted measured profile

25 Q vs loss map 4.6 Other key work Profile and emittance measurements RGI checks vs harp monitors, scraper measurements, Detailed low intensity lattice measurements Optics parameters, non-linear lattice model, magnet measurements, Code development: ISIS 3D PIC Set Now being bench marked, injection, foils, smooth focusing options Longitudinal instability KS, KSB in bunched storage ring mode Diagnostics developments Kickers and damper systems, multipole monitors and deflectors Foils, activation and collimation modelling

26 5. Summary 5 Summary R&D is essential to identify best upgrade routes for ISIS Need to find best option for the next generation spallation source R&D on ISIS is improving the machine & our understanding On going development of computer models, benchmarking Studying key topics that have relevance for new machines Space charge, instabilities, injection, activation,. Methods of experimental verification and measurement Building simulation models and codes In house (SET3Di) and established codes as required for studies Still much to learn & much to gain from understanding more! We have a lot of work under way ~ results in the pipeline

27 6. Acknowledgements Many thanks to ISIS Diagnostics Section ISIS RF Section ISIS Operations ASTeC Intense Beams Group

28 7. ISIS Tour ISIS Tour on Friday afternoon FETS RFQ Linac tank build TS2 and more!

THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH SPACE CHARGE

THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH SPACE CHARGE WEOLR Proceedings of HB, East-Lansing, MI, USA THRESHOLDS OF THE HEAD-TAIL INSTABILITY IN BUNCHES WITH SPACE CHARGE V. Kornilov, O.Boine-Frankenheim, GSI Darmstadt, and TU Darmstadt, Germany C. Warsop,

More information

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS

1.5-GeV FFAG Accelerator as Injector to the BNL-AGS 1.5-GeV FFAG Accelerator as Injector to the BNL-AGS Alessandro G. Ruggiero M. Blaskiewicz,, T. Roser, D. Trbojevic,, N. Tsoupas,, W. Zhang Oral Contribution to EPAC 04. July 5-9, 5 2004 Present BNL - AGS

More information

Proposal to convert TLS Booster for hadron accelerator

Proposal to convert TLS Booster for hadron accelerator Proposal to convert TLS Booster for hadron accelerator S.Y. Lee -- Department of Physics IU, Bloomington, IN -- NSRRC Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV,

More information

Conceptual design of an accumulator ring for the Diamond II upgrade

Conceptual design of an accumulator ring for the Diamond II upgrade Journal of Physics: Conference Series PAPER OPEN ACCESS Conceptual design of an accumulator ring for the Diamond II upgrade To cite this article: I P S Martin and R Bartolini 218 J. Phys.: Conf. Ser. 167

More information

Design Status of the PEFP RCS

Design Status of the PEFP RCS Design Status of the PEFP RCS HB2010, Morschach, Switzerland J.H. Jang 1) Y.S. Cho 1), H.S. Kim 1), H.J. Kwon 1), Y.Y. Lee 2) 1) PEFP/KAERI, 2) BNL (www.komac.re.kr) Contents PEFP (proton engineering frontier

More information

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems:

A Project to convert TLS Booster to hadron accelerator 1. Basic design. 2. The injection systems: A Project to convert TLS Booster to hadron accelerator 1. Basic design TLS is made of a 50 MeV electron linac, a booster from 50 MeV to 1.5 GeV, and a storage ring. The TLS storage ring is currently operating

More information

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU

HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU HIRFL STATUS AND HIRFL-CSR PROJECT IN LANZHOU J. W. Xia, Y. F. Wang, Y. N. Rao, Y. J. Yuan, M. T. Song, W. Z. Zhang, P. Yuan, W. Gu, X. T. Yang, X. D. Yang, S. L. Liu, H.W.Zhao, J.Y.Tang, W. L. Zhan, B.

More information

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland

SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland SLS at the Paul Scherrer Institute (PSI), Villigen, Switzerland Michael Böge 1 SLS Team at PSI Michael Böge 2 Layout of the SLS Linac, Transferlines Booster Storage Ring (SR) Beamlines and Insertion Devices

More information

On-axis injection into small dynamic aperture

On-axis injection into small dynamic aperture On-axis injection into small dynamic aperture L. Emery Accelerator Systems Division Argonne National Laboratory Future Light Source Workshop 2010 Tuesday March 2nd, 2010 On-Axis (Swap-Out) injection for

More information

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002

Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Run2 Problem List (Bold-faced items are those the BP Department can work on) October 4, 2002 Linac Booster o 4.5-4.8e12 ppp at 0.5 Hz o Space charge (30% loss in the first 5 ms) o Main magnet field quality

More information

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev.

Compressor Ring. Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions. Valeri Lebedev. Compressor Ring Valeri Lebedev Fermilab Contents Where do we go? Beam physics limitations Possible Compressor ring choices Conclusions Muon Collider Workshop Newport News, VA Dec. 8-1, 8 Where do we go?

More information

The FAIR Accelerator Facility

The FAIR Accelerator Facility The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC SIS100 HESR pbar target SuperFRS goals: higher intensity (low charge states) higher energy (high charge states) production of

More information

RF BARRIER CAVITY OPTION FOR THE SNS RING BEAM POWER UPGRADE

RF BARRIER CAVITY OPTION FOR THE SNS RING BEAM POWER UPGRADE RF BARRIER CAVITY OPTION FOR THE SNS RING BEAM POWER UPGRADE J.A. Holmes, S.M. Cousineau, V.V. Danilov, and A.P. Shishlo, SNS, ORNL, Oak Ridge, TN 37830, USA Abstract RF barrier cavities present an attractive

More information

The TESLA Dogbone Damping Ring

The TESLA Dogbone Damping Ring The TESLA Dogbone Damping Ring Winfried Decking for the TESLA Collaboration April 6 th 2004 Outline The Dogbone Issues: Kicker Design Dynamic Aperture Emittance Dilution due to Stray-Fields Collective

More information

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons)

Statusreport. Status of the GSI accelerators for FRS operation. Jens Stadlmann (FAIR Synchrotrons) Statusreport Status of the GSI accelerators for FRS operation Jens Stadlmann (FAIR Synchrotrons) Overview Intensities reached and "candidates" for experiments. Uranium? Upgrade program New developments:

More information

Lattice Design and Performance for PEP-X Light Source

Lattice Design and Performance for PEP-X Light Source Lattice Design and Performance for PEP-X Light Source Yuri Nosochkov SLAC National Accelerator Laboratory With contributions by M-H. Wang, Y. Cai, X. Huang, K. Bane 48th ICFA Advanced Beam Dynamics Workshop

More information

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division

First propositions of a lattice for the future upgrade of SOLEIL. A. Nadji On behalf of the Accelerators and Engineering Division First propositions of a lattice for the future upgrade of SOLEIL A. Nadji On behalf of the Accelerators and Engineering Division 1 SOLEIL : A 3 rd generation synchrotron light source 29 beamlines operational

More information

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007

LIS section meeting. PS2 design status. Y. Papaphilippou. April 30 th, 2007 LIS section meeting PS2 design status Y. Papaphilippou April 30 th, 2007 Upgrade of the injector chain (R. Garoby, PAF) Proton flux / Beam power 50 MeV 160 MeV Linac2 Linac4 1.4 GeV ~ 5 GeV PSB SPL RCPSB

More information

Summary of Group A: Beam Dynamics in High- Intensity circular machines

Summary of Group A: Beam Dynamics in High- Intensity circular machines Summary of Group A: Beam Dynamics in High- Intensity circular machines --Giuliano Franchetti, Elias Metral, Rick Baartman (reporter) There were 32 excellent talks. I will not go through them one by one,

More information

NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS*

NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS* NEW DEVELOPMENT IN HIGH POWER RFQ ACCELERATORS* A. Schempp Institut für Angewandte Physik, J. W. Goethe-Universität, D-60054 Frankfurt am Main, Germany Abstract RFQs are the standard solution for new ion

More information

Advanced Design of the FAIR Storage Ring Complex

Advanced Design of the FAIR Storage Ring Complex Advanced Design of the FAIR Storage Ring Complex M. Steck for the FAIR Technical Division and the Accelerator Division of GSI The FAIR Accelerator Facility SIS300 existing GSI proton linac SIS18 UNILAC

More information

PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC

PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC THO3AB3 Proceedings of HB, East-Lansing, MI, USA PULSE-TO-PULSE TRANSVERSE BEAM EMITTANCE CONTROLLING FOR MLF AND MR IN THE 3-GeV RCS OF J-PARC P.K. Saha, H. Harada, H. Hotchi and T. Takayanagi J-PARC

More information

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education

III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education III. CesrTA Configuration and Optics for Ultra-Low Emittance David Rice Cornell Laboratory for Accelerator-Based Sciences and Education Introduction Outline CESR Overview CESR Layout Injector Wigglers

More information

FFAG diagnostics and challenges

FFAG diagnostics and challenges FFAG diagnostics and challenges Beam Dynamics meets Diagnostics Workshop Florence, Italy, 4-6th November 2015 Dr. Suzie Sheehy John Adams Institute for Accelerator Science, University of Oxford & STFC/ASTeC

More information

The IBEX Paul Trap: Studying accelerator physics without the accelerator

The IBEX Paul Trap: Studying accelerator physics without the accelerator The IBEX Paul Trap: Studying accelerator physics without the accelerator JAI Introducing Seminar 21/5/2015 Dr. Suzie Sheehy John Adams Institute for Accelerator Science & STFC/ASTeC Intense Beams Group

More information

BEAM STUDIES IN THE PS BOOSTER: HEAD-TAIL INSTABILITY

BEAM STUDIES IN THE PS BOOSTER: HEAD-TAIL INSTABILITY BEAM STUDIES IN THE PS BOOSTER: HEAD-TAIL INSTABILITY Vladimir Kornilov, GSI Darmstadt Machine opera9on: Alan Findlay, Sandra Aumon, Be@na Mikulec, Giovanni Rumolo PS BOOSTER CYCLE R=25m Kin. energy 50

More information

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics

ThomX Machine Advisory Committee. (LAL Orsay, March ) Ring Beam Dynamics ThomX Machine Advisory Committee (LAL Orsay, March 20-21 2017) Ring Beam Dynamics A. Loulergue, M. Biagini, C. Bruni, I. Chaikovska I. Debrot, N. Delerue, A. Gamelin, H. Guler, J. Zang Programme Investissements

More information

Status of the ESR And Future Options

Status of the ESR And Future Options Status of the ESR And Future Options M. Steck for the Storage Ring Division (C. Dimopoulou, A. Dolinskii, S. Litvinov, F. Nolden, P. Petri, U. Popp, I. Schurig) Outline 1) New Old ESR 2) Slow (Resonant)

More information

Overview of Acceleration

Overview of Acceleration Overview of Acceleration R B Palmer, Scott Berg, Steve Kahn (presented by Steve Kahn) Nufact-04 RF Frequency Acc types and System Studies Linacs RLA s FFAG s Injection/Extraction US Study 2a acceleration

More information

Study of Resonance Crossing in FFAG

Study of Resonance Crossing in FFAG Study of Resonance Crossing in FFAG Contents 1. Crossing experiment at PoP FFAG 2. Crossing experiment at HIMAC synchrotron 3. Summary Masamitsu Aiba (KEK) FFAG accelerator: For proton driver For muon

More information

LHC upgrade based on a high intensity high energy injector chain

LHC upgrade based on a high intensity high energy injector chain LHC upgrade based on a high intensity high energy injector chain Walter Scandale CERN AT department PAF n. 6 CERN, 15 September 2005 luminosity and energy upgrade Phase 2: steps to reach maximum performance

More information

HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN

HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN HALO SIMULATION IN A REALISTIC PROTON LINAC DESIGN M. Pabst and K. Bongardt, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany A.P. Letchford, Rutherford Appleton Laboratory, Chilton, Didcot, UK Abstract

More information

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS

SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS SPACE CHARGE EXPERIMENTS AND BENCHMARKING IN THE PS E. Métral Crossing the integer or half-integer resonance Montague resonance Static & Dynamic Benchmarking of the simulation codes Space charge driven

More information

Accelerator Physics. Accelerator Development

Accelerator Physics. Accelerator Development Accelerator Physics The Taiwan Light Source (TLS) is the first large accelerator project in Taiwan. The goal was to build a high performance accelerator which provides a powerful and versatile light source

More information

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University

Small Isochronous Ring (SIR) project at NSCL, MSU. Eduard Pozdeyev NSCL, Michigan Sate University Small Isochronous Ring (SIR) project at NSCL, MSU Eduard Pozdeyev NSCL, Michigan Sate University Talk Outline Isochronous regime in accelerators, application to Isochronous Cyclotrons Space charge effects

More information

Putting it all together

Putting it all together Putting it all together Werner Herr, CERN (Version n.n) http://cern.ch/werner.herr/cas24/lectures/praha review.pdf 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00 11 000 111 01 0 1 00 11 00 11 00

More information

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON

Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON Turn-by-Turn Beam Position Measurements at ANKA with LIBERA ELECTRON E.Huttel, I.Birkel, A.S.Müller, P.Wesolowski About ANKA Test by Frequency Generator Experiences in the Booster Experiences in the Storage

More information

arxiv: v1 [physics.acc-ph] 21 Oct 2014

arxiv: v1 [physics.acc-ph] 21 Oct 2014 SIX-DIMENSIONAL WEAK STRONG SIMULATIONS OF HEAD-ON BEAM BEAM COMPENSATION IN RHIC arxiv:.8v [physics.acc-ph] Oct Abstract Y. Luo, W. Fischer, N.P. Abreu, X. Gu, A. Pikin, G. Robert-Demolaize BNL, Upton,

More information

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron

Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Measurement and Compensation of Betatron Resonances at the CERN PS Booster Synchrotron Urschütz Peter (AB/ABP) CLIC meeting, 29.10.2004 1 Overview General Information on the PS Booster Synchrotron Motivation

More information

Pros and Cons of the Acceleration Scheme (NF-IDS)

Pros and Cons of the Acceleration Scheme (NF-IDS) (NF-IDS) 1 Jefferson Lab Newport News, Virginia, USA E-mail: bogacz@jlab.org The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by

More information

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron

Preliminary design study of JUICE. Joint Universities International Circular Electronsynchrotron Preliminary design study of JUICE Joint Universities International Circular Electronsynchrotron Goal Make a 3th generation Synchrotron Radiation Lightsource at 3 GeV Goal Make a 3th generation Synchrotron

More information

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER

TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER TUNE SPREAD STUDIES AT INJECTION ENERGIES FOR THE CERN PROTON SYNCHROTRON BOOSTER B. Mikulec, A. Findlay, V. Raginel, G. Rumolo, G. Sterbini, CERN, Geneva, Switzerland Abstract In the near future, a new

More information

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan

Front end, linac upgrade, and commissioning of J-PARC. Y. Liu KEK/J-PARC, Japan KEK Front end, linac upgrade, and commissioning of J-PARC j-parc Y. Liu KEK/J-PARC, Japan ICFA mini-workshop on Beam Commissioning for High Intensity Accelerators Dongguan, China, June 8-10, 2015 Outlines

More information

OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE

OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE OTHER MEANS TO INCREASE THE SPS 25 ns PERFORMANCE TRANSVERSE PLANE H. Bartosik, G. Arduini, A. Blas, C. Bracco, T. Bohl, K. Cornelis, H. Damerau, S. Gilardoni, S. Hancock, B. Goddard, W. Höfle, G. Iadarola,

More information

High performance computing simulations. for multi-particle effects in the synchrotons

High performance computing simulations. for multi-particle effects in the synchrotons High performance computing simulations for multi-particle effects in the synchrotons Content What is the HSC section doing? Physics basics PyHEADTAIL software Simulations of the PS Simulations of instabilities

More information

ORBIT Code Review and Future Directions. S. Cousineau, A. Shishlo, J. Holmes ECloud07

ORBIT Code Review and Future Directions. S. Cousineau, A. Shishlo, J. Holmes ECloud07 ORBIT Code Review and Future Directions S. Cousineau, A. Shishlo, J. Holmes ECloud07 ORBIT Code ORBIT (Objective Ring Beam Injection and Transport code) ORBIT is an object-oriented, open-source code started

More information

FACET-II Design Update

FACET-II Design Update FACET-II Design Update October 17-19, 2016, SLAC National Accelerator Laboratory Glen White FACET-II CD-2/3A Director s Review, August 9, 2016 Planning for FACET-II as a Community Resource FACET-II Photo

More information

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements

PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements PIP-II Injector Test s Low Energy Beam Transport: Commissioning and Selected Measurements A. Shemyakin 1, M. Alvarez 1, R. Andrews 1, J.-P. Carneiro 1, A. Chen 1, R. D Arcy 2, B. Hanna 1, L. Prost 1, V.

More information

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004

ELIC Design. Center for Advanced Studies of Accelerators. Jefferson Lab. Second Electron-Ion Collider Workshop Jefferson Lab March 15-17, 2004 ELIC Design Ya. Derbenev, K. Beard, S. Chattopadhyay, J. Delayen, J. Grames, A. Hutton, G. Krafft, R. Li, L. Merminga, M. Poelker, E. Pozdeyev, B. Yunn, Y. Zhang Center for Advanced Studies of Accelerators

More information

Transverse beam stability and Landau damping in hadron colliders

Transverse beam stability and Landau damping in hadron colliders Work supported by the Swiss State Secretariat for Educa6on, Research and Innova6on SERI Transverse beam stability and Landau damping in hadron colliders C. Tambasco J. Barranco, X. Buffat, T. Pieloni Acknowledgements:

More information

Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications

Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications Multi-Purpose Accelerator-Accumulator ITEP-TWAC for Nuclear Physics and Practical Applications N.N.Alexeev, D.G.Koshkarev and B.Yu.Sharkov Institute for Theoretical and Experimental Physics, B.Cheremushk.

More information

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC

Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Lattice Design for the Taiwan Photon Source (TPS) at NSRRC Chin-Cheng Kuo On behalf of the TPS Lattice Design Team Ambient Ground Motion and Civil Engineering for Low Emittance Electron Storage Ring Workshop

More information

FACET-II Design, Parameters and Capabilities

FACET-II Design, Parameters and Capabilities FACET-II Design, Parameters and Capabilities 217 FACET-II Science Workshop, October 17-2, 217 Glen White Overview Machine design overview Electron systems Injector, Linac & Bunch compressors, Sector 2

More information

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator * A. Caliskan 1, H. F. Kisoglu 2, S. Sultansoy 3,4, M. Yilmaz 5 1 Department of Engineering Physics, Gumushane University, Gumushane,

More information

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS

ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Contributed talk (15 + 5 min, 30 slides) ACHIEVABLE SPACE-CHARGE TUNE SHIFT WITH LONG LIFETIME IN THE CERN PS & SPS Elias Métral Elias Métral, HB2008 workshop, Nashville, Tennessee, USA, August 25-29,

More information

Operational Experience with HERA

Operational Experience with HERA PAC 07, Albuquerque, NM, June 27, 2007 Operational Experience with HERA Joachim Keil / DESY On behalf of the HERA team Contents Introduction HERA II Luminosity Production Experiences with HERA Persistent

More information

arxiv: v1 [physics.acc-ph] 5 Sep 2017

arxiv: v1 [physics.acc-ph] 5 Sep 2017 arxiv:179.1425v1 [physics.acc-ph] 5 Sep 217 Enhancement of space-charge induced damping due to reactive impedances for head-tail modes V. Kornilov, GSI Helmholtzzentrum, Planckstr. 1, Darmstadt, Germany,

More information

3. Synchrotrons. Synchrotron Basics

3. Synchrotrons. Synchrotron Basics 1 3. Synchrotrons Synchrotron Basics What you will learn about 2 Overview of a Synchrotron Source Losing & Replenishing Electrons Storage Ring and Magnetic Lattice Synchrotron Radiation Flux, Brilliance

More information

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21

Transverse dynamics Selected topics. Erik Adli, University of Oslo, August 2016, v2.21 Transverse dynamics Selected topics Erik Adli, University of Oslo, August 2016, Erik.Adli@fys.uio.no, v2.21 Dispersion So far, we have studied particles with reference momentum p = p 0. A dipole field

More information

The Electron-Ion Collider

The Electron-Ion Collider The Electron-Ion Collider C. Tschalaer 1. Introduction In the past year, the idea of a polarized electron-proton (e-p) or electron-ion (e-a) collider of high luminosity (10 33 cm -2 s -1 or more) and c.m.

More information

Optics considerations for

Optics considerations for Optics considerations for ERL x-ray x sources Georg H. Hoffstaetter* Physics Department Cornell University Ithaca / NY Georg.Hoffstaetter@cornell.edu 1. Overview of Parameters 2. Critical Topics 3. Phase

More information

High Intensity Accelerators

High Intensity Accelerators High Intensity Accelerators High Intensity Accelerators SNS, Oak Ridge, TN J-PARC, Tokai-mura, Japan Chinese SNS, Dongguan U.S. Spallation Neutron Source (SNS) Beam Power The mean beam power is given

More information

Chopping High-Intensity Ion Beams at FRANZ

Chopping High-Intensity Ion Beams at FRANZ Chopping High-Intensity Ion Beams at FRANZ C. Wiesner, M. Droba, O. Meusel, D. Noll, O. Payir, U. Ratzinger, P. Schneider IAP, Goethe-Universität Frankfurt am Main Outline 1) Introduction: The FRANZ facility

More information

ULTIMATE LHC BEAM. G. Arduini, CERN, Geneva, Switzerland

ULTIMATE LHC BEAM. G. Arduini, CERN, Geneva, Switzerland Abstract The present status of the nominal LHC beam in the LHC injector complex and the limitations towards the achievement of the ultimate brightness are outlined. ULTIMATE LHC BEAM G. Arduini, CERN,

More information

Status of PAMELA an overview of uk particle therapy facility using NS-FFAG

Status of PAMELA an overview of uk particle therapy facility using NS-FFAG Status of PAMELA an overview of uk particle therapy facility using NS-FFAG Takeichiro Yokoi (JAI, Oxford University, UK) On behalf of PAMELA group Contents Overview of CONFORM & PAMELA PAMELA design Lattice

More information

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory

The 2015 erhic Ring-Ring Design. Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The 2015 erhic Ring-Ring Design Christoph Montag Collider-Accelerator Department Brookhaven National Laboratory The Relativistic Heavy Ion Collider RHIC Two superconducting storage rings 3833.845 m circumference

More information

Superconducting RF Accelerators: Why all the interest?

Superconducting RF Accelerators: Why all the interest? Superconducting RF Accelerators: Why all the interest? William A. Barletta Director, United States Particle Accelerator School Dept. of Physics, MIT The HEP prespective ILC PROJECT X Why do we need RF

More information

Low energy electron storage ring with tunable compaction factor

Low energy electron storage ring with tunable compaction factor REVIEW OF SCIENTIFIC INSTRUMENTS 78, 075107 2007 Low energy electron storage ring with tunable compaction factor S. Y. Lee, J. Kolski, Z. Liu, X. Pang, C. Park, W. Tam, and F. Wang Department of Physics,

More information

Operational Experience with J-PARC Injection and Extraction Systems

Operational Experience with J-PARC Injection and Extraction Systems Operational Experience with J-PARC Injection and Extraction Systems Pranab Kumar Saha Japan Proton Accelerator Research Complex (J-PARC) 46th ICFA Advanced Beam Dynamics Workshop ( HB2010 ) Morschach,

More information

WG2 on ERL light sources CHESS & LEPP

WG2 on ERL light sources CHESS & LEPP Charge: WG2 on ERL light sources Address and try to answer a list of critical questions for ERL light sources. Session leaders can approach each question by means of (a) (Very) short presentations (b)

More information

PRISM system status and challenges

PRISM system status and challenges PRISM system status and challenges, Imperial College London/RAL STFC on behalf of the PRISM Task Force 23.08.2013, IHEP, Beijing, Nufact 13 Outline Introduction PRISM concept Main challenges Status of

More information

e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico e+e- Factories

e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico e+e- Factories e + e Factories M. Sullivan Presented at the Particle Accelerator Conference June 25-29, 2007 in Albuquerque, New Mexico 1 Outline Factory Running KEKB PEP-II DAFNE CESR-c BEPCII 2 Summary Factory Running

More information

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi

CEPC Linac Injector. HEP Jan, Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi HKUST Jockey Club Institute for Advanced Study CEPC Linac Injector HEP218 22 Jan, 218 Cai Meng, Guoxi Pei, Jingru Zhang, Xiaoping Li, Dou Wang, Shilun Pei, Jie Gao, Yunlong Chi Institute of High Energy

More information

Status of linear collider designs:

Status of linear collider designs: Status of linear collider designs: Main linacs Design overview, principal open issues G. Dugan March 11, 2002 Linear colliders: main linacs The main linac is the heart of the linear collider TESLA, NLC/JLC,

More information

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23,

PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, PBL (Problem-Based Learning) scenario for Accelerator Physics Mats Lindroos and E. Métral (CERN, Switzerland) Lund University, Sweden, March 19-23, 2007 As each working day, since the beginning of the

More information

A high intensity p-linac and the FAIR Project

A high intensity p-linac and the FAIR Project A high intensity p-linac and the FAIR Project Oliver Kester Institut für Angewandte Physik, Goethe-Universität Frankfurt and GSI Helmholtzzentrum für Schwerionenforschung Facility for Antiproton and Ion

More information

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y.

Accelerator Physics. Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE. Second Edition. S. Y. Accelerator Physics Second Edition S. Y. Lee Department of Physics, Indiana University Tip World Scientific NEW JERSEY LONDON SINGAPORE BEIJING SHANGHAI HONG KONG TAIPEI BANGALORE Contents Preface Preface

More information

Overview of JLEIC beam physics simulations. Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab

Overview of JLEIC beam physics simulations. Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab Overview of JLEIC beam physics simulations Yves R. Roblin Center for Advanced Studies of Accelerators (CASA), Jefferson Lab Overview Machine specifications CEBAF machine as an electron injector Electron

More information

6 Bunch Compressor and Transfer to Main Linac

6 Bunch Compressor and Transfer to Main Linac II-159 6 Bunch Compressor and Transfer to Main Linac 6.1 Introduction The equilibrium bunch length in the damping ring (DR) is 6 mm, too long by an order of magnitude for optimum collider performance (σ

More information

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou

Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR. C. Dimopoulou Longitudinal stacking and electron cooling of ion beams in the ESR as a proof of principle for FAIR C. Dimopoulou B. Franzke, T. Katayama, D. Möhl, G. Schreiber, M. Steck DESY Seminar, 20 November 2007

More information

Impedance & Instabilities

Impedance & Instabilities Impedance & Instabilities The concept of wakefields and impedance Wakefield effects and their relation to important beam parameters Beam-pipe geometry and materials and their impact on impedance An introduction

More information

Accelerator Complex U70 of IHEP-Protvino: Status and Prospects for Upgrade

Accelerator Complex U70 of IHEP-Protvino: Status and Prospects for Upgrade NRC Kurchatov Institute INSTITUTE FOR HIGH ENERGY PHYSICS () 1, Nauki Sq., Protvino, Moscow Region, 142281, Russia Accelerator Complex U70 of -Protvino: Status and Prospects for Upgrade Sergey IVANOV 16

More information

BEAM DYNAMICS ISSUES IN THE SNS LINAC

BEAM DYNAMICS ISSUES IN THE SNS LINAC BEAM DYNAMICS ISSUES IN THE SNS LINAC A. Shishlo # on behalf of the SNS Accelerator Group, ORNL, Oak Ridge, TN 37831, U.S.A. Abstract A review of the Spallation Neutron Source (SNS) linac beam dynamics

More information

The CIS project and the design of other low energy proton synchrotrons

The CIS project and the design of other low energy proton synchrotrons The CIS project and the design of other low energy proton synchrotrons 1. Introduction 2. The CIS project 3. Possible CMS 4. Conclusion S.Y. Lee IU Ref. X. Kang, Ph.D. thesis, Indiana University (1998).

More information

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000)

Accelerators. There are some accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000) Accelerators There are some 30 000 accelerators around the world Nearly all are for industrial (20 000) or clinical use (10 000) Scientific research community (~ 100) Synchrotron light sources Ion beam

More information

Status of the LIU project and progress on space charge studies

Status of the LIU project and progress on space charge studies Status of the LIU project and progress on space charge studies S. Gilardoni CERN BE/ABP In collaboration with: J. Coupard, H. Damerau, A. Funken, B. Goddard, K. Hanke, A. Lombardi, D. Manglunki, M. Meddahi,

More information

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes

Index. Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Index Accelerator model 8 Adiabatic damping 32, 141 Air-bag model 338 Alternating explicit time scheme 112 Azimuthal modes, see Modes Beam breakup in linacs dipole mode 136 higher modes 160 quadrupole

More information

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1

Beam Physics at SLAC. Yunhai Cai Beam Physics Department Head. July 8, 2008 SLAC Annual Program Review Page 1 Beam Physics at SLAC Yunhai Cai Beam Physics Department Head July 8, 2008 SLAC Annual Program Review Page 1 Members in the ABP Department * Head: Yunhai Cai * Staff: Gennady Stupakov Karl Bane Zhirong

More information

FFAG Accelerators. CERN Introductory Accelerator School Prague, September 2014

FFAG Accelerators. CERN Introductory Accelerator School Prague, September 2014 FFAG Accelerators CERN Introductory Accelerator School Prague, September 2014 Dr. Suzie Sheehy ASTeC Intense Beams Group STFC Rutherford Appleton Laboratory, UK Many thanks to Dr. S. Machida for his advice

More information

Numerical study of FII in the ILC Damping Ring

Numerical study of FII in the ILC Damping Ring Numerical study of FII in the ILC Damping Ring L. Wang, Y. Cai and T. Raubenheimer SLAC LCDR07 - Damping Rings R&D Meeting March 5-7, 2007 INFN-LNF, Frascati Outline Introduction Simulation Wake of ion

More information

FFA Accelerators Fixed Field Alternating Gradient

FFA Accelerators Fixed Field Alternating Gradient FFA Accelerators Fixed Field Alternating Gradient CERN Introductory Accelerator School Constanta, Romania, September 2018 Dr. Suzie Sheehy Royal Society University Research Fellow John Adams Institute

More information

Practical Lattice Design

Practical Lattice Design Practical Lattice Design Dario Pellegrini (CERN) dario.pellegrini@cern.ch USPAS January, 15-19, 2018 1/17 D. Pellegrini - Practical Lattice Design Lecture 5. Low Beta Insertions 2/17 D. Pellegrini - Practical

More information

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron

Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Frequency and time domain analysis of trapped modes in the CERN Proton Synchrotron Serena Persichelli CERN Impedance and collective effects BE-ABP-ICE Abstract The term trapped mode refers to a resonance

More information

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014

First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep , 2014 First Collective Effects Measurements in NSLS-II A. Blednykh Accelerator Physicist, BNL/NSLS-II Sep. 17-19, 2014 (LOWεRING 2014) 1 BROOKHAVEN SCIENCE ASSOCIATES Outline Phase 1 (25mA / PETRA-III) and Phase

More information

Comparison of simulated and observed beam profile broadening in the Proton Storage Ring and the role of space charge

Comparison of simulated and observed beam profile broadening in the Proton Storage Ring and the role of space charge PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS, VOLUME 3, 3421 (2) Comparison of simulated and observed beam profile broadening in the Proton Storage Ring and the role of space charge J. D. Galambos,

More information

Physics 610. Adv Particle Physics. April 7, 2014

Physics 610. Adv Particle Physics. April 7, 2014 Physics 610 Adv Particle Physics April 7, 2014 Accelerators History Two Principles Electrostatic Cockcroft-Walton Van de Graaff and tandem Van de Graaff Transformers Cyclotron Betatron Linear Induction

More information

STATUS OF BEPC AND PLAN OF BEPCII

STATUS OF BEPC AND PLAN OF BEPCII STATUS OF BEPC AND PLAN OF BEPCII C. Zhang for BEPCII Team Institute of High Energy Physics, P.O.Box 918, Beijing 139, China Abstract The status of the Beijing Electron-Positron Collider (BEPC) and plans

More information

Issues of Electron Cooling

Issues of Electron Cooling Issues of Electron Cooling Yaroslav Derbenev derbenev@jlab.org JLEIC Spring 2016 Collaboration Meeting JLab, March 29-31, 2016 Outline Friction force Magnetized cooling Misalignment impact Cooling rates

More information

Particle physics experiments

Particle physics experiments Particle physics experiments Particle physics experiments: collide particles to produce new particles reveal their internal structure and laws of their interactions by observing regularities, measuring

More information

PBL SCENARIO ON ACCELERATORS: SUMMARY

PBL SCENARIO ON ACCELERATORS: SUMMARY PBL SCENARIO ON ACCELERATORS: SUMMARY Elias Métral Elias.Metral@cern.ch Tel.: 72560 or 164809 CERN accelerators and CERN Control Centre Machine luminosity Transverse beam dynamics + space charge Longitudinal

More information